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CONJUGACY CLASSES OF INVOLUTIONS
IN COXETER GROUPS

R.W., RICHARDSON

In this paper we give an elementary method for classifying

conjugacy classes of involutions in a Coxeter group {W, S) .

The classification is in terms of (/-equivalence classes of

certain subsets of S .

Our basic reference for Coxeter groups is [2]. Let {W, S) be a

Coxeter group and let a : W -*• GL(S) be the geometric realization of

(W, S) . If J is a subset of S , let WT be the subgroup of W
d

generated by J and let ET be the subspace of E spanned by
j

\e I s € j] . We say that the subset J satisfies the (-l)-condition ifs

there exists a, € W such that ofe7j,a; = -x for every x € Er . If J
v J d d

satisfies the (-1)-condition, then J is necessarily finite and the

element aT is uniquely determined and is an involution.

If J is a subset of S , let J* = {e \ s € j} . We say that two

s

subsets J and K of S are W-equivalent if there exists w 6 W such

that o(w)(J*) = K* .
Our main result is the following:

THEOREM A. Let (W, S) be a Coxeter group and let J be the set of

all subsets of S which satisfy the (-1)-condition.

(a) Let c (. W be an involution. Then there exists J £ J
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2 R.W. R i c h a r d s o n

such that c is conjugate in W to e . .

(b) Let J, K (. J . Then the involutions cr and c7. are
J A

conjugate in W if and only if the subsets J and K are

y-equivalent.

We see from Theorem A that the map which associates to each J £ J

the involution c determines a bisection between (/-equivalence classes
d

of elements of J and conjugacy classes of involutions in W . Thus the

conjugacy classification of involutions in W reduces to the

classification of (/-equivalence classes in J . Fortunately there exists

an easy algorithm for determining (/-equivalence classes of arbitrary

subsets of S . This algorithm is implicit in the papers of How left [5]

(for finite Coxeter groups) and Deodhar [4], although it is not explicitly

stated by either author. We discuss this algorithm in Section 3.

For the convenience of the reader who is not interested in Coxeter

groups per se, but who is interested in the special case of Weyl groups,

we discuss the case of Weyl groups in some detail. There already exists a

complete classification of all conjugacy classes in Weyl groups (see [3]

and the references therein). However the classification is quite

complicated and it is difficult to extract from the classification a simple

description of the conjugacy classes of involutions. In Section h we

reformulate Theorem A for Weyl groups in terms of root systems and we

indicate how one can easily obtain explicit representatives for

(/-equivalence classes of sets of simple roots.

1. Preliminaries

1.1. The geometric realization of (W, S) . (See [2, Chapter V, §*t]

and [6, §1].) Let {W, S) be a Coxeter group, let E = £„ denote the

(S)
real vector space R and let \e I s € S\ be the canonical basis of

s

(S)
R . We define a symmetric bilinear form B on E x E by

B[e , e , J = -v s ' s " cose , e , J = -cos —, T-\~ »
s' s" m{s,s') '

where m(s, s') is the order of ss' . If s € S , define o(s) € GL(fi')
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Conjugacy classes of involutions 3

o(s).x = x - 25(e , x)e for x € E .

Then a(s) is a reflection, o{s).e = -e and o(s) is the identity on
s s

the hyperplane H = {x € E \ fife , x) = o} . The map o : S -*• GL(E)
s s

extends uniquely to a faithful representation a : W -*• GL(E) ; the

representation a : W -*• GL(ff) is the geometric realization of (W, S) .

Each a(w) , w (. W , leaves the bilinear form B invariant. If w € W

and x i E , then we frequently write W.x for a(u),x .

If J is a subset of 5 , let Wj be the subgroup of W generated

by J and let E be the subspace of E generated by {e | s € j} .

Then v^jt ̂J i s a Coxeter group, the subspace E is W -stable, and the

corresponding representation 0-, : I/. ->• GL^ffJ can be canonically

identified with the geometric realization of \W., J] .

