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Abstract
We present a novel multiscale mathematical model of espresso brewing. The model captures liquid infiltration
and flow through a packed bed of ground coffee, as well as coffee solubles transport (both in the grains and in
the liquid) and solubles dissolution. During infiltration, a sharp interface separates the dry and wet regions of the
bed. A matched asymptotic analysis (based on fast dissolution rates) reveals that the bed can be described by four
asymptotic regions: a dry region yet to be infiltrated by the liquid, a region in which the liquid is saturated with
solubles and very little dissolution occurs, a slender region in which solubles are rapidly extracted from the smallest
grains, and region in which slower extraction occurs from larger grains. The position and extent of each of these
regions move with time (one being an intrinsic moving internal boundary layer) making the asymptotic analysis
intriguing in its own right. The analysis yields a reduced model that elucidates the rate-limiting physical processes.
Numerical solutions of the reduced model are compared to those to the full model, demonstrating that the reduced
model is both accurate and significantly cheaper to solve.

1 Introduction
Since coffee consumption was introduced to countries and regions with colder climates, it has become
an important commodity with increasing demand and a major role in the economic stability of both
producing and consuming countries [15]. In the UK alone, people drink approximately 98 million cups
of coffee daily and demand continues to grow [4]. The growth of supply of coffee beans, however, is
limited as coffee can only grow in very particular warm climates with some of the most popular coffee
beans coming from high-altitude mountain farms. Driven in part by climate change, we may soon face
a supply deficiency which motivates us to better understand coffee extraction and attempt to minimise
waste.

One of the most popular coffee drinks is the espresso; the Specialty Coffee Association defined an
espresso [41] as a 25 – 35 mL (ca. 20 – 30 g) beverage prepared from 7 – 9 g (or 14 – 18 g for a double)
of ground coffee made with water heated to 92 − 95◦C, forced through the granular bed under 9 – 10 bar
of static water pressure and a total flow time of 20 – 30 s. That being said, professional baristas often
diverge from these guidelines considerably in order to produce stylised drinks and/or based on the coffee
beans and roast. Espresso is the base for many coffee-based beverages, including latte, cappuccino and
Americano, motivating us to focus on espresso brewing.
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Multiple factors come together to determine the taste and quality of a beverage such as input dose
(dry coffee mass), temperature, brew time, tamp pressure, water pressure, grind settings, basket size,
etc. Even a small variation in any one of these can lead to fluctuations in the output beverage. Thus, a
challenge for baristas has always been the consistency of espressos; drinks are challenging to reproduce
and brewing the same recipe often results in variations of the taste. Flavour is a characteristic that is
hard to quantify and measure (a task falling in the realm of sensory science); however, correlations have
been observed between taste and more readily quantifiable measures. Professionals often refer to the
so-called ‘brew chart’ that correlates the brew strength (mass concentration of dissolved coffee solids),
or BS, with the extraction yield (EY) of a drink – the ratio of solvated coffee mass in the shot to the dry
mass used for the shot. A coffee drink consists of over 1800 different chemicals [32] that are difficult
to measure, so instead the coffee industry benchmarks shots in terms of the total amount of dissolved
solids (TDS) which can in turn be used to calculate the EY.

In the past decade, the techniques of mathematical modelling have been applied to coffee brewing
with the aim of understanding the physical processes in various coffee brewing apparatus and ultimately
enabling predictive models which can complement experiments to optimise flavour and minimise waste.
We note that other work has been done on the adjacent problem of coffee roasting, see e.g., Fadai et al.
[10]. The problem is also of significant mathematical interest because it requires modelling of coupled
physical processes (fluid flow, chemical dissolution, solute transport, etc.) across multiple scales (coffee
cellular scale, grain scale and the bed scale). Early applications of mathematical modelling to coffee
brewing focused on large-scale industrial extractors, namely so-called ‘diffusion batteries’. This work
focused on optimising extraction behaviour, see [7, 38, 40]. More recently, research into modelling of
coffee brewing includes a series of papers by Fasano and co-workers who developed general multiscale
models of coffee extraction focusing mainly on the espresso brewing configuration [11–14]. Key pub-
lications building on this include the body of work by Moroney et al. [25, 27–29] who have presented
a multi-scale dual-porosity model of coffee extraction derived using volume averaging for (i) a fixed
coffee bed (e.g., drip-filter/espresso), and (ii) a well-mixed system (e.g., may be appropriate for French
press/cafetiere brewing). Whilst these models have been somewhat successful in matching experimental
measurements of BS and EY, the assumption that the microscopic transport is wholly limited by extrac-
tion at the surface and not transport in the bulk of particles means that the details of the microscale
transport process within the coffee grains are lost.

In this work, we will show that transport in the larger grains is often rate-limiting for extraction,
and its omission is therefore less than ideal. A similar approach, also using volume averaging, was
applied by Sano et al. [36] who further simplified the model in [25] to reduce the number of param-
eters and improve its ease of use. Kuhn et al. [22] also applied an averaging procedure to arrive at a
simplified macroscale model of solute transport. They applied their model to predict not only the total
solubles concentration but also the concentration of individual coffee constituents, namely caffeine and
trigonelline. After fitting, their model compared well to extraction data on these species for espresso
shots. The works mentioned so far feature first-order expressions for the rate of transfer between the
coffee grains and the intergranular liquid on the macroscale. If extraction of coffee is limited by intra-
granular diffusion (as expected for larger grains), these expressions cannot match the true shape of the
extraction curve from different grains (albeit the discrepancy may be compensated for, at least partially,
by tuning other model parameters appropriately). A more accurate description of extraction at the grain
scale retains the microscale diffusion behaviour in the governing equations. This approach was taken in
[24] who numerically solved a coupled microscale diffusion problem for coffee extraction from spher-
ical coffee grains of different sizes with a macroscale advection problem describing one-dimensional
coffee solubles transport in the intergranular pores of an espresso bed. A similar more general model
for fluid and solute transport in an espresso bed was motivated from the full microscale equations using
asymptotic homogenisation in [6]. Giacomini and co-workers [8, 18] did further work using the model of
Cameron et al. [6] by solving it using a different numerical scheme, comparing results to a wide range
of experimental conditions and extending the model to multiple dissolved coffee species which may
interact through their concentrations. While it is clear there is a substantial literature on mathematical
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modelling of solute release from porous coffee beds, one aspect of the brewing process has been largely
neglected to date: the initial transient behaviour which occurs when the invading water displaces the
pervading gas in the initially dry porous bed prior to the full wetting of the bed. This will be a key focus
of the current work. As we will show, capturing this initial behaviour is important because a substantial
proportion of the extraction occurs in these early stages whilst the grains are soluble-rich.

The present work will build upon the multiscale model reported in [6] by including the initial period of
liquid infiltrating the dry bed of ground particles, including both the inter- and intra-granular pore space.
In espresso brewing, the initial infiltration period (i.e., until the first drip emerges from the portafilter)
may take 5-10 s and therefore constitutes up to one-third of the total brewing time. Neglecting this
phase, as previous work has done, requires ad hoc assumptions on initial conditions and therefore can
be expected to limit model accuracy. In Section 2, we formulate the novel model. We non-dimensionalise
the equations in Section 3 and identify the key dimensionless parameter (the ratio between the timescale
for dissolution and that of wetting) that facilitates the asymptotic analysis that follows in Section 4. We
will show that there are three asymptotic regions (plus a fourth dry region, the solution in which is
trivial): a region in which the liquid is saturated with solubles and little dissolution occurs, another in
which dissolution occurs relatively slowly from large grains, and a third narrow region between the
two in which very rapid extraction occurs from small grains. Each of these regions moves with time.
Systematically reducing the model using asymptotic analysis allows us to formulate a reduced model that
is significantly easier to work with and interpret, and significantly faster to solve. In Section 5, we verify
that the reduced model is accurate in appropriate parameter regimes and discuss some representative
results. We draw our conclusions in Section 6.

