/.\)‘

Check for
updates

| CAMBRIDGE

/ UNIVERSITY PRESS

Publications of the Astronomical Society of Australia (2024), 41, e042, 17 pages
doi:10.1017/pasa.2024.46

Research Article

High-time resolution GPU imager for FRB searches at low radio
frequencies

Marcin Sokolowskil®, Gayatri Aniruddha?, Cristian Di Pietrantonio? Chris Harris>, Danny Price>*@®,
Samuel McSweeney'(®, Randall Bruce Wayth'®, and Ramesh Bhat!

nternational Centre for Radio Astronomy Research, Curtin University, Bentley, WA, Australia, 2Curtin University, Pawsey Supercomputing Research Centre,
Kensington, WA, Australia, 3Pawsey Supercomputing Research Centre, Kensington, WA, Australia and 4Square Kilometre Array Observatory (SKAO), Kensington, WA,
Australia

Abstract

Fast Radio Bursts (FRBs) are millisecond dispersed radio pulses of predominately extra-galactic origin. Although originally discovered
at GHz frequencies, most FRBs have been detected between 400 and 800 MHz. Nevertheless, only a handful of FRBs were detected at
radio frequencies <400 MHz. Searching for FRBs at low frequencies is computationally challenging due to increased dispersive delay that
must be accounted for. Nevertheless, the wide field of view (FoV) of low-frequency telescopes — such as the the Murchison Widefield
Array (MWA), and prototype stations of the low-frequency Square Kilometre Array (SKA-Low) — makes them promising instruments
to open a low-frequency window on FRB event rates, and constrain FRB emission models. The standard approach, inherited from high-
frequencies, is to form multiple tied-array beams to tessellate the entire FoV and perform the search on the resulting time series. This
approach, however, may not be optimal for low-frequency interferometers due to their large FoVs and high spatial resolutions leading to
a large number of beams. Consequently, there are regions of parameter space in terms of number of antennas and resolution elements
(pixels) where interferometric imaging is computationally more efficient. Here we present a new high-time resolution imager BLINK imple-
mented on modern graphical processing units (GPUs) and intended for radio astronomy data. The main goal for this imager is to become
part of a fully GPU-accelerated FRB search pipeline. We describe the imager and present its verification on real and simulated data pro-
cessed to form all-sky and widefield images from the MWA and prototype SKA-Low stations. We also present and compare benchmarks
of the GPU and CPU code executed on laptops, desktop computers, and Australian supercomputers. The code is publicly available at
https://github.com/PaCER-BLINK-Project/imager and can be applied to data from any radio telescope.

Keywords: Astronomical instrumentation: radio telescopes; astronomical techniques: time domain astronomy

(Received 11 February 2024; revised 22 April 2024; accepted 21 May 2024)

1. Introduction baryonic matter on cosmological scales (e.g. Macquart et al. 2020;
James et al. 2022).

Despite the growing observational evidence the physical mech-
anisms powering FRBs remain unexplained (see Petroff, Hessels,
& Lorimer 2019; Petroff et al. 2022 or FRB Theory Catalogue®).
Improving understanding of progenitors and physical processes
behind FRBs requires broadband and multi-wavelength detec-
tions (Nicastro et al. 2021). However, except a single case of the
Galactic magnetar Galactic Soft Gamma Repeater SGR 193542154
(Bochenek et al. 2020; CHIME/FRB Collaboration et al. 2020), no
FRB was detected at electromagnetic wavelengths other than radio.
The desired broadband radio detections and multi-wavelength
observations can be achieved by targeting bright FRBs from the
local Universe (see Agarwal et al. 2019; Driessen et al. 2024; Kirsten
et al. 2022, to name a few). As discussed by Pilia (2021), detec-
tions of nearby FRBs (z <0.5) at frequencies below 400 MHz can
be achieved by small arrays with large field of view (FoV) and
dedicated on-sky time. For example, an all-sky transient moni-

Corresponding author: Marcin Sokolowski; Email: marcin.sokolowski@curtin.edu.au toring systems (e.g. Sokolowski, Price, & Wayth 2022; Sokolowski
Cite this article: Sokolowski M, Aniruddha G, Di Pietrantonio C, Harris C, Price D,

McSweeney S, Wayth RB and Bhat R. (2024) High-time resolution GPU imager for FRB

searches at low radio frequencies. Publications of the Astronomical Society of Australia 41,

€042, 1-17. https://doi.org/10.1017/pasa.2024.46 *https://frbtheorycat.org/index.php.

Fast radio bursts (FRBs) are extremely interesting millisecond
duration radio pulses (recent reviews in Petroff, Hessels, &
Lorimer 2022; Pilia 2021; Cordes & Chatterjee 2019) with flux den-
sities and cosmological redshifts implying huge energies (~10%
erg). The first FRB 20010724A, also known as Lorimer Burst, was
discovered in 2007 (Lorimer et al. 2007). The subsequent detec-
tions by Thornton et al. (2013), and the discovery of the first
repeating FRB 20121102A (Spitler et al. 2014) at redshift z~0.19
(Tendulkar et al. 2017) established FRBs as a new astrophysi-
cal phenomena. In the following years, the Commensal Realtime
ASKAP Fast Transients (CRAFT) survey at 1.4 GHz (Macquart
etal. 2010) discovered and localised multiple FRBs (e.g. Bannister
et al. 2019b; Prochaska et al. 2019; Bhandari et al. 2020) includ-
ing the most distant FRB at the redshift of ~1 (Ryder et al. 2023).
FRBs were also demonstrated to be very precise direct probes of

© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia. This is an Open Access article, distributed under the terms of
the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the same Creative Commons licence is used to distribute the re-used or adapted article and the original article is properly cited. The written
permission of Cambridge University Press must be obtained prior to any commercial use.

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.46
https://orcid.org/0000-0001-5772-338X
https://orcid.org/0000-0003-2783-1608
https://orcid.org/0000-0001-6114-7469
https://orcid.org/0000-0002-6995-4131
https://orcid.org/0000-0002-8383-5059
mailto:marcin.sokolowski@curtin.edu.au
https://doi.org/10.1017/pasa.2024.46
https://frbtheorycat.org/index.php
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pasa.2024.46&domain=pdf
https://doi.org/10.1017/pasa.2024.46

et al. 2021) can robustly measure low-frequency FRB rate and
improve our understanding of the FRB population. Furthermore,
simultaneous detections at low and high frequencies can pro-
vide important input for broad-band spectral modelling to study
FRB progenitors, emission mechanisms and constrain their ener-
gies (depending on spectral characteristics, e.g. the presence a low
frequency cut-off).

Since, the very beginning low-frequency interferometers such
as the Murchison Widefield Array (MWA; Tingay et al. 2013;
Wayth et al. 2018) and the LOw-Frequency ARray (LOFAR; van
Haarlem et al. 2013) tried to detect FRBs at frequencies below
300 MHz. Non-targeted (also known as ‘blind’) searches for low-
frequency FRBs were conducted either using tied-array beam-
forming, standard pulsar search packages like PRESTO (Ransom
2011) or image-based approaches. Coenen et al. (2014) performed
an FRB search in nearly 300 hours of incoherently and coherently
beamformed LOFAR data and did not detect any FRBs down to
fluence threshold of ~71 Jy ms, while Karastergiou et al. (2015)
did not detect FRBs down to about 310 Jy ms in 1 446 hours of
data. Beamformed searches were also performed with the Long
Wavelength Array (LWA), and resulted in detection of radio tran-
sients of unknown origin (Varghese et al. 2019) but, so far, no FRBs
(Anderson et al. 2019). Most of the efforts with the MWA were
undertaken in the image domain. In the early searches, Tingay
etal. (2015) analysed 10.5 hours of MWA observations in 2 s time
resolution but did not detect any FRBs above fluence threshold
of 700 Jy ms. In a similar search using 100 hours of 28 s images,
Rowlinson et al. (2016) did not detect any FRB down to fluence
7980 Jy ms. Sokolowski et al. (2018) co-observed the same fields as
ASKAP CRAFT, and no low-frequency counterparts of the seven
ASKAP FRBs were found in the simultaneously recorded MWA
data with the stringiest limit of 450 Jy ms for FRB 20180324A.
More recently, Tian et al. (2023) performed targeted search for
low-frequency FRB-like signals from known repeating FRBs and
short Gamma-Ray Bursts (GRBs) in beamformed MWA data, but
none were found (Tian et al. 2022a, 2022b). It is worth highlighting
that non-targeted searches were unsuccessful mainly due to rela-
tively small amount of processed data, which was limited by the
efficiency of the available software packages. Therefore, it is imper-
ative to develop efficient software packages to boost the amount of
processed data to many thousands of hours.

Since 2018, the Canadian Hydrogen Intensity Mapping
Experiment (CHIME/FRB; Collaboration et al. 2018) detected
hundreds of FRBs in the frequency band 400-800 MHz, and sig-
nals from many of these FRBs were observed down to 400 MHz
indicating that at least some FRBs can be observed at even lower
frequencies. This was ultimately confirmed when LOFAR detected
pulses from the CHIME repeating FRB 20180916B (Pleunis et al.
2021; Pastor-Marazuela et al. 2021), and Green Bank Telescope
(GBT) detected FRB 20200125A at 350 MHz (Parent et al. 2020).
The observed pulse widths of these FRBs (~10-100 ms) indi-
cate that moderate time resolutions (~50 ms) may be sufficient
to detect FRBs at these frequencies.

Hence, there is a growing evidence that at least some FRBs
can be observed at frequencies <350 MHz. The main reasons
for a very small number of low-frequency detections are likely:
smaller number of events due to physical mechanisms (absorp-
tion and pulse broadening due to scattering), limited on-sky time
and higher computational complexity of the searches (see dis-
cussion in Section 2). The presented high-time resolution GPU
imager is a step towards addressing at least the latter two of these

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

M. Sokolowski et al.

issues, and making image-based FRB searches with low-frequency
interferometers computationally feasible, affordable and, hope-
fully, successful. This is supported by the fact, that in some parts of
parameter space (number of antennas above 100) computational
cost of interferometric imaging can be even order of magnitude
lower than cost of the commonly used tied-array beamforming
(see Section 4.4.3).

One of the reasons for implementing a new software package
is that many existing software pipelines are tightly coupled with
the instruments they were programmed for and cannot be eas-
ily adopted. Hence, one of the aims of this project is to make
the software publicly available and applicable to data from many
radio telescopes. In order to achieve this, the I/O layer has been
separated into a dedicated library where telescope-specific I/O
functions can be implemented.