The following results are known:

1.2. W is finite if and only if B is positive definite.

1.3. Let H be a finite subgroup of W . Then there exists a subset

J of S suah that W. is finite and H is conjugate to a subgroup of

WJ-

See [2, Chapter V, §U.8, Theorem 2] for 1.2 and [2, Chapter V, §U,

Example 2 (d), p. 130] for 1.3.

1.4 (see [2, Chapter V, §U.8]). Assume that W is finite. Then

(E, B) is a finite-dimensional real hilbert space and a(s) , s € S , is

the orthogonal reflection in the hyperplane H .
s

In this case o(W) is a finite group generated by reflections and one

can apply to (a(f/), E) the results of [2, Chapter V], If we let

C = {x € E | B(eg, x) > 0 for every s i S] ,

then C is a chamber of E with respect to the family of hyperplanes

{w.Hs | w € V and s € 5}

and the walls of the chamber C are precisely the hyperplanes H ,
s
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4 R.W. Richardson

s € S .

We let $ = {w.e \ w i. W and s (. S} . The results 1.5-1.7 below are
s

proved in [6, §1].

1.5. Each cp € $ can be written in the form

<P = I a
s
( ( P ) e

s >

where the coefficients a (cp) 6 R are either all greater than or equal to
s

0 or all less than or equal to 0 .

We write cp > 0 (respectively (p < 0) if all coefficients a (<p)

s

are greater than or equal to 0 (respectively less than or equal to 0 ) .

We set *+ = {cp € * | cp > 0} . If w € W , let * y = {cp € *
+ | u.cp < 0} .

1.6. l(w) = |* | .
w

1.7. Let w - s .. . s, be a reduced expression for w , Then

If J c 5 , let

$j = {w[es) | w € Wj and s € j} .

1.8. Let J c s and w € W. . Then * c $
c/ W e /

This follows easily from 1.7 and [2, Chapter IV, §1.8, Proposition 7],

We say that (W, S) satisfies the (-1)-condition if there exists

c € W such that c.x = -x for every x € E . A subset J of S

satisfies the (-1)-condition if the Coxeter group ((/-, j) satisfies the

(-1)-condition.

1.9. (a) If (W, S) satisfies the (-1)-condition, then W is

finite.

(b) Assume that (W, S) is irreducible. Then (W, S) satisfies the

(-1)-condition if and only if the center of W is not equal to {l} .

(c) Let S be finite and let (fĉ , S^ , ..., [Wp, Sp) be the

irreducible components of (W, S) . Then (W, S) satisfies the (-1)-
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Conjugacy classes of involutions 5

condition if and only if each [w'., S.) satisfies the (-1)-condition.

The proofs of (a) and (b) follow from Exercises 2 (b) and 3 (b) of

[2, Chapter V, §U, p. 130]. The proof of (c) is trivial.

If J c S satisfies the (-1)-condition, let cT be the unique

element of W such that aj-x = ~x f°r every x € E' . Clearly c. is

an involution and ET is the (-l)-eigenspace of cT on i? .

1.10. Let J c 5 satisfy the (-l)-condition. Then 4> = E1,. n * .

Proof. It is clear from the definitions that <f> c ET n * . For the

reverse inclusion it will suffice to show that ET n <t> c $ Let

cp € Ej n * . Then c .<p = -<p < 0 . Hence <p € * . But, by 1.8,
J

$ c <i>. . This proves 1.10.

If (/ is a subset of S , by the Coxeter graph of e7 we mean the

Coxeter graph of the Coxeter group ((/-, j) . We say that a subset J of

J is a connected component of J if J is the set of vertices of a

connected component of the Coxeter graph of J .

1.11. The finite Coxeter groups are classified in [2, Chapter VI,

§U.l, Theorem 1]. It follows from the classification that an irreducible

Coxeter group {W, S) is finite if and only if its Coxeter graph is of one

of the following types:

An, Bn (n 2 2), Dn (n g h), Eg, E7> EQ, i^, G2> Hy ^ , or

-Z"2(P) (p = 5 or p g T) .

1.12. Let (W, S) be an irreducible Coxeter group. Then {W, S)

satisfies the (-1)-condition if and only if its Coxeter graph is of one of

the following types: A±1 B^ D^, fi^, EQ, G2, 2^, Hy H^ , or I^ip) .