2 Problem formulation
In this section, we formulate a model to describe extraction from a bed of porous, partially soluble
coffee grains. We will be inspired by the multiple scales homogenisation results presented in [6] and
model a bed with two disparate length scales, namely the size of the bed and the size of the grains
(hereafter referred to as the microscale and the macroscale respectively). As is a central assumption in
any multiple scales calculation, we assume that the coordinate systems pertaining to these two length
scales are independent. This structure of multiscale model notably appears in the ubiquitous physics-
based model for lithium-ion batteries, namely the Newman model [34], which was established in the
mid-90s and has since been widely used to model real devices and compared to experimental data [44].

Initially, the bed is dry and water is injected at the bed inlet. Water enters the interstitial space between
grains (intergranular pore space), while also being absorbed into the internal (intragranular) pore space
contained in the cellular matrix of the coffee grains, see Figure 1. Once the grains are wet, extraction
begins: solubles dissolve internally and are transported to the surface of the grains where they can enter
the liquid in the intergranular pore space, then move through the liquid via a combination of diffusion
and advection, and ultimately out of the bed and into the cup. In this work, wetting at the grain scale
will be assumed to be instantaneous. This assumption is expected to be accurate when the timescale for
grain wetting is much shorter than that for coffee solubles release and is made here in the absence of any
clear experimental data in the literature that shows delayed wetting at the grain scale. In the following
sections, we will formulate a system of partial differential equations describing (i) the flow of liquid
through the bed, (ii) the transport of solubles in the intragranular pore space, (iii) the mass transfer for
soluble material from the granular surfaces to the intergranular liquid and (iv) the transport of coffee
solubles through the intergranular pore space.

2.1 Grain geometry

It is widely reported in the literature [21, 25, 35, 43] that ground coffee has a bi-modal particle size
distribution. As such, grains are often divided into two groups, termed boulders and fines. Boulders
(larger than 100μm in diameter) are shown to be porous, and their internal porosity, ϕlb, varies with

https://doi.org/10.1017/S095679252500018X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252500018X


4 Y. Grudeva et al.

bean origin, pretreatment and roasting processes, typically in the range 35% − 55% [37]. In our model,
the porous volume in any particular boulder is assumed to be instantaneously filled with liquid when
liquid arrives outside the grain. Fines (smaller than 100μm) are assumed to have an internal structure
that cannot be accessed by water. Ground coffee particles come in a wide variety of irregular shapes but
for simplicity, we will approximate both types of grains as spherical with radii a∗

i , for i = f , b denoting
fines and boulders respectively and the superscript ‘∗’ is used to indicate dimensional quantities. We
define the radial coordinate 0 ≤ r∗

i ≤ a∗
i to be the distance from the centre of a grain of type i.

2.2 Bed geometry

Espresso is brewed in a cylindrical container of height L∗ and radius R∗
0. It is assumed that the properties

of the bed are homogeneous in any circular cross-section, the liquid is uniformly injected at the inlet
and the drag caused by the cylinder walls is negligible. Thus, macroscopically, i.e., on the scale of the
whole bed (much larger than individual grains), the model for flow and transport in the intergranular pore
space is one-dimensional. Hence, it is sufficient to form one-dimensional equations on the macroscale
and define the coffee bed to lie in 0 ≤ z∗ ≤ L∗ (see Figure 1). The inlet is located at z∗ = 0 and the outlet
at z∗ = L∗.

The entirety of the coffee bed volume comprises of spherical grains and the space between them.
The ratio of the total volume of grains to the bed volume is given by φs. The space between the grains
(intergranular pore space) is initially occupied by air and is subsequently filled with liquid and has
a volume fraction of the entire bed φl. The grain volume consists of the two size classes of grains,
namely fines and boulders and their volume fractions (measured with respect to the whole bed) are φf

and φb, respectively. Since the bed is homogeneous, these volume fractions are constant in any circular
cross-section of the bed. Thus,

φl + φs = 1, φs = φf + φb. (1)

The boulders are themselves porous, and their internal pores are accessible by liquid. Before a boul-
der comes in contact with liquid, its pore space is filled with air which (we assume) is instantaneously
replaced by liquid on wetting. The fraction of the boulders’ volume (measured with respect to the boul-
ders’ volume) accessible by liquid is taken to be ϕlb, introduced above. We note that grains may swell
when in contact with the liquid and increase their volume; however, there is disagreement in the lit-
erature over whether swelling is negligible [23] or significant (∼ 15%) [20]. Thus, due to the lack of
consensus and in the interest of simplicity, we will not consider this phenomenon. Therefore, the total
porosity φT of the bed is the sum of the intergranular pore space and the pore space within the boulders,
that is

φT = φl + φbϕlb. (2)

We model the transfer of solubles from grains to liquid as taking place on the spherical outer surface
of the grains, i.e., any dissolution of solubles that occurs within the pore space of infiltrated boulders
is not included as grain-to-liquid transfer. Equations for the rate of transport within grains (in the case
of boulders this includes both the internal solid and liquid phases) and across the grain/liquid interface
(the spherical outer surface of the grains) shall be formulated shortly. We therefore introduce the reactive
spherical outer surface area of the grains (on which solubles can be transferred from grains into liquid) as
the Brunauer-Emmett-Teller surface area, b∗

i , defined to be the reactive surface area of grains of species
i per unit volume of bed. These are given by

b∗
i = 4niπa∗

i
2 and φi = ni

4

3
πa∗

i
3, (3)

https://doi.org/10.1017/S095679252500018X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252500018X


European Journal of Applied Mathematics 5

Figure 1. A cartoon of the bed geometry. The liquid is injected at the inlet, located at z∗ = 0 and exits the
bed through the outlet at z∗ = L∗. During infiltration, the wetting front is located at z∗ = s∗

w(t∗). The local
volume fractions of the liquid, fines and boulders are given by φl, φf and φb respectively. The volume
fraction of pore space within a boulder is given by ϕlb.

where ni is the number of grains of type i per unit volume of the bed. Hence, on eliminating ni between
the two expressions in (3) we arrive at

b∗
i = 3φi

a∗
i

. (4)

2.3 Liquid flow

We model the flow in the intergranular pore space using Darcy’s law with the incompressibility condition
[1, 33]. While the density of the liquid varies only slightly with soluble coffee content, the viscosity
may be significantly higher than that of pure water at higher concentrations [31]. Nonetheless, in the
interests of simplicity, we elect to follow Moroney et al. [25] and adopt a constant density and viscosity
approximation. The choice of boundary condition at the inlet depends upon the espresso machine of
interest and in particular how its pump operates; most commonly this can apply either a fixed flow
rate or a fixed pressure. Both situations are readily modelled, but here we choose to focus primarily
on the fixed flow case for convenience. Readers interested in the fixed pressure case are referred to the
supplementary material where this problem is presented.

On denoting the volumetric flux/Darcy flux (measured in units of m/s) by q∗, incompressibility
amounts to the statement that ∂q∗/∂z∗ = 0. On supplementing this with a fixed flow rate boundary
condition at the inlet, we immediately learn that throughout the wet region we have

q∗|z∗=0 = q∗
app, and thus, q∗ = q∗

app. (5)

Provided that the shot is brewed properly (no channelling or clogging), the interface between the wet
and dry parts of the bed appears to be sharp, as can be seen in experiments when espresso is brewed
in a transparent portafilter [17]. The physics of the wetting process involves a complex interplay of
the applied pressure, surface tension, capillary forces, swelling of the coffee cellular matrix, release
of trapped gases (mainly carbon dioxide [7, 39]) and potentially the nature of the dissolved solids in
the water phase [9]. Here, we opt to avoid having to treat these phenomena and instead will make the
assumption that the infiltration of the water into the intergranular pore space is described by Darcy’s
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law, as above, and that infiltration into the intragranular pore space is instantaneous on contact with
water. Once water has entered the intragranular pore space, we will assume that it can no longer flow.
On denoting the location of the wetting interface by s∗

w(t∗) we have

φT

ds∗
w

dt∗
= q∗|z∗=s∗w(t∗) (6)

which states that the volumetric flux must be equal to the volume of pore space swept through by the
wetting interface per unit time. We supplement this ordinary differential equation (ODE) for s∗

w with the
initial condition

s∗
w|t∗=0 = 0 (7)

and note that when the waterfront arrives at the outlet of the machine z∗ = L∗, there is no longer a need
to track the position of the interface. Solving (6) with (5) and (7) yields

s∗
w(t∗) =

{
q∗

app
φT

t∗ for t∗ < t∗w
L∗ for t∗ ≥ t∗w

, (8)

such that at a time t∗ = t∗w = φTL∗/q∗
app the whole bed is saturated with water.