The GPU hardware market becomes more diversified which
drives the hardware prices lower. This leads to increasing contri-
bution of GPUs to the computational power of High-Performance
Computing (HPC) centres. In particular, the new supercomputer
Setonix at the Pawsey Supercomputing Centre (Pawsey)® has the
total (including CPUs and GPUs) peak performance power of the
order of 43 petaFlops® with approximately 80% of this (about 35
petaFlops?) provided by GPUs. Moreover, the peak performance
of 57 GFlops/Watt makes Setonix the 4" greenest supercomputer
in the world.® The carbon footprint of astronomy infrastructure
and computing centres is becoming increasingly important issue
for the astronomy community (Knodlseder et al. 2022), which is
another factor strongly supporting the transition to GPU-based
computing. In-line with this, energy efficiency is becoming a new
metrics in the new accounting models for heterogeneous super-
computers (Di Pietrantonio, Harris, & Cytowski 2021), and GPUs
can be even an order of magnitude more energy efficient for com-
plex computational problems (Qasaimeh et al. 2019). In radio
astronomy context, NVIDIA Tensor Cores were shown to be
about 5-10 times faster in correlator applications and in the same
time 5-10 times more energy efficient than normal GPU cores
(Romein 2021).

Nevertheless, despite all the above, most of the existing radio
astronomy software was developed for either CPUs or, in very
few cases, specifically for NVIDIA GPUs (cannot be used with
AMD hardware). Therefore, it is increasingly important to develop
energy efficient GPU-based software for radio astronomy, which is
one of the over-arching goals of this project. Given the importance
of GPUs for the efficiency of Setonix, Pawsey initiated PaCER
projectsf to convert existing software for various research appli-
cations or develop new software packages suitable for both AMD
and NVIDIA GPUs. The development of the presented high-
time resolution GPU imager was also supported by the PaCER
initiative.

The remainder of this paper is organised as follows. In Section 2
we provide a brief summary of the FRB search methods used by
low-frequency interferometers. In Section 3 we describe the pri-
mary target instruments for the developed GPU imaging software.
Section 4 provides a short overview of the standard interfer-
ometric imaging process, while Section 5 describes the design,

Phttps://pawsey.org.au/.
“https://discover.pawsey.org.au/project/setonix.
dhttps://www.top500.0rg/lists/top500/list/2022/11/.
“https://pawsey.org.au/australias-setonix-ranking/.
fhttps://pawsey.org.au/pacer/.

https://pawsey.org.au/
https://discover.pawsey.org.au/project/setonix
https://www.top500.org/lists/top500/list/2022/11/
https://pawsey.org.au/australias-setonix-ranking/
https://pawsey.org.au/pacer/
https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

implementation, and validation of the CPU and GPU version of
the presented high-time resolution imager. Section 6 summarises
the results of imager’s benchmarking on various compute and
GPU architectures. Finally, Section 7 summarises the work and
discusses future plans.

2. FRB search methods

In the light of hundreds of FRBs detected by CHIME down to 400
MHz, the small number of detections by interferometers operating
below 350 MHz is most likely caused by the lack of efficient real-
time data processing and search pipelines for high-time resolution
data streams from wide-field radio telescopes, such as the MWA,
LOFAR, and LWA.

Traditional FRB searches with dish-like radio telescopes oper-
ate on a few high-time resolution timeseries (two instrumental
polarisations combined into Stokes I) from the corresponding
telescope beams, which is effectively small number of pixels in
the sky. Such data can be comfortably processed and searched for
FRBs in real-time with software pipelines typically implemented
on graphical processing units (GPUs) for example FREDDA
(Bannister et al. 2019a), Heimdall,® or Magro et al. (2011) to name
a few. However, applying the same methods to low-frequency
interferometers have not succeeded because of high computational
requirements of forming multiple tied-array (i.e. coherent) beams
tessellating the entire FoV").

Low-frequency radio-telescopes are also known as ‘software
telescopes’ because most of the signal processing is realised in
software as opposed to beamforming realised by ‘nature’ in dish
telescopes. In order to search for FRBs or pulsars, complex voltages
from individual antennas, tiles, or stations have to be beamformed
in a particular direction in the sky. Such a single tied-array beam
can be calculated as

Nant

L) =) W), 1)

a=1

where I () is the coherent sum in channel c at time t, I?(¢) is com-
plex voltage from antenna a in channel c at the time t, N, is the
number of antennas, and w? is a complex coefficient for antenna a
at frequency channel ¢ representing the geometrical factor to point
the beam in a particular direction in the sky. The computational
cost of this operation O(N,,,) scales linearly with the number of
antennas (summation in equation (1)). The resulting timeseries
of complex voltages or intensities (power) can be searched for
FRBs using the same software as for dish telescopes (see the earlier
examples).

In order to cover the entire FoV of a low-frequency interfer-
ometer multiple tied-array beams have to be formed, and their
number depends on the angular size of the tied-array beam (i.e.
on the maximum baseline of the interferometer). For the ‘beam-
formed image’ of the size N, x N, pixels, the computational cost
is O(Nm,tN;X). The number of resolution elements in 1D can be
calculated as N, ~ (FoV/80), where 86 ~ \ /By is the spatial res-
olution of the interferometer at the observing wavelength X\ and
Biax is the maximum distance (baseline) between antennas in the
interferometer. For a dish antenna FoV ~ \/D, where D is the
diameter of the dish. Hence, the total number of pixels in 2D
image is o (Bmax/D)? and the computational cost of ‘beamforming

8https://sourceforge.net/projects/heimdall-astro/.
"Here FoV is size of the field of view in 1 dimension (in units of degrees.

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

imaging’ is O(Ngut(Bmax/D)?)). We note that for a single half-
wavelength dipole (like in single SKA-Low station interferometer),
D =\/2 can be used in these considerations.

Although, GPU-based beamforming software (e.g. Swainston
et al. 2022) can be extremely efficient, it is still not sufficiently
fast to enable real-time processing. Therefore, the presented work
explores an alternative approach by forming high-time resolu-
tion time series in multiple directions using sky images obtained
with standard interferometric imaging. This approach is formally
nearly equivalent to forming multiple tied-array beams in the sky,
and subtle mathematical differences between these two methods
are outside the scope of this paper. As discussed in Section 4.4.3, in
some parts of the parameter space (N, N, etc.) imaging can be
computationally more efficient than the beamforming approach
(see also Table 3).

Given that the main goal of this high-time resolution imager
is to search for bright transients like FRBs, implementation of
features optimising image quality and fidelity (e.g. CLEAN algo-
rithm), which are available in general-purpose imaging packages
like Common Astronomy Software Applications (CASA, CASA
Team et al. 2022), MIRIAD (Sault, Teuben, & Wright 2011) or
WSCLEAN (Offringa et al. 2014), is not critical. Hence, high-time
resolution imager for FRB searches can be very simple and form
only so called ‘dirty images’, while imaging artefacts like side-lobes
can be removed by subtracting a reference image of the same field
(formed as a combination of previous images or prepared prior to
the processing).

Formation of high-time resolution images in real-time requires
extremely efficient parallel software, which makes it well-targeted
for GPUs. Nevertheless, except for the image-domain-gridding
option (IDG, van der Tol, Veenboer, & Offringa 2018) of
WSCLEAN, none of the existing imagers fully utilises the compute
power of modern GPUs. Although modern GPUs and associated
libraries offer even an order of magnitude speed-up (see Table 4)
of Fast Fourier Transforms (FFTs) this is not fully utilised even
in the IDG/GPU version of WSCLEAN. Furthermore, the existing
imagers (including WSCLEAN) were not designed for high-time
resolution data. Therefore, they are not suitable for FRB searches
as they require input data to be converted to specific formats
(such as CASA measurement sets or UVFITS files), which require
additional input/output (I/O) operations slowing down the entire
process.

The main purpose of the presented imaging software is to
become a part of a streamlined GPU-based processing pipeline
(Di Pietrantonio et al., in preparation), which will read input com-
plex voltages from the archive or directly from the telescope only
once and process them fully inside GPU memory in order to min-
imise the number of I/O operations. Finally, once the data cube
of images (of multiple time steps and frequency channels) are cre-
ated, dynamic spectra from all pixels (i.e time series in different
directions in the sky) will be formed. Then these dynamic spec-
tra will be searched for FRBs, pulsars or other short duration
transients using one of the existing software packages or a new
algorithm/software package will be developed. Apart from that,
our GPU-imager performs very well (see Sections 5.2.3 and 6), and
can also be used for other purposes where high-time resolution
streams are needed.

3. Targetinstruments

The primary target instruments for the GPU high-time resolu-
tion imager and full pipeline are low-frequency interferometers

https://sourceforge.net/projects/heimdall-astro/
https://doi.org/10.1017/pasa.2024.46

Table 1. Summary of parameters of the MWA and SKA-Low stations.

Parameter MWA SKA-Low station
Frequency range 70-300 MHz 50-350 MHz
FoV at 200 MHz ~20° x 20° ~12 000 deg?
(full hemisphere
at elevation > 20°)
Nant 128° 256
Spatial resolution A6 1.7/1.0° 150

at 200 MHz (arcmin)

Number of pixels® 490 000 (700 x 700) / 5625
required to 156 2500(1250 x 1 250)b (75 x 75)
cover FoV at 200 MHz

Number of baselines 16 256 65280

(without auto-correlations)

2 MWA tiles consist of 16 dual polarised antennas. Hence, originally it comprised total 2 048
dipoles per polarisation. However, it was recently upgraded to 144 tiles with the aim of future
upgrade to 256 tiles.

b Respectively for the MWA Phase | with maximum baseline of about 3 km and the MWA Phase
Il extended configuration with maximum baseline of 5.3 km.

€ Assuming no oversampling (i.e. angular pixel size the same as the size of the angular size of
the synthesised beam) this is proportional to (Bmx/D)2 as discussed in Section 2.

located in the Murchison Radio-astronomy Observatory (MRO)
in Western Australia (WA). In particular, the MWA and sta-
tions of the low-frequency Square Kilometre Array (SKA-Low)
(Dewdney et al. 2009)." Parameters of these instruments are
summarised in Table 1. Our software is publicly available
at https://github.com/PaCER-BLINK-Project/imager and can be
applied to data from any radio interferometer.

3.1. SKA-Low stations

The SKA-Low telescope will comprise 512 stations, each with 256
dual polarised antennas. Since 2019, two prototype stations the
Aperture Array Verification System 2 (AAVS2; van Es et al. 2020;
Macario et al. 2022), and the Engineering Development Array
(EDA2; Wayth et al. 2022) have been operating and used for veri-
fication of technology, calibration procedures, sensitivity, stability
testing and even early science. These stations can form all-sky
images which can be used for FRB searches and lead to detections
of even hundreds of FRBs per year once they are enhanced with
suitable real-time search pipelines (Sokolowski et al. 2024, 2022).
The standard data product from the stations are complex voltages
in coarse (~0.94 MHz) frequency channels. This channelisation
is performed by Polyphase Filter Bank (PFB) implemented in the
firmware executed in Tile Processing Units (TPM; Naldi et al.
2017; Comoretto et al. 2017). Long recordings of these volt-
ages are currently impossible due to very high data rates (~9.5
GB/s). Therefore, in order to form high-time resolution images
and search for FRBs, these complex voltages have to be captured,
correlated, and processed in real-time in the required time reso-
lution. Hence, the described GPU imager will either be applied
off-line to high-time resolution visibilities saved to harddrive or in
real-time as a part of a full processing pipeline. This pipeline will
perform correlation and imaging, and its execution in real-time
is a preferred operating mode ultimately leading to real-time FRB

‘https://www.skatelescope.org/.