Proof. By 1.9 we may assume that W is finite, hence that the

Coxeter graph of (W, S) is of one of the types listed in 1.11. For each

of these graphs, one must determine whether -1 6 o(W) c GL(ff) . For the

Weyl groups A , ..., G , this information is given in [2, Planches I-IX],

https://doi.org/10.1017/S0004972700005554 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005554


6 R.W. Richardson

For types #-, #, and J"2(p) it can be checked directly.

1.13. Let L be a subset of S such that W is finite. Then

there exists a unique element W- i W. such that if cp € <£> n $ , then

w_(<p) < 0 . The element w. is the longest element of W and is an

involution. Moreover wT maps L* = \e | s £ l| onto -L* .

See [2, Chapter V, §U, Exercise 2, p. 130] for these results.

If WT is finite, we define a permutation LT : L ->- 1, as follows:
L Li

i f s € L , t h e n w r fe ) = - e , f o r some s' € £ ; we s e t c , - ( s ) = s ' .
Jj S S Li

Thus ur is the permutation of L which corresponds to the permutation of
L

L* induced by -wT . In particular tT is of order less than or equal to
Li LI

2 . It fo.llows from the definitions that ;, is the identity permutation
Li

if and only if L satisfies the (-1)-condition.

1.14. Let L c S be such that (f/., L] is finite and irreducible.

Then a necessary and sufficient condition that LT is not the identity
Li

permutation of L is that the Coxeter graph of L is of one of the

following types: An (n > l)J £2n + 1, E&3 J2(2p+l) .

Proof. This follows from 1.11 and 1.12.

For L of types A (n > l) , D , and £V , a description of

Lj. is given in [2, p. 251, p. 257 and p. 26l], If L is of type

Xo(2p+l) , then c,, interchanges the two vertices of the diagram.
^ Li

2. Proof of Theorem A

2.1. Proof of (a). Let c Z W be an involution. By 1.3 there

exists a subset K of S such that Wv is finite and c is conjugate to
A

an element of W . Hence we may assume that W is finite and that B is

A

positive definite on E . We will identify W with a(W) , which is a

finite subgroup of 0(E) generated by reflections. Let

H = {w.Hs | w € W and s € S] . If <p € * , let s denote the reflection
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Conjugacy classes of involutions 7

in the hyperplane H orthogonal to <f> . Clearly s € W and

Let E (respectively E ) denote the -1 eigenspace (respectively

+1 eigenspace) of c on E ; thus E is the orthogonal direct sum of

E and E . Let 4> = $ n E . By a standard result on reflection

groups [2, Chapter V, §3.3, Proposition 2], c may be written as a product

of reflections s , <p € * , It follows easily from this that <P spans

E and that E = D H .

We consider chambers and facets of E with respect to the family of

hyperplanes H (we follow the terminology of [2, Chapter V]). Since E+

is the intersection of hyperplanes in the family H , E is a union of

facets of E . Let F be a facet of E which is contained in E and is

a relatively open subset of E . Let

C = [x € E | B[x, e ) > 0 for every s £ S) .
s

By 1.4, C is a chamber of E . If J is a subset of S , let

C\ = {x Z E I B[x, e ) = 0 for s € J and s(x, e ) > 0 for s € (5-J)} .

Let C denote the closure of C . Then each CT is a facet contained in

C and C is the disjoint union of the CT's , J c S . Since C is a

fundamental domain for the action of W on E1 , there exists w € W and

J c S such that w(F) = CT . Now CT is, by definition, an open subset

_L X

of ET . Thus w maps E onto ffT . Hence w maps 2? onto ET . It

follows immediately that J satisfies the (-1)-condition and that

cj = wcw~ . This proves CaJ.

2.2. Proof of ("&,). For this part of the proof we can no longer

assume that W is finite and that B is positive definite. Let J € J ,
let dT = \j\ and let A T = D # . How cT is the identity map on A.