2.4 Transport in the intergranular pore space

We will model the change in concentration of coffee solubles in the three distinct volumes, namely the
intergranular pore space and the space occupied by fines and boulders. It has been assumed that the
macroscopic variables are one-dimensional, depending only on depth in the bed (z∗). In the subsequent
subsection, we will further assume that the microscale transport ( i.e., that of solubles in the interior
of the grains) is also one-dimensional and depends only on radial distance from the centre of a grain
r∗. The model that we are in process of forming can aptly be termed a pseudo 2D model, similar to
the Newman model [34] which is the standard electrochemical model used to describe the operation
of lithium-ion batteries. Thus, the model variable denoting the concentration of solubles in the liquid,
c∗

l = c∗
l (z∗, t∗), is defined in the wet part of the bed (0 ≤ z∗ ≤ s∗

w) and measured as the mass of solubles per
unit volume of wet intergranular pore space. The concentration within the boulders is denoted by c∗

b =
c∗

b(r∗
b , z∗, t∗) and that in fines by c∗

f = c∗
f (r∗

f , z∗, t∗); both of which are defined within the respective grains
(0 ≤ r∗

i ≤ a∗
i ) × (0 ≤ z∗ ≤ L∗) for i = b, f and measured per unit volume of grain. In the case of boulders,

and consistent with previous assumptions, this grain volume is taken to include both the internal solid
and liquid phases. We note that although the concentrations in the fines and boulders depend on two
spatial variables, r∗ and z∗, it is apposite to say that the microscopic equations are one-dimensional
because (as we will see shortly) only derivatives with respect to r∗ appear in the governing PDEs, see
(13)-(14).

We now formulate the equations governing the transport in the intergranular pore space, and those
governing the transport in the grains will be treated in Section 2.5. The coffee solubles migrate through
the liquid via a combination of diffusion and advection by the flow therefore, at macroscopic length
scales, we have

φl

∂c∗
l

∂t∗
+ ∂F ∗

l

∂z∗ = b∗
f G∗

f + b∗
bG∗

b, F ∗
l = −D∗

eff
∂c∗

l

∂z∗ + q∗c∗
l , (9)

where c∗
l is the mass concentration of solubles in the liquid, F ∗

l is the flux of these solubles, D∗
eff is the

effective macroscopic diffusivity and G∗
i are the mass fluxes of solubles exiting the grains and entering

the water, measured on the surfaces of the fines (i = f ) and boulders (i = b). The effective macroscopic
diffusivity D∗

eff accounts for both diffusion and also mechanical (hydraulic) dispersion, which arises from
solute mixing due to microscale variations in the flow, at macroscopic scales. Ideally, this effective trans-
port property should be computed via a suitable homogenisation procedure, see e.g., [16]. Alternatively
one could approximate its value using, e.g., Bruggeman’s relation [5].
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The physically correct condition to apply at the inlet is that of continuity of flux. However, we do
not wish to expand the model to involve the flow of water upstream of the inlet. To this end, and with
foresight that parameters estimates will soon tell us that advective effects are dominant over diffusive
ones, see Section 3, we choose to say impose that the liquid entering the bed is solubles-free and therefore
we impose

c∗
l |z∗=0 = 0. (10)

An alternative, that also avoids needing to include a model for the flow upstream of the inlet, would be
to require that the flux of solubles at the inlet is zero, i.e., F ∗

l |z∗=0 = 0; however in the relevant scenario,
where advective effects dominate diffusive ones, this collapses to (10). At the wetting front, we enforce
conservation of solubles accounting for the movement of the front and allowing solubles to move from
the liquid in the intergranular pore space and into the pore space inside the boulders. To formulate this
condition, we apply a ‘Gaussian pillbox’ [19] argument; details are given in the supplementary material.
The model doesn’t capture the flow after it leaves the bed, therefore we require a boundary condition
at the outlet z∗ = L∗. We choose to impose zero diffusive flux at the outlet; however, this boundary
condition is passive as it has no effect on the asymptotic analysis that follows. The set of boundary
conditions supplementing (9) is as follows:

−ds∗
w

dt∗
φlc

∗
l |z∗=sw(t) +F ∗

l |z∗=s∗w(t∗) = ds∗
w

dt∗
φbϕlbc

∗
l |z=s∗w(t∗) for t∗ < t∗w, (11)

∂c∗
l

∂z∗ |z∗=L∗ = 0 for t∗ ≥ t∗w. (12)

2.5 Transport in the intragranular pore space (coffee grains)

We follow previous studies [6, 26] and model the transport of solubles in the grains by Fickian diffusion.
Each grain contains a concentration of soluble coffee c∗

f or c∗
b for fines and boulders, respectively. Since

boulders have an internal pore fraction ϕlb, the concentration c∗
b should be understood as the mass of

solubles per unit volume within the boulder including both the solid and liquid phases, by contrast, that
in fines, c∗

f , is the mass of solubles per unit volume of solid (the fines are assumed to have zero internal
porosity). When the grains become wet, the solubles migrate from the centre towards the surface of the
grain and once they are at the surface, they are transported to the surrounding liquid at a rate G∗

i , to be
defined shortly. The multiscale nature of the model requires that, at each location in macroscopic space
z∗, there is a microscopic coordinate r∗

i denoting the distance from the centre of the grains. The concen-
tration of coffee solubles is assumed to be spherically symmetric and that solubles become immediately
mobile after wetting. The latter assumes that dissolution of solid coffee within the grains takes place on
a much faster timescale than diffusion of dissolved coffee out of the grains. Thus

∂c∗
i

∂t∗
+ 1

r∗2
i

∂

∂r∗
i

(
r∗2

i F ∗
i

)= 0, F ∗
i = −D∗

si

∂c∗
i

∂r∗
i

, for i = b, f , (13)

with boundary conditions

F ∗
i

∣∣∣
r∗
i =0

= 0, F ∗
i

∣∣∣
r∗
i =a∗

i

= G∗
i , (14)

where D∗
si is the diffusivity of solubles within the grains for i = b, f . In light of our previous assumptions,

these material properties should strictly be thought of as effective diffusivities that characterise the rate
of transport through the grains‘ internal multiphase structure. Roasted coffee beans can be considered to
consist of porosity made up of larger spherical pores (cell lumina with radii of approximately 2 × 10−5m,
connected by nanoscale pores in the cell walls (the walls have thicknesses of approximately 10−5m. The
internal structure of the two grain types being different, e.g., in contrast to the fines the boulders have
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much more significant internal pore space, therefore likely means that D∗
sb and D∗

sf differ.1 Despite this,
and in order to simplify the subsequent analysis, we will later assume they may be taken to be equal as
a first approximation.