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

M. Sokolowski et al.

searches. As estimated by Sokolowski et al. (2024) such an all-sky
FRB monitor implemented on SKA-Low stations may be able to
detect even hundreds of FRBs per year.

3.2. The Murchison Widefield Array (MWA)

The MWA (Tingay et al. 2013; Wayth et al. 2018) is the precursor
of the SKA-Low originally composed of 128 small (4x4 dipoles)
aperture arrays also called ‘tiles’. It was recently expanded to 144
tiles with the intent of the future expansion to 256 tiles. The 16
dipoles within each tile are beamformed in analogue beamform-
ers. The signals in X and Y polarisations are digitised and coarse
channelised in receivers, then cross-correlated by the MWAX cor-
relator (Morrison et al. 2023), which can record visibilities at time
resolutions even down to 250 ms. Besides the correlator mode, the
MWA can also record coarse channelised complex voltages from
individual tiles. Before commissioning of the MWAX correlator it
was realised by the Voltage Capture System (VCS; Tremblay et al.
2015), while, presently, recording of high-time resolution volt-
ages is implemented in the MWAX correlator itself. The MWA
data archive at Pawsey Supercomputing Centre (Pawsey) con-
tains ~12 Pb of MWA VCS from the legacy and new MWAX
correlator. These data are a perfect testbed for testing the pre-
sented high-time resolution imager, and can be used to search
for FRBs, pulsars or other fast transients using novel image-based
approaches. For example, as estimated by Sokolowski et al. (2024),
the FRB search of the Southern-sky MWA Rapid Two-metre
(SMART; Bhat et al. 2023a,b), which can be analysed with the final
high-time resolution imaging pipeline, should yield at least a few
FRB detections.

4. Radio-astronomy imaging

The fundamentals of radio interferometry and imaging are
explained in detail in one of many texts on the subject (e.g.,
Marr, Snell, & Kurtz 2015; Thompson, Moran, & Swenson 2017)
This section provides a short summary of the most important
steps of standard radio astronomy imaging which are correlation,
application of various phase corrections (for cable lengths, point-
ing direction etc.), calibration, gridding and Fourier Transform
(FT) leading to so called ‘dirty images’ of the sky. These steps
are described in the context of the future GPU-based pipeline
which will be based on the presented imager (Di Pietrantonio
et al, in preparation). We note that there are several novel
approaches to imaging, for example Efficient E-field Parallel
Imaging Correlator (EPIC; Thyagarajan et al. 2017), which are
considered in the future upgrades of the pipeline. However, the
correlator code by Romein (2021) uses tensor cores to provide an
order-of-magnitude increase in processing throughput over pre-
vious GPU correlation codes. Reuse of this correlator code makes
the correlation-approach computationally favourable.

4.1. Correlation

In the majority of cases, the lowest level data products from mod-
ern radio telescopes are high-time resolution digitised voltages
recorded by the individual antennas or tiles in the case of the
MWA. These voltages can be real-valued voltages as sampled by
ADCs or complex voltages resulting from FT/PFB transform of
the original real-valued voltages from time to frequency domain.
In the standard visibility-based imaging, these voltages are cor-
related and time-averaged either in real-time or off-line with

https://github.com/PaCER-BLINK-Project/imager
https://www.skatelescope.org/
https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

Table 2. Different GPU architectures used for testing and benchmarking of the presented imager.

System or GPU model #GPU/ CUDA/HIP Memory
HPC name Tensor Cores® version bandwidth
(GB/s)
Setonix® AMD Instinct MI250X GPUs¢ 14 080/880 ROCM 5.4.3 3200
Garrawarlad NVIDIA Tesla V100 32GB GPU 5120/640 CUDA 10.1 1134
Workstation NVIDIA GeForce RTX 2060 2176/272 CUDA10.1 336
Laptop A NVIDIA GeForce RTX 3070 5888/0 CUDA11.6 448
Laptop B NVIDIA GeForce GTX 1060 1280/0 CUDA9.1.85 192

2NVIDIA Tensor Core are called Matrix Cores in AMD nomenclature. Similarly shader cores are AMD counterparts of CUDA codes.

Thus, here a GPU core was used as a general term.
bhttps://pawsey.org.au/systems/setonix/.

¢https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf.

dhttps://pawsey.org.au/systems/garrawarla/‘

modern software correlators implemented in GPUs (e.g. Clark,
LaPlante, & Greenhill 2013; Romein 2021; Morrison et al. 2023)
or less frequently in CPUs, FPGAs or other hardware. Hardware
solutions using FPGAs may be faster, but they can also be more
expensive, more difficult to develop and maintain as FPGA pro-
gramming expertise is generally less common and harder to
develop than GPU expertise. In the most common FX correlators
(F for Fourier Transform and X for cross-correlation), original real
voltage samples are first Fourier Transformed (hence character F)
to frequency domain. In the next step, channelised complex volt-
ages from an antenna i are multiplied (hence character X) by the
corresponding (same frequency channel) complex voltages from
an antenna j, which leads to correlation product ij also known as
‘visibility’ (Vj;(v)) calculated in Ny (Naye + 1)/2 multiplications
including auto-correlations V;;(v) (correlation of voltages from an
antenna i with itself):

Vi(v) = Vi(n)V;(v), @)

where \71.(\)) is FT or PFB of the original voltage samples. It can
be calculated from N voltage samples using the Discrete Fourier
Transform (DFT) as

N-1

Vi) =Y Vilt)e 2w, (3)

n=0

In the case of the MWA and SKA-Low stations this first stage
PFB is performed in the firmware of FPGAs and its computational
cost is not included in the presented considerations. However, if
fine channelisation into n., channels is required it results in addi-
tional computational cost of FFT O((1/8¢)n, log (1)) Since, cor-
relation is performed for all antenna pairs, the number of multi-
plications is Ny = Nyt (Ngye + 1)/2 (including auto-correlations).
Unless stated otherwise we will describe this process for a single
time step. The additional time averaging of n, = T/8¢ time sam-
ples increases the computational cost by the multiplicative factor
ny, where T is the final integration time after averaging and 8¢ is the
original time resolution. In the full GPU pipeline, correlation will
be performed on GPU, and the number of instructions required to
perform multiplications of visibilities (Equation (2)) from a single
time step is 1, ~ Nyis/Ncore> Where 1, is the number of GPU cores
in a specific GPU hardware (examples in Table 2).

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

4.2. Phase corrections and calibration

Typically, the resulting visibilities cannot be directly used for
imaging, and several phase and amplitude corrections have to be
applied first. In the case of the MWA these are: (i) cable phase
correction to account for different cable lengths as measured in
the construction phase and stored in a configuration database,
(ii) application of calibration in phase and amplitude (amplitude
calibration may be skipped if correct flux density is not required)
(iii) geometric phase correction, i.e. apply complex phase factor
to rotate visibilities in the desired pointing direction. For all-sky
imaging with SKA-Low stations only step (ii) is required as (i) is
applied in the TPM firmware and (iii) is not required for all-sky
images phase-centred at zenith. These three corrections will now
be described in more detail.

Firstly, a phase correction (i) needs to be applied in order to
correct for different cable (or fibre) lengths between the antennas
and receivers. In the case of SKA-Low stations the phase correc-
tion for different cable lengths is mostly applied in real-time in
the TPM firmware as these cable lengths (or corresponding delays)
can be pre-computed or measured in a standard calibration pro-
cess. They remain sufficiently stable to form good quality images
even without additional calibration (Wayth et al. 2022; Macario
et al. 2022; Sokolowski et al. 2021). In the case of the MWA,
the cable correction is currently applied post-correlation using
pre-determined cable lengths provided in the metadata. These ini-
tial phase corrections (using tabulated cable lengths) are further
refined by calibration (next step).

Secondly, phase and amplitude calibration (ii) is applied in
order to correct for residual phase differences between the anten-
nas and obtain correct flux scale (optional) of the final images
respectively. This step typically uses calibration solutions obtained
by performing dedicated calibrator observations performed close
in time to the target observations so that any variations in the tele-
scope response (e.g. due to changing ambient temperature) can
be neglected. In the case of the SKA-Low stations, this step cor-
rects for residual phase variations, for example due to temperature
induced variations in electrical length of fibres with respect to the
lengths applied in the firmware. The amplitude calibration pro-
vides correct flux density scale of radio sources in images; it is
non-critical for FRB detection itself, but may be performed off-
line to provide correctly measured flux density of the identified
objects.

https://pawsey.org.au/systems/setonix/
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://pawsey.org.au/systems/garrawarla/
https://doi.org/10.1017/pasa.2024.46

Finally, the correlation as described in Section 4.1 leads to visi-
bilities phase centred at zenith. This is sufficient to form images of
the entire visible hemisphere (all-sky images) using SKA-Low sta-
tions or other aperture array with individual antennas sensitive to
nearly entire sky. However, for instruments like the MWA with a
smaller FoV, a geometric phase correction (iii) has to be applied to
visibilities (post-correlation) in order to rotate the phase centre to
the centre of the primary beam where the telescope was pointing
(as set by the settings of MWA analogue beamforming).

Only after all these corrections are applied, the visibilities are
ready for the imaging step. It is worth noting that antenna-level
phase/amplitude corrections (i.e. (i) and (ii)) can be applied to visi-
bilities (post-correlation) or voltages (pre-correlation), which may
be computationally more efficient. In the presented software, most
of these corrections are already implemented as GPU kernels and
are executed post-correlation. However, we will consider moving
(i) and/or (ii) into the pre-correlation stage (i.e. apply to voltages)
in order to further optimise the code.