J J siJ s J J

and acts by multiplication by -1 on ET . Hence A n Er = {0} . Since

dim E. = dT and since 4 T is of codimension at most dT in E , we see
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8 R.W. Ri c h a r d s o n

t h a t E i s the d i r ec t sum of A T and E . Consequently E
d d d

(respectively A. ) is the -1 eigenspace (respectively +1 eigenspace)

of a T on E .
d

Now let J, K € J . Then by 1.2 and 1.9, the restriction of B to

E x E (respectively to Ex E ) is positive definite and the

restriction of W (respectively W ) to E. (respectively E\, ) is a

finite reflection group. If there exists w € W such that w(J*) - K* ,

then it is clear that wo 20 = a.. . Assume conversely that there exists
d K

W € W such that wo if = a . Since E (respectively E ) is the -1
d

j , • U1I1UC i-l j ^iCO^CLblVClJ 1/

eigenspace of oT (respectively c 1, i t is clear that W[ET) = E . It
d is. d K

follows from 1.10 that w ( * J = *„ . Let H = [H n ff | <p € * } and let

H = {5 n £ I <p € $7.} . Then H T (respectively Hv) is a family of
A. <P A A d A

hyperplanes in 2?- (respectively Ej, J and w(H.J = H., . Let

D = ( i a | 8(x, s ) > 0 for every s € </}

and let £> be defined similarly. Then by l.k (as applied to the Coxeter

group [Wj, j) ) , D is a chamber of E. with respect to the family of

hyperplanes HT and the set of walls of DT is \H n ET I s 6 j] .
d d S d

Similarly for D . Since w(Wj = Hj, , w(D ) is a chamber of E .

Since Wv acts transitively on the set of chambers of Ev (by [2,

A A

Chapter V, §3.3 , Theorem 1 ] ) , there e x i s t s w' € W such tha t

w'wiD ) = D . Let s € J . Since 5 i s a wall of D , we see tha t

w'w{H ) i s a wall of w'w[p ) = 0 . Hence there ex i s t s s' £ K such

t h a t w'w{e ) = ±e , . I f x € D , then B(a;, e ) > 0 and hence

B[w'w{x), w'w[e )) > 0 . Since w'u(a;) € i? we see tha t w'w[e ) = e , .

Thus w'w(J*) c K* . Since \j\ = |ic| , we have w'w{J*) = K* . This

proves fW and completes the proof of Theorem A.
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3. An algorithm for determining (/-equivalent subsets

In this section we will give an elementary algorithm, which is

essentially due to Howlett [5] and Deodhar [4], for determining when two

subsets J and K of S are (/-equivalent.

If J c S and s 6 S , we let L(s, J) denote the connected

component of J u {s} which contains s . We let A(t7) be the set of

s € (S-J) such that, letting L = L(s, J) , the Coxeter group ((/,, L) is

a finite Coxeter group which does not satisfy the (-1)-condition. It

follows from 1.11 and 1.12 that, for s € (S-J) , we have s € A(J) if and

only if the Coxeter graph of L(s, J) is of one of the following types:

A (n > 1) , 0 , , £, or J^(2D+1) .
n ' 2n+l ' 6 2 "

Let J c S , let s € A(J) , let £ = £(s, J) and let s' = C-L(s) .

We define a subset X(s, J) of 5 by

K(s, J) = (J u {s}) - is'} .

We say that J and if = X(s, J) are related by an elementary equivalence

and we denote this by J t- K , or, if reference to s is wanted, by

J H- X . Since cr is of order 2 it is clear that J >- K implies that
S Li

V L_ 7
A ' c/ •

If L is a subset of S such that ((/,, Lj is finite and

irreducible, if s (. L and if D = (£-{s}) , we define an element

v(s, L) € W by v(s, L) = W W.. , where WT and w,. are as defined in
Lt Li M Li M

1.13.

LEMMA 3.1. Let J cz s , let s € A(j) , let L = L(s, J) and let

u = v(s, L) . Then v(J*) = K(s, J)* .