The initial concentration of solubles coffee per unit volume of grain, in fines and boulders (prior to
wetting) is

c∗
i |t∗=0 = c∗

i,init. (15)

In accordance with our previous assumptions, in the case of boulders, this is the be understood as the
concentration per unit volume of both internal solid and pore space. Thus, the maximum mass of solubles
that can be extracted from a given grain is 4πa3

i /3 for i = b, f . When the wetting front moves through the
bed, the liquid instantaneously fills the internal pores of the boulders. The infiltrating liquid may well
be carrying solubles and therefore, immediately after the boulder is wet, the concentration of solubles
in the boulder (measured with respect to both solid and now wet pore space) is

c∗
b|z∗=s∗w(t∗) = c∗

b,init + c∗
l |z∗=s∗w(t∗)ϕlb. (16)

Thus, it is conceivable that shortly after wetting the concentration in the boulders is higher than the
saturation concentration, i.e., c∗

b > c∗
sat. Should this occur, in reality we would expect that solubles in

the solid phase of the boulders would remain in solid immobile form until the local concentration within
the pore space of the boulder drops sufficiently to allow internal dissolution to take place. We have
adopted an effective/homogenised description of the internals of the boulders and assumed that dissolu-
tion of the solid phase solubles is always instantaneous; therefore, our model is incapable of capturing
this phenomena systematically. Alleviation of this shortcoming is left open for future investigation but
interested readers are directed to [30] which may provide a starting point for the remedy.

2.6 Mass transfer between grains and liquid in the wet region

Selecting a suitable extraction rate is non-trivial; however, we will assume that a sensible rate should
have the following properties: (i) there is no transfer when the liquid immediately outside the grain is
saturated, or when the concentrations of the liquid immediately outside is equal to that on its surface;
(ii) mass transfer from regions with low concentration to regions with high concentrations is higher than
regions with similar concentrations. With these in mind, we define an extraction rate similar to Cameron
et al. [6] and say that

G∗
i = k∗

{
c∗

sat − c∗
l if c∗

i |r∗
i =a∗

i
≥ c∗

sat

c∗
i |r∗

i =a∗
i
− c∗

l if c∗
i |r∗

i =a∗
i
< c∗

sat

(17)

where k∗ is the mass transfer rate constant that has units m s−1 and c∗
sat is the saturation concentration

of solubles in the liquid. We emphasise that more sophisticated choices for the rate of mass transfer
are certainly possible. For example, if data were to become available that shed light on the equilibrium
relationship between the concentration of coffee in the grains and that in the liquid one could include
then include and select an appropriate value for a partition coefficient [2, 24, 35]. In fact, there are good
reasons to expect that this may be warranted. First, the concentrations in the different phases (boulders,
fines and liquid) are measured with respect to different reference volumes: in the grains, it is measured
per unit volume of grain including both intragranular pores and the internal solid structure whereas in the
liquid it is per unit volume of liquid only. Thus, these may differ from the true local concentrations within
the grain’s internal pores, which is what we might expect to be in equilibrium with the concentration in
the liquid. Second, chemical binding and interactions of different coffee molecules with the intragranular
matrix may also result in alterations to the equilibrium concentrations thereby warranting the inclusion
of a partition coefficient. This being said, owing to the lack of requisite data, we follow [24] and assume

1A more detailed discussion on how the grain structure determines the effective diffusion behaviour within grains, albeit in the
context of coffee aroma extraction, can be found in [3].
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a partition coefficient of unity for both grain species. Before moving on, we point out that the inclusion
of a partition coefficient makes little difference to the overall structure of ensuing analysis and therefore
does not hamper our central aim of elucidating the mathematical structure of the problem. More details
on the partition coefficient and attempts to measure it can be found in [35].

2.7 Does saturation occur?

As we will demonstrate, it is possible to distinguish two varieties of espresso recipe, namely those that
give rise to extractions in which the liquid that initially leaves the bed is so concentrated that it is fully
saturated vs. those in which it is not. We have conducted experiments in which the first drips of liquid
from a café-style espresso recipe are segregated from the remainder of the shot. The concentration of
solubles in these initial drips appears to be fixed, independent of the details of the recipe, therefore sug-
gesting that we have reached a maximum obtainable concentration which we expect to be the saturation
limit of the water. More details on these experiments will be given in a forthcoming article. Whether
saturation occurs is primarily determined by a competition between the rate of extraction from the fines
(significantly faster than that from boulders owing to the size disparity between the two grain types) and
the flow rate. When extraction from fines is fast compared to the flow rate, a saturated layer will form
immediately above the wetting front because solubles are extracted from fines faster than they are trans-
ported away from the wetting front. This being said, fast transport within fines alone is not sufficient
to form this saturated layer. In addition, fines must contain enough solubles (per unit volume of bed,
cf ,initφf ) to saturate the surrounding liquid. Conversely, when extraction from fines is relatively slower
and/or there are less solubles in the fines then saturation does not occur. Later in this work, in particular
see (74) and the discussion shortly thereafter, we will be able to be more precise about demarcating
these two regimes, however, for the time being, it is sufficient to note that for relevant parameter values,
experimental evidence suggests that a saturated layer does form. As such, we shall, in the body of this
paper present the analysis of regime in which a saturated layer forms; likewise is done for the case of no
saturation in the supplementary material.

3 Non-dimensionalisation
We choose to scale time with the wetting time, t∗w, see (8) and the discussion immediately thereafter.
We scale the vertical coordinate z∗ and the position of the front with the depth of the bed L∗ and radial
position within grains with the radii of each grain type ai. The Darcy flux is scaled with that applied at
the inlet qapp. We scale all concentrations with the saturation concentration of the liquid, c∗

sat. Equation (9)
suggests that the flux of coffee solubles in the liquid F ∗

l can be scaled either by the diffusion or advection
term. A crude comparison of the sizes of these two flux components indicates that the advective flux
will be dominant (this conclusion is confirmed by the experiments carried out in [6]), and so we scale
F ∗

l accordingly. The scalings for the fluxes inside the grains Fi are chosen in order to balance the terms
in (13). Similarly, we chose a suitable scaling for the dissolution rates Gi, where we define b∗

typ as the
arithmetic average of b∗

b and b∗
f . In summary, we set

z∗ = L∗z, t∗ = t∗wt, c∗
l = c∗

satcl, c∗
i = c∗

satci, (18)

q∗ = q∗
appq, F ∗

l = q∗
appc

∗
satFl, F ∗

i = a∗
i c∗

sat

t∗w
Fi, (19)

G∗
i = c∗

satq
∗
app

L∗b∗
i

Gi, r∗
i = a∗

i ri, s∗
w = L∗sw. (20)

Applying these scalings introduces the following dimensionless parameters

Deff = D∗
eff

q∗
appL

∗ , Dsi = Dsi
∗t∗w

a∗2
i

, Qi = φT

a∗
i b∗

i

, ci,init = c∗
i,init

c∗
sat

, (21)
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ε = q∗
app

k∗L∗b∗
typ

, bi = b∗
i

b∗
typ

. (22)

Of those dimensionless parameters whose interpretation is not self-evident from their definition, Deff

can be understood as the ratio of the timescale for advection to that of diffusion of solubles in the liquid,
Dsi as the ratio of the timescale of wetting to that of transport inside the grains, Qi as the ratio between
the flux on the surface of the grain to the diffusive flux inside it, and ε as the ratio between the timescale
for soluble transport through the surfaces of the grains and that for wetting. Application of the scalings
(18)-(20) to the equations (5)-(17) yields the following dimensionless model

φl

φT

∂cl

∂t
+ ∂Fl

∂z
= Gf + Gb, Fl = −Deff

∂cl

∂z
+ qcl, (23)

with cl|z=0 = 0 and

⎧⎪⎨
⎪⎩

−ṡwcl +Fl

∣∣∣
z=sw(t)

= 0 for t < 1,

∂cl

∂z

∣∣∣
z=1

= 0 for t ≥ 1.
(24)

The dimensionless equations for the coffee grains are

∂ci

∂t
+ 1

r2
i

∂

∂ri

(
r2

i Fi

)= 0, Fi = −Dsi

∂ci

∂ri

, for i = b, f , (25)

with Fi

∣∣∣
ri=0

= 0 and Fi

∣∣∣
ri=1

= QiGi. (26)

The surface fluxes are given by

Gi = bi

ε

⎧⎪⎨
⎪⎩

0 if z > sw(t)

1 − cl if ci|ri=1 ≥ 1

ci|ri=1 − cl if ci|ri=1 < 1

(27)

The condition at the front is given by

cb|z=sw(t) = cb,init + cl|z=sw(t)ϕlb, cf |z=sw(t) = cf ,init. (28)

The flow rate and position of the wetting front are given by

q(z, t) = 1, sw(t) =
{

t for t ≤ 1,

1 for t > 1.
(29)

Equations (23)-(29) comprise the dimensionless model, the analysis of which we now turn our
attention to.