4.3. Imaging

This section provides a short summary of the imaging steps for
the case of a single frequency channel (monochromatic wave) and
single time step. It can be shown (e.g., Marr et al. 2015; Thompson
et al. 2017) that the visibilities and sky brightness form a Fourier
pair. This can be expressed as van Cittert-Zernike theorem, which
in its simplified form can be written as

n

V(u, v, w):// A(L, m)I(], m)e‘iz”(“’+vm+W“)M, (4)

where (u, v) are baseline coordinates expressed in units of wave-
lengths, present in a right-handed coordinate system with z-axis
pointing towards the observed source (phase centre), v is mea-
sured toward the north in the plane defined by the origin, source
and the pole, and u is determined by axes w and v, V(u, v, w)
is the visibility as a function of (u, v, w) coordinates, (I, m, n)
are directional cosines, measured with respect to axes u, v and w
respectively. I(I, m) is the sky brightness distribution correspond-
ing to an image of the sky. The third directional cosine #n can be
expressed in terms of the other two (n=+/1— I> — m?), and for
small FoV n ~ 1. For a co-planar array and an all-sky image phase
centred at zenith w = 0, which is the case of all-sky imaging with
SKA-Low stations, and in this case equation (4) can be simplified

to:
A(l I’I’I)Il m) —i27 (ul-+vm)
V(u,v,0) = // . —¢ dldm (5)

where approximation e ™" a1 was applied for w~ 0. This
equation shows that the visibility function V(u, v) is a Fourier
Transform of the function I (I, m) = A(l, m)I(I, m) /n. Therefore,
the function I (I, m) can be calculated as an inverse 2D Fourier
Transform of the visibility function V(u, v). The resulting image of
the sky is called ‘dirty image’ because in practise V (u, v) is not mea-
sured at every point on the UV plane, but only sampled at multiple
(u, v) points corresponding to existing pairs of antennas (base-
lines) in the specific interferometer. Hence, the measured visibility
function V,,(u, v) = S(u, v)V(u, v), where S(u, v) is the sampling
function equal to 1 at (4, v) points where the baseline exists and
zero otherwise. As a result, the inverse FT of V,,(u, v) is:

FT™Y (Voo(u, v)) =1 (I, m) « T~ (S(u, v)) , (6)

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

M. Sokolowski et al.

where * is convolution. Therefore, a simple 2D FT of the mea-
sured visibilities equals I '(1, m) convolved with the inverse Fourier
Transform of S(u, v), the so called ‘dirty beam’. In order to remove
side-lobes and other artefacts and recover the function I (I, m)
(and later I(I, m)) non-linear de-convolution algorithms, such as
CLEAN (Hogbom 1974) have to be applied. These algorithms are
very computationally expensive and, therefore, not implemented
in the presented high-time resolution imager. Fortunately, the pre-
sented imager will be applied to transient searches and can take
advantage of the fact that artefacts present in ‘dirty images’ can be
removed by subtracting a reference image. Such a reference image
can be the preceding ‘dirty image’ image, some form of an aver-
age of the sequence of previous images recorded during the same
observation or a model image. However, in order to reproduce
the same artefacts a model image would have to be generated for
the same array configuration and with the same imaging param-
eters (no CLEANIng etc.). Hence, a reference image obtained
from the very same data is likely to be the most practical option.
Alternatively, reference or model (subject to earlier mentioned
limitations) visibilities can be subtracted before applying inverse
an FT. Therefore, for the presented transient science applications
de-convolution is not strictly required. Similarly, transient/FRB
searches can be performed on non beam-corrected I'(I,m) sky
images, and only once FRB candidate is detected beam correction
(division by A(l,m)) can be applied in order to measure correct
flux density of the detected objects.

In practice, equation (4) has to be calculated numerically, and
the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey
1965) is the most efficient way to do this. Its computational com-
plexity is O(NM log(NM)), where N and M are the dimensions of
the UV grid. An FFT requires the input data (i.e. complex visibili-
ties) to be placed on a regularly spaced grid in the UV-plane in the
process called gridding (Section 4.4).

4.4. Gridding

Before 2D FFT can be performed, complex visibilities have to be
placed in a regularly spaced cells on UV grid in the process called
gridding, which is summarised in this section.

4.4.1. Gridding parameters

The output sky images are typically N,, x N, square arrays of
pixels, where each pixel has angular size Ax x Ax. Thus, the angu-
lar size of the entire sky image is (N,xAx)?, while the angular
size of the synthesised beam is A® =\/Byax = 1/timax, Where
is the observing wavelength and By, is the maximum baseline.
The longest baselines (By.x) correspond to maximum angular
resolution (smallest A0).

In order to Nyquist sample the longest baselines (i.e #m,x and
Vmax) the FWHM of the synthesised beam has to be over-sampled
by at least a factor of two. Hence, the condition for the pixel
size is:

Ax < AB/2, (7)

which after substituting A0 = 1/ can be written as

Ax<_ 1 ®)

umax

Typically, the synthesised beam is over-sampled by a factor
between 3 or 5, which can be realised by specifying parameters of

https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia 7

Table 3. The summary of the theoretical costs of the main steps of imaging and beamforming. Ngp¢ is the number of antennas (or
MWA tiles), Npy is 1D dimensional number of resolution elements (pixels). Hence, for square images the total number of pixels is Nf,x.
Nikern is the size (total number of pixels) of the convolving kernel. It can be seen that computational cost of correlation and gridding
is independent of the image size. It depends only on the number of visibilities to be gridded, which equals number of baselines N,
directly related to the number of antennas as N = 1/2Ngnt(Nant — 1) (excluding auto-corrrelations). The total computational cost is
dominated by the FFT, and is directly related to the total number of pixels in the final sky images. For the presented image sizes, the
imaging requires a few (~5-8) times less operations than beamforming for 128 antennas (MWA) and even order of magnitude less
(~ 11-15 times) for 256 antennas (SKA-Low stations). This is because the total cost of both is dominated by the component ~aNgX,
where a = Ngpt for beamforming and o = log (Nf,x) for imaging (log is the logarithm to the base 2). Hence, for a given image size ijx

beamforming dominates when Ngnt > log (NIZJX). For example, for image size 180 x 180 beamforming dominates when Ngp¢ = 15.

Step Time Ng Number of Number of Number of
complexity operations operations operations
forNpx =180 for Npxy =1 024 for Npxy =4 096
(N2, =32400) (N2, =1048576) (N2, = 16777216)
Correlation 0(1/2Ngnt(Nant — 1)) 128 8128 8128 8128
(Neorr) 256 32640 32640 32640
Gridding O(1/2Nane(Nant — 1)Nkern) 128 8128 8128 8128
(ngria) 256 32640 32640 32640
FFT O(N2, log, (N2,)) 128 485472 20971520 402653184
(nfe) 256 485472 20971520 402653184
Imaging total O(Ncorr + Ngrid + Nefe) 128 501728 20987776 402 669 440
(Ntot) 256 550752 21036 800 402 718 464
Beamforming total O(Nngmt) 128 4147 200 134217728 2147483648
(npe) 256 8294 400 268 435 456 4294967 296
Ratio O(Nant/ log, (N2,)) 128 8.3 6.4 53
(N /Ntot) 256 15.1 12.8 10.7

the imager. The dimensions of the UV-grid cells are determined
by the maximum angular dimensions of the sky image given by:

&)

In the case of limited FoV (~25° x 25° at 150 MHz) images
from the MWA, Fourier Transform of sampled visibility function
will lead to aliasing effects where sources from outside the FoV
are aliased into the final sky image (Schwab 1984b,a). In order
to mitigate these effects gridded visibilities are usually convolved
with a gridding kernel, which increases computational cost of grid-
ding by a factor N, (Table 3). This is not required in imaging of
the entire visible hemisphere (i.e. all-sky imaging), because there
are no sources outside the FoV which could be aliased into the
FoV. This significantly simplifies the procedure of forming all-sky
images with the SKA-Low stations.

4.4.2. Visibility weighting

Visibilities are gridded such that each cell in the UV-grid sat-
isfies one of the three conditions: (i) if there are no visibilities
corresponding to that cell the cell will have a zero value, (ii) if
there is one visibility, the cell will have that value, or (iii) if there
are multiple visibilities assigned to that cell, the value in this cell
will be a weighted sum of these visibilities. The choice of the
weighting scheme can be specified by parameters of the imager,
and currently natural and uniform weighting schemes have been
implemented. In natural weighting visibilities assigned to spe-
cific cell are summed, and they contribute with the same weights.
Hence, this weighting uses all the available information which

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

minimises system noise, but leads to lower spatial resolution due
to larger contribution from, more common, shorter baselines.

On the other hand in the uniform weighting, visibilites are
weighted by the UV area. Thus, all the baselines contribute with
equal weights. This improves the spatial resolution (contribution
from longer baselines is effectively ‘up-weighted’), but may lead
to slightly higher system noise. It is worth noting that the impact
of uniform weighting on final image noise is a combination of
higher system noise and reduced confusion noise due to better
spatial resolution. Since the imager is intended to be simple and
applied to FRB and transient searches, we have not implemented
other weighting schemes.

4.4.3. Theoretical computational cost

This section summarises theoretical computational costs of the
main steps of the imaging described in the previous section. These
theoretical costs are also compared for different numbers of anten-
nas and pixels (Table 3 and Fig. 1). Fig. 1 shows the ratio of
theoretical computational costs of beamforming to visibility based
imaging as a function of number of antennas and image size. It
is clear that for 128 and 256 antennas (MWA and SKA-Low sta-
tion respectively) the number of operations in beamforming is
respectively at least around 5 and 10 times larger than in imaging
indicating that standard visibility-based imaging should be more
efficient than beamforming in these regions of parameter space.
However, the real cost of the beamforming and imaging opera-
tions depends on the actual implementation. For example, modern
GPUs such as NVIDIA V100, with up to 5 120 cores allow per-
forming correlation of voltages from 128 (the MWA) and 256

https://doi.org/10.1017/pasa.2024.46

-=-- BF/IMG =1

—-= BF/IMG =5

M. Sokolowski et al.

—— BF/IMG =10

Number of image pixels (Npjxers)

100

. 10
[
!
[
i 8
I
!
i 6
/
/
/ 4
! .
!
/
.I. ?
;
0

150 200 250

Number of antennas (Nant)

Figure 1. Ratio of theoretical compute cost of beamforming (label BF) to imaging (label IMG) as a function of number of antennas (N,,) and number of pixels in 1D (N,,) based
on the total cost equations in the Table 3. The black curves superimposed on the graph indicate where the ratio of theoretical cost of beamforming and imaging is of the order of
one (dashed line), 5 (dashed-dotted line) and 10 (solid line). The plot shows that for 128 and 256 antennas (MWA and SKA-Low station respectively) the number of operations in
beamforming is respectively at least around 5 and 10 times larger than in imaging indicating that standard visibility-based imaging should be more efficient than beamforming in

these regions of parameter space.

antennas (EDA2) in O(N{fm /Neores) number of instructions, which
is O(1) for both MWA and EDA2. Hence, correlation on GPU
can be performed faster than the mathematical cost of sequential
operation, and is mainly limited by the memory bandwidth of the

GPUs.

5. Implementation of the imager

The initial version of the imager was implemented entirely on
CPU in order to test and validate the code on real and simulated
data. Once it was tested and validated, the main imaging steps were
ported to GPU. Both versions were developed in C++. This sec-
tion describes the CPU and GPU versions, and presents the tests
and validations performed on real and simulated data from the
MWA and SKA-Low prototype station EDA2.