Proof. Let M = (£-{e}) and let J' = {t € J | t £ L} . Then J is

the disjoint union of M and J' and K = K(s, <7) is the disjoint union

of J' and (£-{£,,(s)}) = LT(M) . It is clear that if t i J' , then
Xy Li

v[e.) = e, . We have U.,(M*) = -M* and hence
*• t' t M

v(M*) = -wAM*) = c (M)*

Thus y(J*) = K* .
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10 R.W . Ri chardson

We see from Lemma 3.1 that if J and K are related by an elementary-

equivalence, then they are (/-equivalent. The following proposition shows

that every (/-equivalence can be obtained by a finite sequence of

elementary equivalences.

PROPOSITION 3.2 (Howleft, Deodhar). Let J and K be subsets of

S . Then J and K are ^-equivalent if and only if they can be

connected by a finite sequence of elementavy equivalences:

0 1 n

Proof. If J and K are connected by a finite sequence of

elementary equivalences, then they are (/-equivalent by Lemma 3.1. Let

w € W be such that w(J*) = K* . We need to prove that J and K are

connected by a finite sequence of elementary equivalences. It is shown in

L4, §5] that there exists a sequence of elements sn, ..., s and a

sequence J , . . . , J of subsets of S such that the following conditions

hold:

(i) J = J and J = K ;

(ii) if L. = L[s ., J.) , then W. is a finite group and
3 3 0 Li.

j

and

( i i i ) u, = v[en_lt LnJ . . . v[e0, LQ) .

For each index j there are two possible cases:

(a) s. * k[j.) ,

(b) s . e A{j.) .

In case (a) we have J. = J. and in case (b), J. \- J. . Thus we
<7+-L 3 3 s_- J+J-

u

see that J = J and J = K are connected by a finite sequence of

elementary equivalences. This proves Proposition 3.2.

3.3 REMARKS. (a) Let J c S , let s i A(J) and let

v = v(s, L(s, J)) . Then v(J*) = K(s, J)* . The bijective mapping

J* •* K(s, J)* given by v may be a bit complicated. However, in applying

Proposition 3.2 to determine (/-equivalence classes of subsets of 5 , one
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does not need any knowledge of this bijection. One only needs to describe

the set K(s, J) , and this is easy to do by inspection of the Coxeter

diagram of 5 .

(b) If |s| is not too large (say \s\ S 10 ), it is quite easy to

apply the algorithm of Proposition 3.2 to get a complete classification of

(/-equivalence classes of elements of S . As a test of the algorithm, we

did this for the affine Weyl groups associated to root systems of types

£V, E , and Ea and the computations were quite easy to carry out by

hand. A few particular cases for type E are discussed below.

3.4. AN EXAMPLE. In order to illustrate the algorithm for

(/-equivalence classes given by Proposition 3.2, we discuss a few cases

involving a non-trivial example. Let {W, S) be the affine Weyl group

corresponding to a root system of type E . The Coxeter diagram of S is

o o o o o o o

I
o

(see [2, p. 265]). We label the vertices of the Coxeter diagram as

follows:

s0 sl S2 S3 Sh s
5
 S6

S7

Let J_ denote the subset {s_, s, , sA . The Coxeter graph of </_ is

of type ^i = A
x
 + A

x
 + A

x • W e h a v e A(t73)
 = (S3> S51 • If s € A [j ) ,

it is easy to see that J t- J . Hence J is not (/-equivalent to any
5 s i 5

other subset of S . A similar argument shows that J' = {s , s_, s_} is

not (/-equivalent to any other subset of S . On the other hand the

subsets K - {s , s , s, } and K' = {s , s^, s } are connected by the

following sequence of elementary equivalences:

\ K S3' S5} \ <V S2' S5} \ <V S2' %} •

A few more arguments show that there are exactly 3 (/-equivalence classes
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12 R.W. Ri chardson

of subsets J of S of type 3A . As representatives one can take

J , </' and K . Similar arguments allow one to determine all

{/-equivalence classes of subsets of 5 . For example, there are exactly

20 (/-equivalence classes of subsets of S which satisfy the

(-1)-condition. Thus, by Theorem A, there are 20 conjugacy classes of

involutions in W .