3.1 Parameter estimates

The asymptotic analysis that follows requires estimates of the sizes of the dimensionless parameters.
Currently, as far as we are aware, there is no complete set of parameters for espresso brewing. In an
attempt to formulate such a set, we combine the estimates presented in [6, 25, 26, 32, 42].

The parameters Qi, ci,init, bi depend simply on the particle size distribution and bed packing. They are
calculated based on estimates of a∗

i in [25, 26] listed in Table 1, and would change slightly based on bed
packing and the grind setting determining the size distributions of grains. The remaining parameters
Deff, Dsi and ε depend on the diffusivities as well as the fluid velocity q∗

app and the bed height L∗ and
are comparable to the estimates given in [6]. In the absence of detailed experimental data, we shall now
assume that the diffusivities in the boulders and fines are equal despite there being reasons to believe that
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Table 1. Typical model parameter values. Those marked with superscript 1 are fitted to data,
those with superscript 2 are available or can be estimated from the literature [6, 25, 26, 32, 42],
and those marked with 3 are directly available from the experiment. Parameters marked with
both superscripts 1 and 2 are fitted but their values are comparable to those available in the
literature. We note that the diffusivities D∗

sf , D∗
sb in the two grain species may differ due to their

internal structure; however in the absence of data on those values, we use the same estimate

Symbol Description Value Unit
φf Volume ratio of fines 1,2 0.1 ≤ φf ≤ 0.25
φl Volume ratio of intergranular pore space 1,2 0.1 ≤ φl ≤ 0.2
ϕlb Volume ratio of pore space in boulders 1,2 0.35 ≤ ϕlb ≤ 0.55
D∗

sf Diffusivity of solubles in fines 1 1 × 10−9 m2 s−1

D∗
sb Diffusivity of solubles in boulders 1 1 × 10−9 m2 s−1

D∗
eff Diffusivity of solubles in liquid 1 1 × 10−8 m2 s−1

c∗
b,init Initial soluble concentration (measured with 3.1 × 102 kg m−3

respect to boulder volume) in boulders 1

c∗
f ,init Initial soluble concentration (measured with 3.1 × 102 kg m−3

respect to fine volume) in fines 1

c∗
sat Saturation concentration of liquid 1,2 2.24 × 102 kg m−3

a∗
b Mean radius of boulders 2 2.29 × 10−4 m

a∗
f Mean radius of fines 2 3.65 × 10−6 m

k∗ Mass transfer rate 2 1 × 10−3 m s−1

q∗
app Typical flow rate 1 1.52 × 10−3 m s−1

μ∗ Liquid viscosity 2 3.15 × 10−4 Pa s
κ∗ Bed permeability 1 2.2 × 10−16 m2

P∗
app Overpressure 3 9.2 × 10−6 Pa

L∗ Bed height 3 8.4 × 10−3 m
t∗w Wetting time 3 5 s

this may not be the case; see the discussion under (14). Before moving on to the asymptotic analysis we
point out that despite the naivety of assuming that the diffusivities in the boulders and fines are equal,
there is little to no impact on the reduced model that we ultimately derive. In what follows we will
examine the asymptotic limit that Dsf → ∞. As an upshot, the exact value of the diffusivity in the fines
does not appear at leading order, and therefore our reduced model is insensitive to its value. Thus, the
ensuing analysis holds provided future evidence does not indicate that the diffusivities change markedly
from the estimates that we use here.

4 Asymptotic analysis
The estimates summarised in Table 2 indicate that

Dsb = O(1), Deff = O(ε), Dsf = O(ε−1/2) where bb = O(ε1/2). (30)

The large values of bi/ε, and the manner in which these ratios appear in (27), lead us to expect that large
portions of the bed will be close to a state of quasi-equilibria in which either the liquid is saturated, or in
which the concentration on the surface of the grains matches that in the surrounding liquid. The analysis
presented in this section will exploit the smallness of ε by considering asymptotic solutions in the limit
ε → 0. The small value of Deff = O(ε) indicates that throughout most of the bed transport by convection
in the liquid dominates that by diffusion, retrospectively justifying our discussion in Section 2.7. The
dimensionless diffusivity in the fines is large, which suggests that transport within fines is very rapid.
The size of the dimensionless diffusivity in the boulders is taken to be O(1) so that transport in the
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Table 2. Dimensionless param-
eters

Parameter Value
Deff 8 ×10−4

Dsf 3.0024 ×102

Dsb 8 ×10−2

Qf 0.104
Qb 0.380
bf 1.99
bb 7.9 ×10−3

cf ,init 1.388
cb,init 1.388
q 1
ε 10−3

boulders occurs on a similar timescale to that of the infiltration. We note that one might be tempted to
say that Dsb = O(ε) however, doing so would necessitate a temporal rescaling (to longer times) in order
to understand how the boulders contribute to extraction which would complicate the analysis below.
Besides, the case Dsb = O(1) is a distinguished limit of the problem so that nothing is lost taking this to
be the case for the purposes of the asymptotic analysis and then retrospectively allowing Dsb to be small.

We introduce the following scaled diffusivities

Deff = εD̂eff, Dsf = D̂sf

ε
, bb = ε1/2b̂b (31)

so that the hatted parameters are O(1).

4.1 Outline of the asymptotic analysis

For t = O(1) the asymptotic structure of the solution, in the limit that ε → 0, separates into three regions
as shown in Figure 2. In Section 4.2, we analyse region (iii), adjacent to the wetting front, and in which
the quasi-equilibrium for a saturated liquid pertains. Thus, in region (iii) there is little extraction and the
solution structure is particularly simple. In Section 4.3, we examine region (ii), a narrow region separat-
ing regions (i) and (iii), in which the fines undergo rapid extraction, thereby allowing the concentration
in the liquid to change markedly. Region (i), adjacent to the inlet, is the subject of Section 4.4. Here, the
concentrations at the surfaces of the grains (of both types) and in the liquid are in a quasi-equilibrium.
The boulders and fines undergo slow extraction leading to a concentration profile in the liquid that slowly
increases with depth into the bed. In Section 4.5, we carry out the asymptotic matching required to tie
all three regions together thereby closing the problem. A noteworthy feature of the analysis that follows
is that the position of region (ii) cannot be determined in advance; instead must be determined as part of
the solution to the problem. Thus, region (ii) can aptly be termed an intrinsic moving internal boundary,
and the mathematics required to resolve this is interesting in and of itself.

For short times of t = O(ε), before the saturated layer has formed the asymptotic structure is made
up of only a single narrow spatial region. This single region is of width O(ε) and is located adjacent
to the inlet. Here, the fines rapidly dissolve in order to boost the concentration in the incoming water
to saturation. We shall not tackle this short time problem because our primary interest is predicting the
concentration at the exit of the bed. The error engendered in omitting to analyse and include this short
time problem (which would alter the ‘initial conditions’ for the t = O(1) problem that is the focus of the
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Figure 2. Schematics to illustrate the asymptotic structure of the problem. The left panel shows a
snapshot of the different regions of the bed arising in the asymptotic analysis along with the moving
boundaries sd(t) and sw(t). The right panel shows the location of these moving boundaries evolving in
the z–t plane. The wetting front, sw(t), is represented by the solid black line. Region (iii) is located adja-
cent to the wetting front, region (i) is adjacent to the inlet. The saturation interface represented by the
solid blue line and located at z = sd(t), is surrounded by a narrow region (ii).

remainder of this section) is small in the sense that it makes only an O(ε) difference to the prediction of
the outlet concentration.