5.1. CPUimager

The first version of the imager was designed to create images
of the entire visible hemisphere (all-sky images) using visibili-
ties from SKA-Low stations (mostly EDA2). The main reason
for starting with SKA-Low stations data was the simplicity of
all-sky imaging, which is mathematically correct without small
FoV approximation, and does not require additional convolution
kernel in gridding (no aliasing of out-of-FoV sources in all-sky
images). Additionally, it was decided early on to implement the
CPU version first, validate it on real and simulated data, develop
reference datasets and expected template output data (sky images,
gridded visibilities etc.). Based on these datasets, test cases were
created and used in the development process, including the vali-
dation of the GPU version. These test cases were included in the
build process, and once the CPU version was tested and validated,
the GPU version was developed and tested using the same test
cases with reference datasets. Any variations in the results were
carefully investigated and led to identification of ‘bugs’ or useful

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

insights into inherent differences in GPU processing with respect
to CPU.

The CPU version was implemented as a single threaded appli-
cation, and the main components of the imaging process (the grid-
ding and FFT) were realised in CPU. The FFT was implemented
using functions fftw_plan_many_dft and fftw_execute_dft
from the fftw library. Initially, the software could only gener-
ate all-sky images for a single time stamp and frequency channel.
However, it was later expanded to process EDA2 visibilities in mul-
tiple fine channels and timesteps, and was used to process a few
hours of data, which will be described in the future publication
(Sokolowski et al., in preparation). In the next step the imaging
code was generalised to non all-sky cases and tested on real and
simulated MWA data.

5.1.1. Validation of CPU imager on real and simulated data

The initial validation was performed using real data from EDA2,
and the images from the presented BLINK imager were compared
to well established radio-astronomy imagers (CASA and MIRIAD)
applied to the same data and using the same imaging settings
(i.e. ‘dirty image’ and natural weighting). The comparison of the
example validation images is shown in Fig. 2.

In the next steps, EDA2 visibilities were simulated using
MIRIAD task uvmodel and an all-sky model sky image was gen-
erated using the all-sky map at 408 MHz (Haslam et al. 1982, the
so called ‘HASLAM map’) scaled down to low frequencies using a
spectral index of —2.55 Mozdzen et al. (2019). The generated vis-
ibilities were imaged with both MIRIAD and BLINK imagers and
their comparison is shown in Fig. 3.

Similar verifications were performed on the MWA visibilities
simulated with CASA tasks simobserve using the model image
of Hydra-A radio galaxy. The resulting images were imaged with

Thttps://www.fftw.org/.

https://www.fftw.org/
https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

2021-11-16 20:30:00 UTC , XX

-6000 -4000 -2000 0 2000

2021-11-16 20:30:00 UTC , XX

4000

2021-11-16 20:30:00 UTC , XX

e

6000 8000 10000 12000 14000

Figure 2. A comparison of the all-sky images from EDA2 visibilities at 160 MHz recorded on 2021-11-16 20:30 UTC. Left: Image produced with MIRIAD. Centre: Image produced with
CASA. Right: Image produced with BLINK imager presented in this paper. All are 180 x 180 pixels dirty images in natural weighting. The images are not expected to be the same
because MIRIAD and CASA apply a gridding kernel, which has not been implemented in the BLINK imager yet (as discussed in Section 5.1). Therefore, the differences between the

BLINK and MIRIAD/CASA images are of the order of 10-20%.

2023-02-05 03:46:18 UTC , XX

2000 -1000 0

1000

2023-02-05 03:46:18 UTC , XX

2000 3000 4000

Figure 3. Sky images in X polarisation produced from EDA2 visibilities at 160 MHz generated in MIRIAD and using frequency-scaled ‘HASLAM map’ as a sky model. The image
corresponds to real EDA2 data recorded on 2023-02-05 03:46:18 UTC. Left: Image generated with MIRIAD task invert. Right: Image generated with the CPU version of the BLINK

imager presented in this paper.

CASA task simanalyze, WSCLEAN and BLINK imagers (all
dirty images in natural weighting), and their comparison is shown
in Fig. 4.

All the above tests gave us confidence that the images formed
by the BLINK imager are correct, and the test data were used to
develop test cases, which were included into the software build
procedure (as a part of CMake process). This turned out to be
extremely useful feature, which sped-up and made the software
development process more robust. In summary, after the soft-
ware is build (on any system) the imager is executed on a few
test datasets and output data (i.e. sky images) are compared to
the template images, which are part of the test dataset. If the final
sky images are the same to within small limits the test passes,
and otherwise the test fails, which indicates that some ‘bug’ was
introduced in the newest (currently compiled) version of the code.
This allows to discover errors (‘bugs’) in the code immediately
after introducing them (assuming the code is compiled after small
incremental changes), and potentially correct them straightaway
using the knowledge of which particular parts of the code were
modified.

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

5.2. GPUimager

The first version of the GPU imager was implemented on the basis
of the CPU imager by gradually implementing the main steps
in GPU using Computer Unified Device Architecture (CUDA)*
programming environment, where the code in CUDA is written
in C++. The conversion process started with the calls to fftw
library, which were replaced with the corresponding calls to func-
tions from the cuFFT library.! In the next step, sequential gridding
function for CPU was implemented as a GPU kernel in CUDA.
During this process the test cases developed for the CPU imager
were used to validate the results of implementation as each part
of the code was ported to GPU. The block diagram of the GPU
version of the imager is shown in Fig. 5.

The code was later translated to AMD programming frame-
work Heterogeneous-Compute Interface for Portability (HIP),™

khttp://nvidia.com/cuda.
'https://developer.nvidia.com/cufft.
"https://github.com/ROCm/HIP.

http://nvidia.com/cuda
https://developer.nvidia.com/cufft
https://github.com/ROCm/HIP
https://doi.org/10.1017/pasa.2024.46

10

&

-10

-12

-14

O
-
'

-18

M. Sokolowski et al.

2014-05-21 09:38:28 UTC UTC , XX

2.5

Figure 4. Sky images in X polarisation generated from MWA visibilities at 154 MHz simulated in CASA based on the model image of Hydra-A radio galaxy. Left: Image generated
with WSCLEAN. Right: Image generated with the CPU version of the BLINK imager presented in this paper.

Read data
Read block of visibilities from the input file (off-line) or
obtain it from the earlier correlator stage (real-time).
They may be passed via device (GPU) or host (CPU) memory

v

Apply calibration solutions (provided externally)
to the input visibilities

v

Copy visibilities from host (CPU) to device (GPU) memory.
This happens only if required, as in real-time pipeline
the output of the correlator will already be in GPU memory

'

Perform parallel gridding of visibilities from multiple frequency
channels on to UV grid. This is performed on GPU using multiple
blocks of data corresponding to separate channels (layers).
The details are provided in a separate diagram

Perform 2D FFT on the gridding visibilities
This uses functions gpufftPlan2d or gpufftPlanMany to perform
FFT on a single or multiple blocks of data respectively

Analyse resulting sky images in search for transients or FRBs
while they are still in GPU memory. Currently only a simple difference
imaging is implemented but it will be extended in the future

/
Save the resulting sky images to harddrive.
This is optional step which can be turned off to avoid 1/0 operation
slowing down the whole processing.

Figure 5. Block diagram of the main steps in the GPU version of the imager for multiple
frequency channels.

and a separate branch was created. Hence, the imager could be exe-
cuted on NVIDIA and AMD hardware using respectively CUDA
and HIP programming frameworks. To unify the CUDA and
HIP codebases a set of C++ macros named gpu<FunctionName>
was implemented and used in the code to replace specific
CUDA and HIP calls. An #ifdef statement in the include file
gpu_macros.hpp selects a set of CUDA or HIP versions of the
function depending if the compiler is nvcc or hipcc respectively.
For example, the calls to functions cudaMemcpy and hipMemcpy
in the CUDA and HIP branches respectively, were replaced by

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

gpuMemcpy in the final merged branch supporting both frame-
works. Therefore, later in the text, names of functions starting
with gpu<FunctionName> should be interpreted as expanding to
cuda<FunctionName> or hip<FunctionName> in the CUDA or
HIP framework/compiler respectively. The imager can be com-
piled and executed in one of the two frameworks depending on
the available hardware and software. We note that the HIP frame-
work also supports using the NVIDIA CUDA as a back-end, but it
has to be installed on a target system, which is not always the case.
Therefore, the macros make our package much more flexible as it
can be compiled for both NVIDIA and AMD GPUs regardless if
HIP framework is installed on the target system or not.

The code was originally developed in a notebook/desktop envi-
ronment with NVIDIA GPU, and later it was also compiled, val-
idated, and benchmarked on the now-retired Topaz, Garrawarla"
and Setonix® supercomputers at Pawsey. The list of the test sys-
tems is provided in Table 2.

The following subsections describe implementations of the
main parts of imaging in the GPU version.

5.2.1. GPU gridding kernel

Gridding places complex visibility values on the UV grid in the
cell with coordinates (u, v), which are coordinates of a baseline
vector, i.e. difference between the antenna positions expressed in
wavelengths. The main steps in the GPU gridding kernel? are:

1. Calculate coordinates (x, y) of the specific baseline (u, v)
on the UV grid. The correlation matrix is a 2D array of
visibilities indexed by the first and second antenna, whose
signals were correlated to obtain the visibility that is about
to be added to a UV cell (‘gridded’). Due to the require-
ments for the formatting of the FFT input (both in FFTW and
cuFFT/hipFFT versions) the visibilities have to be gridded in
such a way that the center bin corresponds to zero spatial fre-
quency (so-called DC term). Hence, in order to avoid moving
the data after gridded, the (x, y) indexes are calculated to
satisfy these requirements.

"https://pawsey.org.au/systems/garrawarla/.
°https://pawsey.org.au/systems/setonix/.
PKernels are functions executed by a GPU.

https://pawsey.org.au/systems/garrawarla/
https://pawsey.org.au/systems/setonix/
https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

2. Add visibility value to the specific UV cell (x, y) in the 2D
complex array (UV grid). This UV array is initialised with
zeros and the additions are performed with atomicAdd to
ensure that two threads do not modify the same cell of the
array in the same time.

3. Increment the counter of the number of visibilities added to
the specific UV cell, which can be used later to apply selected
weighting schema (not required in the default natural
weighting).

Once the gridding kernel has completed, the selected weighting
can be applied (for weightings other than natural) and the gridded
visibilities are ready for the FFT step.

On a GPU, each visibility value can be gridded by a dedi-
cated thread, each running on a separate core and executing the
same kernel instruction in parallel. The number of available GPU
cores (Ngr) depends on specific device (summary in Table 2),
while the number of visibility points depends on the number
of antennas (N, = 1/2N,,;(Nane — 1) when auto-correlations are
excluded). Typically, N,;; > N, and it is not possible to grid all
visibility points having all cores simultaneously execute the same
operation for different baselines. This is a standard scenario as
for most of the problems the number of data points (e.g. size of
the input array) is larger than the maximum number of threads
which can be executed simultaneously. Therefore, GPU threads
are grouped into nBlocks blocks of NTHREADS threads (typically
1024), and the threads within a single block of threads are exe-
cuted simultaneously while blocks of threads are executed one by
one (sequentially). Hence, in order to grid N,; visibility values,
there are

nBlocks = (N,;; + NTHREADS — 1)/NTHREADS

blocks of threads, which ensures that the total number of threads
across all blocks is greater than or equal to N,;. Usually not all
threads in the last block are mapped to a visibility to be gridded.
For this reason, in the GPU kernel there exists a safeguard con-
ditional statement to avoid out-of-bounds memory access when a
thread (global) index is greater than the maximum visibility index
in the input array.