4. Involutions in Weyl groups

Involutions in Weyl groups seem to play a special role in a number of

problems involving semisimple Lie groups and Lie algebras. For the

convenience of the reader who is interested in semisimple Lie groups and

Lie algebras, but who is not familiar with the general theory of Coxeter

groups, we shall reformulate Theorem A in terms of root systems. Our basic

reference for root systems is [2, Chapter VI]. Let J? be a reduced root

system in a finite dimensional real vector space E , let W = W(R) be the

Weyl group of R and let E be given a (/-invariant positive definite

inner product. If a € R , then s denotes the orthogonal reflection in

the hyperplane orthogonal to a . Let B be a base of R . If J c B ,

let ET be the subspace of E spanned by J , let R = R n E and let
d d d

W be the subgroup of W generated by {s | a € j} . Then R, is a

root system in ET , J is a base of RT and the restriction map

d d
w i—*• w\1P is an isomorphism of W. onto W[R J . We say that two subsets

t/ T d d
d

J and K of B are W-equivalent if there exists w € W such that

w{J) = K . We say that the root system R satisfies the {-1}-condition

if -1 € W(R) . A subset J of B satisfies the (-1)-condition if the

root system RT satisfies the (-1)-condition. If J c B satisfies the
d

(-1)-condition, then we define an involution c T € WT by: e Ax) = -x if
d d d

x € ET and c Ax) = x if x £ ET . For the case of Weyl groups, Theorem
d d d

A becomes:

THEOREM A1. Let J denote the set of all subsets of B which

satisfy the (-1)-condition.

(a) Every involution c € W is conjugate to some c . , J € J .
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(b) If J, K i J , then cT and c are conjugate in W if and

only if J and K are W-equivalent.

The proof of Theorem A1 is simpler than that of Theorem A. It follows

easily from [2, Chapter VI, §1.7, Proposition 2U] and [2, Chapter V, §3.3,

Proposition 2],

4.1. Classification of (/-equivalence classes. Assume that the root

system R is irreducible. We say that two subsets J and K of B are

isomorphio if there exists an isometry n : E -*• E such that
o K

T\\RS\ = Rj, . If R has only one root length, then J and K are

isomorphic if and only if J and K are of the same type, that is if the

Dynkin diagrams corresponding to the root systems RT and Rv are of the

same type. If R has more than one root length, then this is no longer

the case.

A complete classification of (/-equivalence classes of subsets of B

is given in [1, pp. U-5L (However, see Remark k.2 below.) It turns out

that in most cases, two subsets of B are (/-equivalent if and only if

they are isomorphic. The only cases in which two subsets J and K of B

satisfying the (-1)-condition are isomorphic, but not (^-equivalent, are

the following:

(a) R of type E . There are two (/-equivalence classes of subsets

of B of type 3A = A + A + A . As representatives for these

(/-equivalence classes, we may take J = {a , a, , OL,} and

K = {a , a a } . (The numbering of the roots is as in [2, Planche VI,

P. 265].)

(b) R of type D (n 2 k) . (i) If n is even, say n = 2m ,

there are three (/-equivalence classes of subsets of type mA . As

representatives for these three equivalence classes, we may take:

Jm = K ' a 3 ' •••' a2m-3> a2m-l} ; Km = K ' a
3 ' ••••

 a2m-5' a2m-l> a2n) >

and L m = { V a3, ..., a ^ , a^} .

(ii) If p is an integer such that p > 2 and 2m+l 5 n , there are
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two (/-equivalence classes of type pA . As representatives of these two

(/-equivalence classes, we may choose: J = {a , a , ..., a } ; and

K = {a , a , ..., a 2D_5'
 an 1' °VJ ' ^The roots are numbered as in [2,

Planche IV, p. 257].)

4.2 REMARK. There is a minor error in [/, Proposition 6.3, p. U] for

type D . The authors seem to have overlooked the fact that the subsets

J and K (and the subsets J and K ) above are isomorphic. It is
p p ^ mm'

clear that they are not (/-equivalent. In [ 1 ], K (respectively K ) is

apparently considered as a subset of type {p-2)A + Dp (respectively

(m-2)A + £> ) instead of type pA (respectively mA ) .

4.3 REMARK. Using the algorithm of Section 3, it is a straight-

forward matter to check the results on (/-equivalence classes listed in [1,

pp. U-5].
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