4.2 Region (iii): saturated liquid region

This region is located immediately behind the wetting front at z = sw(t). The liquid is close to its satu-
ration concentration and hence dissolution rates are almost zero. Grains in this region have not yet been
in contact with unsaturated water and therefore will remain close to their initial concentration, with the
boulder’s internal solubles concentration having been boosted by the infiltration of the saturated liquid.
We seek an asymptotic solution in which all dependent variables are expanded in a regular asymptotic
series in small ε as follows

cl = c(iii)
l,0 + o(1), cf = c(iii)

f ,0 + o(1), cb = c(iii)
b,0 + o(1), (32)

Fl =F (iii)
l,0 + o(1), Ff =F (iii)

f ,0 + o(1), Fb =F (iii)
b,0 + o(1), (33)

Gf = G(iii)
f ,0 + o(1), Gb = G(iii)

b,0 + o(1). (34)

In what follows we seek only the lowest-order terms, and thus, the size of the corrections is of sec-
ondary interest. Inserting these expansions in the definition of the reaction rates (27) and balancing
leading order terms asserts that

c(iii)
l,0 = 1, (35)

provided that c(iii)
f ,0 |rf =1 > 1 and c(iii)

b,0 |rb=1 > 1, which as we will show is typical in this region for our param-
eter set. The other possible balances c(iii)

f ,0 |rf =1 = c(iii)
l,0 and c(iii)

b,0 |rb=1 = c(iii)
l,0 are rejected on the basis that the

fines within region (iii) are yet to come into contact with liquid that is not saturated and therefore internal
concentration remains at its initial value and boulders are topped up with saturated liquid. This result
(35) also follows from the solution of (25) after inserting the expansions (32)-(34) and balancing leading
order terms,

c(iii)
f ,0 = cf ,init, F (iii)

f ,0 = 0. (36)

It follows from (28) that the boulders which have just been infiltrated with water, at z = sw(t), have
an internal concentration c(iii)

b,0 |z=sw(t) = cb,init + ϕlb > 1 for a typical choice of parameters. Thus, since the
boulders within region (iii) have also yet to come into contact with unsaturated water, and their internal
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concentration is larger than the saturation concentration of water, no mass transfer occurs at their surfaces
and hence

c(iii)
b,0 = cb,init + ϕlb, F (iii)

b,0 = 0. (37)

It is now straightforward to determine the leading order flux of solubles in the liquid by back substituting
(35) into (23) and balancing at leading order. This yields

F (iii)
l,0 = q. (38)

Balancing leading order terms in (27) directly yields the source terms in the region:

G(iii)
f ,0 = 0 and G(iii)

b,0 = 0. (39)

4.3 Region (ii): local to the saturation front

Region (ii) is a slender region adjacent to region (iii), in which the fines rapidly undergo dissolution
thereby boosting the concentration in the intergranular liquid to saturation. In order to appreciably
change cl across this narrow region, and match together regions (i) and (iii), we require a large mass
transfer rate from one of the sets of particles. It is only the smaller fines that are able to supply the req-
uisite size flux through their surfaces. We use the method of dominant balance to determine the local
variable transform in region (ii), for which the dissolution terms are in balance with diffusion in the fines
and with advection and diffusion in the liquid terms. The solution in this region is found by making the
following change of variables

εw = z − sd, (40)

under which equations (23)–(25) become:
φl

φT

(
∂cl

∂t
− ṡd

ε

∂cl

∂w

)
+ 1

ε

∂Fl

∂w
= Gf + Gb, Fl = −D̂eff

∂cl

∂w
+ qcl, (41)

∂cf

∂t
− ṡd

ε

∂cf

∂w
= 1

r2
f

∂

∂rf

(
r2

f

D̂sf

ε

∂cf

∂rf

)
, (42)

with − D̂sf

ε

∂cf

∂rf

∣∣∣
rf =0

= 0 and − D̂sf

ε

∂cf

∂rf

∣∣∣
rf =1

= Qf Gf . (43)

∂cb

∂t
− ṡd

ε

∂cb

∂w
= 1

r2
b

∂

∂rb

(
r2

bDsb

∂cb

∂rb

)
, (44)

with − Dsb

∂cb

∂rb

∣∣∣
rb=0

= 0 and − Dsb

∂cb

∂rb

∣∣∣
rb=1

= QbGb. (45)

These equations need to match the solutions in region (iii) as w → ∞ and the solution in region
(i) as w → −∞. The matching conditions can be written as

l → 1 + · · ·
cf → cf ,init + · · ·
cb → cb,init + ϕlb

⎫⎬
⎭ as w → +∞, (46)

l → c(i)
l,0|z=sd (t) + · · ·

cf |rf =1 → c(i)
l,0|z=sd (t) + · · ·

cb|rb=1 → c(i)
l,0|z=sd (t) + · · ·

⎫⎬
⎭ as w → −∞. (47)

We seek an asymptotic solution using the following expansions

cl = c(ii)
l,0 + o(1), cf = cf ,0

(ii) + o(1), cb = c(ii)
b,0 + o(1), (48)
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Fl =F (ii)
l,0 + o(1), Ff =F (ii)

f ,0 + o(1), Fb =F (ii)
b,0 + o(1), (49)

Gf = 1

ε
G(ii)

f ,−1 + o(1), Gb = o

(
1

ε

)
. (50)

In what follows we seek only the lowest-order terms. Substituting the expansions (48)–(50) and
balancing leading order terms in (41) yields

−ṡd

φl

φT

∂c(ii)
l,0

∂w
+ ∂F (ii)

l,0

∂w
= G(ii)

f ,−1 where F (ii)
l,0 = −D̂eff

∂c(ii)
l,0

∂w
+ qc(ii)

l,0 . (51)

Integrating the former of the two equations in (51) across region (ii) and imposing the matching
conditions (46) and (47) leads to(

−ṡd

φl

φT

+ q

) (
1 − c(i)

l,0|z=sd (t)

)=
∫ ∞

−∞
G(ii)

f ,−1dw. (52)

Substituting the expansions (48)–(50) and balancing leading order terms in (42)–(43) leads to

−ṡd

∂c(ii)
f ,0

∂w
= 1

r2
f

∂

∂rf

(
r2

f D̂sf

∂c(ii)
f ,0

∂rf

)
, (53)

with − D̂sf

∂c(ii)
f ,0

∂rf

∣∣∣
rf =0

= 0 and − D̂sf

∂c(ii)
f ,0

∂rf

∣∣∣
rf =1

= Qf G
(ii)
f ,−1. (54)

Multiplying through by r2
f and integrating over the radial domain and imposing the boundary

conditions (54) gives

−ṡd

∫ 1

0

r2
f

∂c(ii)
f ,0

∂w
drf = −Qf G

(ii)
f ,−1. (55)

This can then be integrated across the width of region (ii) yielding

−ṡd

∫ +∞

−∞

∫ 1

0

r2
f

∂c(ii)
f ,0

∂w
drf dw =

∫ +∞

−∞
−Qf G

(ii)
f ,−1dw. (56)

We can change the order of integration on the left hand side because rf and w, i.e., the micro- and
macroscopic coordinates respectively, are orthogonal (a foundational assumption of multiple scales
homogenisation on which our model is based). Evaluating the integrals that result leads us to

− ṡd

3

(
cf ,init − c(i)

l,0|z=sd (t)

)= −Qf

∫ +∞

−∞
G(ii)

f ,−1dw. (57)

Eliminating the integral in (57), representing the fine dissolution rate, using (52) and the matching
conditions (46)–(47), gives

