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ON THE CRITICAL POINTS OF A POLYNOMIAL

ABDUL AZIZ AND B.A. ZARGAR

n - l
Let p be a complex polynomial, of the form p(z) = z PJ (z — zk), where \zk\ ^ 1

/t=i
when 1 s£ k ^ n - 1. Then p'{z) ^ 0 if \z\ < 1/n.

Let B(z, r) denote the open ball in C with centre z and radius r, and B(z, r) denote
its closure. The Gauss-Lucas theorem states that every critical point of a complex
polynomial p of degree at least 2 lies in the convex hull of its zeros. This theorem has
been further investigated and developed. B. Sendov conjectured that, if all the zeros of
p lie in S(0,1), then, for any zero £ of p, the disc B(Q, 1) contains at least one zero of
p'; see [3, Problem 4.1]. This conjecture has attracted much attention-see, for example,
[1], and the papers cited there. In connection with this conjecture, Brown [2] posed the
following problem.

n- l
Let Qn denote the set of all complex polynomials of the form p(z) — z P[ (z — zk),

k=\

where \zk\ ^ 1 when 1 ^ k ^ n - 1. Find the best constant Cn such that p' does not
vanish in B(0, Cn), for all p in Qn.

Brown observed that, if p(z) = z(z - I)""1, then p'(l/n) = 0, and conjectured that
Cn = 1/n. We show this here.

THEOREM For all p in Qn, p'{z) ^ 0 if z £ B(0,1/n).
n- l

PROOF: Clearly p'(0) = J[ (-zk) ^ 0. If 0 < \z\ < 1/n, then \z - zk\ > 1 - 1/n,
fc=i

and so

p'{z) _ a ^zj 1 1 ^zj 1 v* n — n
P\Z) z k=i z — zk \z\ ^=1 \z — zk\ j ~ . n— i

It follows that p' does not vanish in B(0,1/n). D
n—m

Similarly, if p(z) = zm PJ (z - zk), where \zk\ ^ 1 when 1 < A; < n - m, then

p'(z) 7̂  0 if 0 < \z\ < m/n.
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