Indexes of a GPU block and thread are available inside the
GPU kernel and are used to address corresponding data (visibil-
ity points in this case) to be processed?. The maximum number
of GPU threads that can be executed concurrently depends on
several factors, such as the total number of GPU cores in a spe-
cific device (Table 2), register and memory resources required by
the GPU kernel etc. In the simplest case where different threads
write to different cells of the output array, no synchronisation
mechanisms are required. However, in some cases simultaneously
running threads may need to write to the same output variables
or array cells. Hence, memory access synchronisation mechanisms
must be adopted to avoid unpredictable results. This is in fact the
case of the gridding kernel, where each thread processes specific
cell of the correlation matrix, and in some cases different GPU
threads may try to write to the same UV cell as pairs of different
antennas may have baselines with nearly the same (u, v) coordi-
nates. Synchronisation is achieved using the atomicAdd function
(present in both CUDA and HIP). It should be noted that this
function may slow down the code, but currently this is not the

9Refer to https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html for
more information about the main principles of GPU programming.

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

11

main bottleneck. We plan to replace it in the future with the more
efficient parallel reduction algorithm (Hwu, Kirk, & EI Hajj 2023),
which ensures that data (visibilities in this case) are not written to
the same memory cells in the same time.

5.2.2. Fourier transform of gridded visibilities

As described in Section 4, after visibilities are gridded on
a regular grid, an FFT can be applied to form a dirty
image. In the GPU imager the FFT plan is created using
functions gpufftPlan (expanding to cudafftPlan2d or hipftt-
Plan2d) or gpufftPlanMany (expanding to cudafftPlanMany
or hipfftPlanMany) for a single and multiple images respec-
tively. These functions correspond to fftw_plan_dft_2d and
fftw_plan_many_dft in the CPU implementation. Plan creation
is performed once (at the first execution of FFT), therefore its com-
putational cost can be neglected. The actual execution of FFT is
performed by the function gpufftExecC2C in the GPU version,
which corresponds to fftw_execute in the CPU version.

The real part of the output of the FFT is a sky image. However,
similarly to the input stage, the resulting output array has to be
re-organised by the so called FFT shift operation in order to move
the pixels so that the center of the image corresponds to the phase
centre (by default it is in the corner of the image). This opera-
tion is required at least for the validations and comparisons of
the resulting sky images with the template test images and output
from other software packages. However, in order to avoid addi-
tional computational cost (O(N;x)), transient search operations
can also be performed on the direct output from the FFT. Only
images in which interesting candidates were identified would be
“FFT-shifted” for further inspection and analysis.

5.2.3. Validation of the GPU imager

As mentioned earlier, the GPU imager was validated by comparing
the resulting images with the images produced by its CPU ver-
sion (its validation was described in Section 5.1.1). The EDA2 data
leading to sky images in Fig. 2 were imaged with the CPU and GPU
versions of the imager with 180, 1 024 and 4 096 pixels, and all the
intermediate data products at various processing stages were com-
pared. As a result, small differences (<0.1%) were found in the
gridded visibilities. They translated into <0.5% differences (<15
mJy) in the final sky images in the areas of the sky where flux den-
sities were >1 Jy. This minimum flux density was required because
calculation of relative differences in parts of the sky where flux
density is ~0 resulted in very high (over-estimated) ratios due to
division by very small numbers. The corresponding differences for
MWA data are typically much smaller than for EDA2 data. These
discrepancies between GPU and CPU results are still being investi-
gated. However, the current explanation is that they are caused by
the imprecise nature of the floating point representation leading
to non-commutative (although concurrency-safe) additions exe-
cuted in no particular order by the gridding kernel. This is also
the cause for the observed differences in the gridded visibilities
between executions of the GPU imager. These effects are a small
disadvantage of the current GPU version because results are not
strictly reproducible. Thus, the test cases had to be modified in
order to allow for a larger tolerance of the difference between the
resulting sky images and the template images.

Nevertheless, in the future, we will try to eliminate these
discrepancies by removing atomicAdd and implementing a deter-
ministic algorithm based on the concept of parallel reduction
(Hwu et al. 2023), which will lead to repeatable results in GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1017/pasa.2024.46

12 M. Sokolowski et al.

1D array of complex gridded visibilities from multiple channels (here 32) with stride of imsize (= Np:Nnx)' where pointer to UV grid
for channel CH can be calculated at uv[CH] = m_in_buffer_gpu + CH*imsize , where m_in_buffer_gpu is the pointer to GPU memory

©
35 CH=0 | CH=1 | CH=2 v | CH=31

gpufftPlanMany(&m_FFTPlan, 2, DIM, NULL, 1, imsize, NULL, 1,
imsize, GRUFFT_C2C, n_ch);

gpufftExecC2C(m_FFTPlan, m_in_buffer_gpu, m_out buffer gpu,
GPUFFT_FORWARD);

where DIM is array of image sizes [NH o NPJ, and

CH=0 | CH=1 | CH=2 sy | ekl O

1D complex array for output of FFT performed on GPU m_out_buffer_gpu is the pointer to the start of the array.
Pointer to complex image for channel CH can be calculated as image[CH] = m_out_buffer_gpu + CH*imsize.

Sky images
(complex)

Figure 6. A diagram of the gridding and imaging of multiple channels (Nc;) performed on GPU. The input visibilities are gridded on a 2D UV grid (N, N,x) represented as a 1D
array m_in_buffer_gpu of complex floats. This is realised by a gridding kernel executed as shown in the listing in Figure 7. This 1D array is used as the input to gpufftPlanMany and

gpufftExecC2C functions to calculate FFT of all UV grids (for different frequency channels), and the final sky images can be obtained as real part of the complex images resulting
from the FFT.

Listing 1: Multi-channel GPU gridding kernel and calling code

// call to the GPU gridding kernel in file pacer_imager_multi_hip.cpp

CPacerImagerMultiFreqHip::gridding_imaging_multi_freq

gridding_imaging_lfile_vis_blocks<<<nBlocks,NTHREADS>>>(... m_in_cross_correlations_gpu,
m_nCrossCorrBlockSize, ., m_in_buffer_gpu, image_size, n_pixels, ...);

// GPU gridding kernel implementation in gridding_multi_image_cuda.cpp

gridding_imaging_lfile_vis_blocks(... gpufftComplexx in_visibilities_corr, int in_vis_corr_size,
gpufftComplex* out_visibilities_gridded, int image_size_cuda, ...)
{

// Calculating the required id
int i = blockDim.x * blockIdx.x + threadIdx.x;

// different frequency channels are handled by different layers of blocks (blockIdx.y)
int freq_channel = blockIdx.y; // second block dimension means IMAGE BLOCK -> here frequency
fine channel

// calculate observing frequency based on freq_channel (known from Y coordinate of blockIdx)
double freqMHz = first_channel_center_freq_mhz + freg_channelxchannel_bw_mhz;
double wavelength_cuda = SPEED_OF_LIGHT/(freqMHzx1e6); // c/freq_in_Hz

// calculate pointer to output memory for frequency channel freq_channel:
gpufftComplex* out_visibilities_gridded = out_visibilities_gridded_param + freq_channelx
image_size_cuda;

// obtain pointer to input visibility data (cross-correlations only here):
gpufftComplex* baseline_data = get_cross_corr_data_antpol(antl, poll, cPoll, ant2, pol2, cPol2,
inputs, n_inputs, n_channels, mapping_array, in_visibilities_corr);

float re = baseline_data[freq_channel].x;
float im = baseline_datal[freq_channel].y;

// Beloe follows the code to place visibility value re/im on the UV grid (into the array
out_visibilities_gridded)

Figure 7. Listing of the GPU gridding code for multiple frequency channels. The GPU gridding kernel gridding_imaging_lfile_vis_blocks is called in the source file
pacer_imager_multi_hip.cpp, while the GPU gridding kernelitself is implemented in the source files gridding_multi_image_cuda.h(cpp).

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

13

Table 4. A comparison of the execution times of gridding, imaging and both (total) for CPU and GPU implemen-
tations of the imager for a single time-stamp and frequency channel, tested for various image sizes using EDA2
and MWA data. The times were measured using function std: : chrono: :high_resolution_clock: :now() on
several different systems and GPUs used for during the development stage of the project (Table 2).

180 x 180* 1024 x 1024* 4096 x 4 096° 456 x 456° System Processor Operation
(ms) (ms) (ms) (ms)

5.8 106 2910 19.3 Laptop A CPU Total
2.7 16 209 34 CPU Gridding
2.9 84 2610 14.7 CPU 2D FFTW
15.7 14.0 13.0 16.3 Laptop A GPU Total
0.1 0.1 0.1 0.05 GPU Gridding
15.6 13.9 13.0 16.2 GPU 2D FFTW
11.8 216.8 4769.7 Laptop B CPU Total
5.8 31.9 440.4 CPU Gridding
5.5 174.7 4165.0 CPU 2D FFTW
205.9 202.7 216.3 Laptop B GPU Total
0.2 0.1 0.1 GPU Gridding
205.7 202.6 216.2 GPU 2D FFTW
7.7 144.6 23101 Workstation CPU Total
3.8 23.2 310.7 CPU Gridding
3.5 113.0 1880.0 CPU 2D FFTW
137.2 135.0 131.9 Workstation GPU Total
0.1 0.1 0.1 GPU Gridding
137.1 134.9 131.8 GPU 2D FFTW
43.7 273.7 7550.1 Garrawarla CPU Total
4.4 28.2 394.1 CPU Gridding
26.8 215.5 6921.1 CPU 2D FFTW
316.9 306.9 308.5 Garrawarla GPU Total
0.05 0.05 0.04 GPU Gridding
316.8 306.8 308.4 GPU 2D FFTW
29.5 209.4 3613.0 Setonix CPU Total
4.6 27.1 365.0 CPU Gridding
20.1 158.5 2944.8 CPU 2D FFTW
270.9 223.4 2427.5 Setonix GPU Total
3.5 0.7 0.8 GPU Gridding
267.3 222.7 2426.7 GPU 2D FFTW

% Image sizes 180 x 180, 1024 x 1024 and 4096 x 4096 were tested with EDA2 data, while 456 x 456 with MWA data.

version. This will also lead to code optimisation by removing
atomicAdd calls, which are relatively costly operation due to being
implemented as an active wait loop.