ṡd

3Qf

(
cf ,init − c(i)

l,0|z=sd (t)

)=
(

−ṡd

φl

φT

+ q

) (
1 − c(i)

l,0|z=sd (t)

)
. (58)

The result (58) is one of the key equations that will form the reduced model, see Section 4.5. Equation
(58) is a concise statement of the conservation of solubles across region (ii) and serves as an ODE
that (when coupled with the remainder of the reduced model) will allow us to determine the position
z = sd(t), separating regions (i) and (iii). For consistency with the initially dry coffee bed, we will require
that sd|t=0 = 0, see (74), and (58) pertains until such a time that sd(t) = 1, i.e., when region (ii) reaches
the bottom of the basket, after which (58) is no longer necessary because region (i) occupies the entirety
of the basket and hence there is no longer a demarcation between regions (i) and (iii). Finally, we note
that the leading terms in equation (44) that governs the concentration in the boulders throughout region
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(ii) asserts that

∂c(ii)
b,0

∂w
= 0 (59)

whose solution, along with the matching condition (46) is

c(ii)
b,0 = cb,init + ϕlb. (60)

The remaining equations for the leading order concentrations in the fines and liquid could be solved if
necessary but, as we shall show, the analysis presented here gives sufficient information to evolve the
position of the saturation front.

4.4 Region (i): slowly reacting region

For t = O(1), once the fines near the inlet have been dissolved to such an extent that they are close to being
in equilibrium with the surrounding water (cf |rf =1 ≈ cl), region (i) is formed in which the dissolution
continues controlled by the rate at which solubles can be transported from the interior of the boulders
to their surface. We seek an asymptotic solution in region (i) of the following form

cl = c(i)
l,0 + o(1), cf = c(i)

f ,0 + o(1), cb = c(i)
b,0 + o(1), (61)

Fl =F (i)
l,0 + o(1), Ff =F (i)

f ,0 + o(1), Fb =F (i)
b,0 + o(1), (62)

Gf = G(i)
f ,0 + o(1), Gb = G(i)

b,0 + o(1). (63)

As in the previous regions, in what follows we seek only the lowest-order terms. Substituting the expan-
sions (61)–(63) and balancing leading order terms in (25) reveals that diffusion through the fines is
sufficiently fast that at leading order their internal concentration is independent of rf . Hence, on multi-
plying (25) through by r2

f , integrating across rf ∈ (0, 1), and imposing the boundary conditions (26) at
leading order, we discern that

∂c(i)
f ,0

∂t
= −3Qf G

(i)
f ,0. (64)

Inserting the expansion (61)–(63) into the dissolution rates, balancing at leading order, and recalling
that the concentration in the fines is uniform in rf reveals that

c(i)
b,0(z, rb, t)|rb=1 = c(i)

f ,0(z, t) = c(i)
l,0(z, t) (65)

Balancing leading order terms in (23) leads to

φl

φT

∂c(i)
l,0

∂t
+ ∂F (i)

l,0

∂z
= G(i)

b,0 + G(i)
f ,0, F (i)

l,0 = qc(i)
l,0. (66)

Eliminating Fl,0 and Gf ,0 from (66a) using (66b) and (64) leads us to an equation for conservation of
solubles in the region 0 ≤ z ≤ sd(t)(

φl

φT

+ 1

3Qf

)
∂c(i)

l,0

∂t
+ q

∂c(i)
l,0

∂z
= G(i)

b,0 with c(i)
l,0|z=0 = 0. (67)

Dissolution from a boulder begins when the saturation front passes (i.e., when the boulder enters
region (i)) and it is exposed to non-saturated water for the first time. We denote t0 = s−1

d (z) to be the
time at which the saturation interface passes a given location z. Thus t0(z) is the first time at which the
boulder at position z becomes wet. The pores within the boulders entering region (i) have been filled
with saturated liquid, see (37), and hence their internal concentration on entering region (i) is given by
(60), in agreement with the matching condition (47). Thus, the leading order transport problem within
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the boulders defined for 0 ≤ rb ≤ 1, t ≥ t0(z) is

∂c(i)
b,0

∂t
= 1

r2
b

∂

∂rb

(
r2

bDsb

∂c(i)
b,0

∂rb

)
, (68)

−Dsb

∂c(i)
b,0

∂rb

∣∣∣
rb=0

= 0, c(i)
b,0|rb=1 = c(i)

l,0 and c(i)
b,0|t=t0(z) = cb,init + ϕlb. (69)

−Dsb

∂c(i)
b,0

∂rb

∣∣∣
rb=1

= QbG(i)
b,0. (70)

Equations (68)–(70) can be viewed as defining a relationship between the leading order concentration
in the liquid cl,0 and the leading order flux of solubles at the boulder’s surface Gb,0. In fact, because
the transport problem is linear this relationship can be determined analytically (details are given in the
supplementary material); it reads as follows:

G(i)
b,0(z, t) = 2Dsb

Qb

∞∑
n=1

e−n2π2Dsb(t−t0)
(

c(i)
b,0|t=s−1

d (z) − c(i)
l,0(z, t0)

−
∫ t

t0

˙cl,0
(i)(z, τ )en2π2Dsbτ dτ

)
, (71)

The combination of (67) and (71) is a closed problem to be solved for the leading order concentration
in the liquid, which can be written elegantly under the change of variables

χ = z, τ = −1

q

(
φl

φT

+ 1

3Qf

)
z + t, c̃(χ , τ ) = c(i)

l,0(z, t), (72)

as

∂ c̃

∂χ
= G̃b(χ , τ )

q
, c̃|χ=0 = 0, (73)

where G̃b(χ , τ ) = G(i)
b,0(z, t), i.e., that arrived at by applying the variable transform (72) to (71). This

change of independent variables amounts to the application of the method of characteristics; the PDE
(66) is reduced to an ODE, namely (73), that is satisfied along the characteristic lines. Replacing an
advection-reaction PDE (66), with a relatively simple ODE leads to a significant reduction in math-
ematical complexity and in turn to reduced computational cost when the resulting problem is solved
numerically. Furnishing solutions to this problem (72)-(73) requires a numerical method. Once c̃
has been found, the leading order concentrations in the grains and liquid can be found readily by
backsubstitution.

4.5 The asymptotically reduced model

In the wake of the asymptotic analysis we now summarise the equations that must be solved in order to
predict the quantity of primary interest, namely, the concentration of the liquid exiting the espresso bed.
Rearranging (58) yields the following ODE to be solved for the position of the saturation front, in terms
of the concentration in the liquid at the edge of region (i):

dsd

dt
= q

(
φl

φT

+ 1

3Qf

cf ,init − c(i)
l,0|z=sd (t)

1 − c(i)
l,0|z=sd (t)

)−1

with sd|t=0 = 0. (74)

This must be solved in tandem with (73), an ODE for the concentration in the liquid, until such a time
that sd(t) = 1. Beyond this instance, the concentration at the exit is determined wholly by (73). Thus, the
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concentration at the exit (to leading order) for all time is given by

cexit =

⎧⎪⎨
⎪⎩

0 for 0 < t < 1,

1 for 1 < t < s−1
d (1),

c̃|χ=1 for t > s−1
d (1).

(75)

We present a numerical method for solving this problem doing so in the subsequent section.
We return to the question raised in Section 2.7 of whether a saturated layer forms immediately above

the wetting front, i.e., whether regions (ii) and (iii) form. In retrospect, we now observe that if on solving
the asymptotically reduced model sd > sw, at any time, then at that time the asymptotic structure of the
model that we have presented breaks down and regions (ii) and (iii) along with the saturated layer cease
to exist. In such a scenario, the solution throughout the wet part of the bed is unsaturated and must be
found by solving the problem described in the supplementary information.