5.2.4. Production version of the GPU Imager

The production version of the imager has to efficiently form
images from multiple (N) frequency channels (tens to hundreds)
and/or timesteps (tens to a hundred per second). This translates
to multiple blocks of input visibility data that can be imaged in
a parallel. We refer to these as layers to distinguish them from
the GPU programming concept of block (of threads). These lay-
ers correspond to multiple images, and their processing (gridding
and FFT) is parallelised on GPU. A hierarchical approach to paral-
lelisation will be considered in the future. The MPI standard may

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

be used to distribute larger chunks of work across compute nodes;
data are then processed in parallel on CPU cores and GPUs using
OpenMP and HIP/CUDA, respectively.

Visibilities resulting from previous steps (correlation and appli-
cation of calibration) are already kept in GPU memory, and
a continuous block of memory (of the size corresponding to
N images, i.e. NxN,, XN, float values) is created to store the
gridded visibilities and the resulting sky images.

The gridding operation can be parallelised by processing dif-
ferent layers in multiple GPU (CUDA or HIP) streams, which are
execution queues of GPU kernel(s). Gridding kernels are sched-
uled for execution by adding them to these queues, and they are
subsequently launched according to the available GPU resources
(the maximum number of threads, memory, registers etc.). An
alternative approach is to create multiple layers (this is called grid

https://doi.org/10.1017/pasa.2024.46

14

Table 5. Results of benchmarking of multi-channel version of the code using CPU
and two variations of GPU code. All tests were executed on Setonix on 1 min of
EDA2 visibilities in 100 ms time resolution and 32 fine channels. The times in this
table are mean and standard deviation of processing time of a single integration
with 32 fine channels calculated based on 600 integrations.

Version Image Gridding 2D FFT Total
size [ms] [ms] [ms]
CPU 180 x 180 150 £+ 20 432140 768 + 60
1024 x 1024 830 + 20 4700+ 200 6400 £ 300
4096 x 4096 11300+700 8.741.3x10* 4405 x103
GPU STREAMS 180 x 180 44+0.6 0.13+0.04 4.5+0.6
1024 x 1024 3.6+0.5 1.74+0.01 54+0.5
4096 x 4096 45+0.4 29.7+0.03 342+04
GPU LAYERS 180 x 180 0.024+0.016 0.1340.03 0.174+0.05
1024 x 1024 0.016 £0.007 1.98 +£0.02 2.01+0.014
4096 x 4096 0.024 £ 0.02 33.240.04 33.254+0.03

in the CUDA nomenclature) of GPU blocks of threads with each
layer corresponding to a separate UV grid of visibilities from a
specific frequency channel or timestep. The same GPU gridding
kernel is launched for multiple layers by providing index i of the
layer (i.e. UV grid) to be processed. The memory pointer to the
specific UV grid (or sky image) in the input and output GPU
memory can be calculated based on the index i of the sky image
(frequency channel or timestep) as

ptr[i] =ptr +i x Ny x N, X sizeof(float),

where ptr is a pointer to allocated GPU memory and i is the
image index. This is visualised in Fig. 6 and the listing in Fig. 7.
Since, data from different frequency channels or times are pro-
cessed independently there is no need for synchronisation mech-
anisms as kernels executed by different GPU streams or layers
access different parts of GPU memory.

The parallelisation with streams and layers has been tested and
benchmarked, and the layers version was found to be about two
times faster than the version using streams. The exact reason for
this is unclear, but it may be caused by additional overhead of
managing streams execution. At this point the gridding version
using layers of blocks is considered for the production version of
the code.

6. Benchmarking the GPU imager

The imager was tested and benchmarked on several compute
architectures listed in Table 2. As a first test, a single timestep
and frequency channel were processed with the CPU and GPU
versions of the BLINK imager, and the execution times obtained
on different systems are summarised in Table 4. In the next step,
the current production versions of the code were benchmarked on
Setonix using 600 100-ms timesteps and 32 channels for a total of
19200 EDA?2 data points recorded on 2023-06-01 10:19:46 UTC. In
this test 180 x 180, 1024 x 1024 and 4 096 x 4 096 images were
produced using CPU and GPU versions of the code. Additionally,
parallelisation of gridding using GPU streams and layers was also
benchmarked in the GPU version of the code. The results of this
benchmarking are summarised in Table 5.

The production version of the multi-channel imaging code was
also extensively benchmarked on Setonix. The execution times of

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

M. Sokolowski et al.

gridding and imaging as a function of number of images was mea-
sured for the same images sizes, and the results of these tests with
GPU and CPU versions of the code are shown in Figs. 8 and 9.
The execution times scale linearly with the number of images.
Thus, the linear function was fitted to the data points and the fitted
parameters (intercepts and slopes) are summarised in Table 6. The
slope of the fitted line corresponds to processing time (gridding or
2D FFT) of a single image (i.e. units of ms/image).

The slopes fitted in Fig. 8 show that the GPU implementa-
tion takes only about 20, 30, and 60 usec per image to perform
parallel GPU gridding using layers for 180 x 180, 1024 x 1024
and 4 096 x 4 096 images respectively. This is approximately 200,
580 and 3 200 times faster than the CPU gridding for 180 x 180,
1024 x 1024 and 4096 x 4 096 images respectively, which takes
about 4.6, 17.1 and 195.1 ms per image (slopes fitted to results of
the CPU version).

Similarly, the slopes fitted in Fig. 9 show that, in the GPU ver-
sion, 2D FFT takes only about 1.7, 53.2, and 923.6 usec per image
for 180 x 180, 1024 x 1024, and 4096 x 4096 images respec-
tively. This is about 200, 740, and 1 600 times faster than the CPU
version for the respective image sizes. Overall, it is clear that GPU
versions of gridding and 2D FFT are extremely fast (both take of
the order of 83 usec per 1024 x 1 024-image) when they are per-
formed in bulk on multiple images (in this case multiple frequency
channels). They are between 2 and 4 orders of magnitude faster
than their CPU counterparts.

Finally, the GPU version using GPU layers (made of blocks of
threads) is the most optimal GPU version about 2 times faster
with respect to GPU streams (Fig. 8). Additionally, the creation
of GPU streams was measured to take between 15 and 20 ms, but
this is performed only once in the lifetime of the program and can
be neglected. Therefore, clearly the most optimal version of the
code is GPU version which uses GPU layers to parallelise the grid-
ding process, and this version is envisaged as the final production
version of the imager for EDA2 and MWA data.

To determine the performance of both the gridding kernel
and the 2D FFT routines, and whether better could be achieved,
the code has been profiled with NVIDIA Nsight profiler (for the
CUDA version) and the rocprof command (for the ROCm ver-
sion). Code instrumentation (that is, placing timers around code
regions) also gave informative insights. What has been found for
the gridding kernel is that execution times for the streams and lay-
ers variants are very similar on the NVIDIA hardware, whereas
streams perform poorly on AMD. The reason was found in the
large initialisation time (~12 ms) of the hipStreamCreate func-
tion call; the CUDA counterpart displays a much better perfor-
mance (<0.1 ms). This is certainly due to ROCm framework being
less mature than CUDA, also shown by some performance regres-
sions encountered across versions of the framework. On the other
hand, the layers implementation in HIP outperformed the CUDA
implementation on large problem instances, in terms of execution
times. The 2D FFT implementation is the one provided by the
hardware vendor and included in the GPU programming frame-
work (cuFFT for NVIDIA and rocFFT for AMD). With the FFT
kernel’s compute utilisation only slightly above 30% and mem-
ory utilisation at 86%, the profiling of the CUDA version shows
that the GPU FFT implementation is bound by the memory sys-
tem. The reported memory bandwidth utilisation is 729.485 GB/s.
Relative to the empirically measured peak memory bandwidth for
the V100 GPU of 851.12 GB/s, the measured value for this kernel
represents the ~85.7% of the possible peak performance. Because

https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

15

— 4 —
w 10 = CPU gridding (1024 x 1024 image)
.E, ik GPU-Streams gridding (1024 x 1024 image)
qE) 4 GPU-Blocks gridding (1024 x 1024 image)
= 10 - 2/ ndf 3.3/9
- - Intercept [ms] 1+ 0.87 52/ ndf 72/ 14
o 102 Slope [ms/image] 17 +0.083 Intercept [ms] 26+ 0.11
8 = Slope [ms/image] 0.062 + 0.00027
2
10k i ' P
= —
- —J_Hfarj
1E
1 0—1 L | L |
1 10

2
L Number of Images

Figure 8. The execution time of gridding as a function of number of images using GPU streams (square points/blue fitted curve) and layers of thread-blocks per image (triangle
points/green fitted curve). The black data points and fitted curve are for CPU version of gridding, which confirms that it is between 1 and 2 orders of magnitude slower than its
GPU implementation. The fitted parameters intercept (in ms) and slope (execution time per image) in ms are summarised in Table 6.

— 10° =
m 104 E 2/ ndi 2.3e+02/9
E 10 E Intercept [ms] 0.31+ 0.26
CIE) 10% & Slope [ms/image] 39 +0.05
= 102 -
5 Or
= = ¥2 I ndf 12/13
2 40 = Intercept [ms] 0.051+ 0.0034
< ' E Slope [ms/image] 0.053 + 3.2e-05
w10k

10°k

104 =

1 075 GPU FFT PlanMany (1024 x 1024 image)

1 0-6 . CPU FFTW PlanMany (1024 x 1024 image)

10“7 =5 | I g L R L |

1 10 10 10°

Number of Images

Figure 9. The execution time of 2D FFT using gpufftw (hipfft on Setonix) shown as black data points and fitted curve, and £ftw library (blue data points and fitted curve). The
black curve is about 1000 times lower, which means 2D FFT performed on GPU is about 3 orders of magnitude faster than its CPU counterpart. The fitted parameters, including
the fitted slopes representing execution time per single image in ms, are summarised in Table 6. Based on the fitted slopes, it takes about 39.4 ms per image in the CPU version vs.

only 0.053 ms (53 usec) per image in the GPU version.

of this, and because the MI100 GPU has a larger memory band-
width than the V100, the ROCm implementation is ~30% faster
for the larger images (4 096 x 4 096).

7. Summary and discussion

We have presented a new GPU imager, which will be a part of a
GPU-accelerated processing pipeline to search for FRBs and other
transient phenomena with low-frequency telescopes. The primary
objective is to search for these events in high-time resolution wide-
field images from the MWA (e.g. SMART survey data) and all-sky
images from SKA-Low stations as described in (Sokolowski et al.
2022), which can yield even hundreds of FRB detections per year
(Sokolowski et al. 2024). The main paradigm of the pipeline is to
minimise I/O operations and process the data inside GPU mem-
ory. The full GPU pipeline is currently under active development,
and will be described in an upcoming publication (Di Pietrantonio
et al,, in preparation).