5 Results
We now validate the asymptotic analysis by comparing numerical solutions of the full model to those
of the asymptotically reduced one. Throughout we use the following set of parameters:

φf = 0.64, φb = 0.16, φl = 0.2, ϕlb = 0, (76)
ε � 1, Dsf = 1/ε, Dsb = 1, Deff = O(ε) (77)

and we will select a range of small values of ε to demonstrate convergence. The value of ϕlb = 0 is chosen
to compare the results of the full model and the reduced model. The reason for this is non-zero values of
this parameter cause additional complications in the numerical implementation for the full model and
so ϕlb = 0 allows for a direct comparison. The details of the numerical schemes used to solve the full
and the reduced model are given in the supplementary material.

5.1 Validation of the reduced model

Figures 3 and 4 show the comparisons between the full model (23)–(29) and the reduced model (73)–
(75) for varying values of ε. Care was taken to ensure that all numerical errors are sufficiently small that
any discrepancies between the full and numerical solutions can be attributed to the errors associated
with truncating the asymptotic expansions. Figure 5 shows how the discrepancy between the full and
reduced models decreases as ε is reduced as expected. Ideally, this comparison would have been extended
to yet smaller values of ε. However, reducing ε beyond 3 × 10−3 renders the computations prohibitively
expensive. As ε is reduced, gradients in the vicinity of region (ii) become larger and therefore a finer
spatial mesh is required in order to maintain accuracy. Moreover, because region (ii) transits through the
whole of the bed, a highly refined spatial mesh is required everywhere. An adaptive spatial mesh may
be able to alleviate this difficulty to an extent, but implementing such an advanced numerical approach
is beyond the scope of this study.

These difficulties in solving the full model underline the value of the reduced model. To make this
concrete, using a typical modern desktop computer with 4 cores and 32 GB of RAM (and insisting that
both schemes result in solutions accurate to three digits) the reduced problem has a typical compute
time of around 10 s whereas the full model takes around 1000s. This pertains for ε = 10−2, which is not
yet small enough to be physically relevant. This significant speed-up is not only valuable in its own right
but also opens the door to optimisation studies (e.g., tuning parameters to achieve a target brew strength)
which require many model solutions and would therefore be highly impractical with the long run times
required by the full model. Of course, these benefits of the reduced model must be understood with the
caveat that they only pertain in regimes where ε � 1.
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Figure 3. Concentration profiles in the liquid phase as the saturation front advances. Groups of curves
given at t = 0.4, 3.2, 4.8, 6.4. Solutions for non-zero values of ε are obtained by solving the full model
numerically and the asymptotic solution is obtained by the numerical solver for the reduced model.
The vertical dashed lines mark the position of region (ii), z = sd(t), according to the solution of the
asymptotically reduced model.

5.2 Interpretation of typical solutions

In Figure 3 we see the saturation front progressing down the bed, marked on each group of curves at
the end of the solid yellow lines. The asymptotically reduced model gives us the solution in regions
(i) and (iii) and they are connected by a region (ii) of width ε → 0 in which the concentration in the liquid
is rapidly increasing. The shape of the solution in region (ii) is not fundamental due to the width of the
region, therefore we chose to match the regions with a linear concentration profile in region (ii) displayed
by the dashed yellow lines. When the saturation front reaches the outlet sd = 1, at approximately t = 6.4
(dimensionless), we no longer observe regions (ii) and (iii) and the entire bed is described by the solution
in region (i).

Dissolution in boulders begins once the saturation front passes through and they are in region (i). We
note that due to our choice of constant flow and the current set of parameters, concentration profiles in
the interior of the grains after dissolution begin to appear to be identical, see Figures 6 and 7; however,
this is not common for all parameter sets. The concentration in the fines in region(i) is constant in their
interior due to their small size and fast dissolution rate and it is in balance with the concentration in
the surrounding liquid and on the surfaces of the boulders according to the solution (65). Due to this
balance, the concentration on the surface of a boulder located at z = 1 as a function of time is also given
in Figure 4 by the asymptotic solution.

Due to saturation of the bed, for a short time after wetting is complete, the liquid that comes out
of the bed is fully saturated with solubles, see Figure 4. After saturation passes, the concentration is
monotonically decreasing until the end of the brew. When pulling an espresso shot this effect is referred
to as blonding. It describes the change of the colour of the liquid from dark brown to very light pale
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Figure 4. Time-resolved concentration at the outlet. Solutions for non-zero values of ε are obtained by
solving the full model numerically and the asymptotic solution is obtained by the numerical solver for
the reduced model.

Figure 5. An error analysis of the results in Figure 3. The error measure is defined as
E(t) =∑i=n

i=1 (cnum
l |x=xi − casy

l |x=xi )
2/n in which xi are the locations of the mesh points; and the superscripts

are used to distinguish the numerical solution of the full model (‘num’) from the numerical solution of
the asymptotically reduced model (‘asy’).
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Figure 6. Concentration profiles inside the grains located at z = 0.1. Solid lines show profiles in the
interior of the boulders at the listed times. Dashed lines show constant concentration across the interior
of the fines at corresponding times.

blond is used as an indication to end the shot. In future work, we intend to compare the reduced model
to experimental data on time-resolved concentration at the outlet.

6 Conclusion
This work presents a novel model for espresso brewing that captures the initial infiltration phase of the
water including filling up the pore space between grains and inside the boulders. As we have shown, a
significant portion of the solubles that end up in the cup are extracted during this infiltration phase; as
such it is important to model this accurately. We have also provided a systematic derivation of a reduced
model which captures all the important features of the full model, yet is significantly cheaper to solve
and easier to interpret.

The utility of this work is in understanding how the physical processes and material proper-
ties/parameters affect the extraction and ultimately the TDS, BS, and EY of espresso. Ultimately, we
hope that this deeper insight will help make quantitative statements and predictions about the flavours
of coffee.

The non-dimensionalisation of the model reveals that for typical espresso brewing conditions there
are several small parameters corresponding to (a) fast dissolution reaction rates, (b) fast transport through
the interior of the fines and (c) relatively small diffusive fluxes in the water. The asymptotic analysis
based on the magnitude of these parameters shows that the structure of the solution to an asymptotically
reduced model comprises of three regions where we can identify dominant physical processes in each
one, provided that the fines are able to supply enough solubles to saturate the liquid. Region (iii) resides
adjacent to the wetting front and here, the water is completely saturated with coffee solubles and there is
no dissolution from the grains. Region (i) is adjacent to the inlet, the incoming water gradually dissolves
the boulders and the concentrations of solubles in the liquid and on the surfaces of the grains are in
equilibrium. The solution is completed by a narrow region (ii), which separates regions (i) and (iii).
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Figure 7. Concentration profiles inside the grains located at z = 1. Solid lines show profiles in the
interior of the boulders at the listed times. Dashed lines show constant concentration across the interior
of the fines at corresponding times.

A particularly interesting aspect is that the position of region (ii) is unknown a priori and its progressive
movement downwards in the bed must be determined as part of the solution to the problem. Here, the
fines rapidly dissolve thereby boosting the concentration of solubles in the liquid to saturation. As is
described in detail in the supplementary material, in the case that saturation does not occur, the analysis
in regions (i) and (ii) is broadly similar whilst region (iii) ceases to exist.

In parameter regimes where the asymptotic analysis pertains, a numerical solution to the reduced
model can be used in place of the full model; allowing solutions to be obtained orders of magnitude more
quickly and without compromising accuracy. This opens the door for various practical applications such
as incorporation of concentration prediction in espresso machine software that could compute results
significantly faster than the actual brewing process.

Future work that supplements this paper will disclose additional details and optimisation methods
applied to the numerical schemes and will compare model solutions to time-resolved coffee concentra-
tion in the liquid gathered from experimental data. This analysis can be further expanded by tracking
groups of chemicals that can be easily measured during experiments such as acidic content that could
be directly correlated to the taste of a beverage. Being able to mathematically distinguish not only
strength and concentration but also subjective characteristics such as taste or aroma remains the ultimate
inspiration and motivation for advancing this work.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S095679252500018X.
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