The presented imager provides minimal functionality (‘dirty
images’) required by searches for bright radio transients, such
as FRBs. It has been validated and tested on simulated visibili-
ties from EDA2 and the MWA. It was also applied to real data

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

from these telescopes and the resulting sky images were com-
pared to images obtained with standard radio-astronomy packages
(MIRIAD, CASA and WSCLEAN) using, as much as possible, the
same imaging parameters (i.e. visibility weighting, angular size of
pixels etc.).

A set of pre-compiler macros have been developed so that
the code can be maintained in a single branch and compiled on
any GPU architecture and programming framework (CUDA or
HIP) regardless if the HIP framework is installed on the target
system. During the development and testing, the imager was com-
piled, deployed and tested on several supercomputers (Setonix,
Garrawarla and Topaz) at the Pawsey Supercomputing Centre
as well as workstations and laptops with different NVIDIA GPU
hardware (Table 2). The speed-up of the GPU version can already
be noticed even when processing a single large (1024 x 1024 or
4096 x 4096) image (Table 4). However, it becomes enormous
for large amounts of data, for example 2D FFT performed on 500
images takes about 34.7 ms per image using fftw library (CPU)
and only 53.4 usec per image (nearly 3 orders of magnitude faster)
using cuFFT library (NVIDIA GPU) for 1024 x 1024 images.
Similarly, for the same image sizes gridding takes about 16.45 ms
per image in the CPU version, and approximately 30 usec per

https://doi.org/10.1017/pasa.2024.46

16

Table 6. Parameters of straight lines fitted to execution times of gridding and 2D
FFT as a function of number of images (Figs. 8 and 9 respectively. The fitted slope
corresponds to execution time per single image. Therefore, the slopes are larger
for larger images. It can be seen that GPU gridding is about 2 orders of magni-
tude faster than CPU version for image sizes 180 and 1 024, and about 3 orders
of magnitude faster for the largest images (4 096 pixels). Similarly, for the case of
2D FFT using GPU functions using hipfft library on Setonix when compared to
FFTW CPU library. 2D FFT using £ftw library led to very similar results when per-
formed in 1 and 15 CPU threads. The optimal GPU version uses parallelisation of
multiple frequency channels processing with GPU layers (multiple blocks of GPU
threads), and is about 2 times faster than parallelisation implemented with GPU
Streams.

Function Code Image Fitted intercept Fitted slope
version size (ms) (ms/image)
Gridding GPU Streams 180 x 180 2.327 0.05243
1024 x 1024 2.617 0.06162
4096 x 4096 2.148 0.09011
Gridding GPU Layers 180 x 180 0.6177 0.0234
1024 x 1024 0.6414 0.02962
4096 x 4096 0.2197 0.06162
Gridding CPU 180 x 180 —0.1093 4.628
1024 x 1024 1.004 17.08
4096 x 4096 —0.1584 195.1
2D FFT GPU PlanMany 180 x 180 0.05215 0.001722
1024 x 1024 0.05094 0.05321
4096 x 4096 0.08892 0.9236
2D FFT CPU FFTW_PlanMany 180 x 180 —0.01726 0.3396
1024 x 1024 0.3064 39.42
4096 x 4096 —2.755 1481

image (nearly 3 orders of magnitude faster) in the GPU version.
Hence, on average, a single 1 024 x 1 024 image can be processed
about 3 orders of magnitude faster on GPU than on CPU and grid-
ding and imaging can be completed in about 80 usec per image
when processing is performed in bulk (on tens or hundreds of
images). Hence, real-time imaging of EDA2 or MWA is entirely
feasible, and memory bandwidth remains the only limiting factor
as discussed by Di Pietrantonio et al. (in preparation).
Nevertheless, there are still some areas for potential improve-
ments. One of the most immediate optimisations is implemen-
tation of kernel executions on portions of data interleaved with
memory transfers of other portions of data to/from the GPU mem-
ory. Furthermore, memory transfers can be further optimised by
using pinned memory on the Host side.” This will optimise the
initial stage of the processing where the data are transferred from
Host to GPU (device) memory. Such transfers are expected to
be performed only in the beginning of the processing when the
input data are read there from harddrives (off-line processing) or
from the telescope’s back-end (real-time processing). However, it
is worth noting that some modern back-ends may be able to place
the voltages from the telescope directly into GPU memory, and
completely by-pass Host memory (either pinned or pageable).
Finally, the all-sky GPU imager was already applied off-line
to a few hours of EDA2 visibilities in 100 ms time resolution to
form all-sky images, and preliminary results of a pilot search for

"https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/.

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

M. Sokolowski et al.

dispersed radio pulses (including FRBs) will be presented in a sep-
arate publication (Sokolowski et al., in preparation). The real-time
imaging and FRB search system for EDA2 is currently under devel-
opment. On the other hand, the incorporation of the imager into
the full FRB search pipeline, and its application to a large sample of
the MWA VCS data will be described in the upcoming publication
(Di Pietrantonio et al., in preparation).

Although the imager has been originally developed and tested
on the MWA and EDA2 data, the code is publicly available at
https://github.com/PaCER-BLINK-Project/imager and it can be
applied to other radio telescopes.

Acknowledgement. This scientific work makes use of the Murchison Radio-
astronomy observatory, operated by CSIRO. We acknowledge the Wajarri
Yamatji people as the traditional owners of the Observatory site. Support
for the operation of the MWA is provided by the Australian Government
(NCRIS), under a contract to Curtin University administered by Astronomy
Australia Limited. EDA2 is hosted by the MWA under an agreement
via the MWA External Instruments Policy. This work was supported by
resources provided by the Pawsey Supercomputing Research Centre’s Setonix
Supercomputer (https://doi.org/10.48569/18sb-8s43), with funding from the
Australian Government and the Government of Western Australia. Authors
also acknowledge the Pawsey Centre for Extreme Scale Readiness (PaCER) for
funding and support. This work has also been co-funded and supported by
ICRAR and Australian SKA Regional Centre (AusSRC).

Data availability. Not applicable.

References

Agarwal, D., et al. 2019, MNRAS, 490, 1

Anderson, M. M., et al. 2019, Ap], 886, 123

Bannister, K., Zackay, B., Qiu, H., James, C., & Shannon, R. 2019a, FREDDA:
A fast, real-time engine for de-dispersing amplitudes, Astrophysics Source
Code Library, record ascl:1906.003, ascl:1906.003

Bannister, K. W, et al. 2019b, Sci, 365, 565

Bhandari, S., et al. 2020, APJ, 895, L37

Bhat, N. D. R, et al. 2023 a, PASA, 40, e021

Bhat, N. D. R, et al. 2023b, PASA, 40, €020

Bochenek, C. D, et al. 2020, Natur, 587, 59

CASA Team, et al. 2022, PASP, 134, 114501

CHIME/FRB Collaboration, et al. 2020, Natur, 587, 54

Clark, M. A., LaPlante, P. C., & Greenhill, L. J. 2013, IJHPCA, 27, 178

Coenen, T., et al. 2014, A&A, 570, A60

Collaboration, T. C,, et al. 2018, Ap]J, 863, 48

Comoretto, G, et al. 2017, JAL, 6, 1641015

Cooley, J. W., & Tukey, J. W. 1965, MC, 19, 297

Cordes, J. M., & Chatterjee, S. 2019, ARA&A, 57, 417

Dewdney, P. E., Hall, P.], Schilizzi, R. T., & Lazio, T. J. L. W. 2009, IEEE Proc.,
97, 1482

Di Pietrantonio, C., Harris, C., & Cytowski, M. 2021, arXiv e-prints,
arXiv:2110.09987

Driessen, L. N., et al. 2024, MNRAS, 527, 3659

Haslam, C. G. T, Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1

Hogbom, J. A. 1974, A&AS, 15, 417

Hwu, W. W,, Kirk, D. B., & El Hajj, I. 2023, in Programming Massively Parallel
Processors, ed. W. W. Hwu, D. B. Kirk, & I. El Hajj (4th edn.; Morgan
Kaufmann), 211

James, C. W., et al. 2022, MNRAS, 516, 4862

Karastergiou, A., et al. 2015, MNRAS, 452, 1254

Kirsten, F., et al. 2022, Natur, 602, 585

Knodlseder, J., et al. 2022, NatAs, 6, 503

Lorimer, D. R,, Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F.
2007, Sci, 318, 777

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://github.com/PaCER-BLINK-Project/imager
https://doi.org/10.48569/18sb-8s43
https://doi.org/10.1093/mnras/stz2574
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490....1A
https://doi.org/10.3847/1538-4357/ab4f87
https://ui.adsabs.harvard.edu/abs/2019ApJ...886..123A
https://doi.org/10.1126/science.aaw5903
https://ui.adsabs.harvard.edu/abs/2019Sci...365..565B
https://doi.org/10.3847/2041-8213/ab672e
https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..37B
https://doi.org/10.1017/pasa.2023.17
https://ui.adsabs.harvard.edu/abs/2023PASA...40...21B
https://doi.org/10.1017/pasa.2023.18
https://ui.adsabs.harvard.edu/abs/2023PASA...40...20B
https://doi.org/10.1038/s41586-020-2872-x
https://ui.adsabs.harvard.edu/abs/2020Natur.587...59B
https://doi.org/10.1088/1538-3873/ac964210.48550/arXiv.2210.02276
https://ui.adsabs.harvard.edu/abs/2022PASP..134k4501C
https://doi.org/10.1038/s41586-020-2863-y
https://ui.adsabs.harvard.edu/abs/2020Natur.587...54C
https://doi.org/10.1177/1094342012444794
https://ui.adsabs.harvard.edu/abs/2013IJHPC..27..178C
https://doi.org/10.1051/0004-6361/201424495
https://ui.adsabs.harvard.edu/abs/2014A&A...570A..60C
https://doi.org/10.3847/1538-4357/aad188
https://ui.adsabs.harvard.edu/abs/2018ApJ...863...48C
https://doi.org/10.1142/S2251171716410154
https://ui.adsabs.harvard.edu/abs/2017JAI.....641015C
https://api.semanticscholar.org/CorpusID:121744946
https://doi.org/10.1146/annurev-astro-091918-104501
https://ui.adsabs.harvard.edu/abs/2019ARA&A..57..417C
https://doi.org/10.1109/JPROC.2009.2021005
https://ui.adsabs.harvard.edu/abs/2009IEEEP..97.1482D
https://doi.org/10.1093/mnras/stad3329
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.3659D
https://ui.adsabs.harvard.edu/abs/1982A&AS...47....1H
https://ui.adsabs.harvard.edu/abs/1974A&AS...15..417H
https://doi.org/10.1093/mnras/stac2524
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.4862J
https://doi.org/10.1093/mnras/stv1306
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.1254K
https://doi.org/10.1038/s41586-021-04354-w
https://ui.adsabs.harvard.edu/abs/2022Natur.602..585K
https://doi.org/10.1038/s41550-022-01612-3
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..503K
https://doi.org/10.1126/science.1147532
https://ui.adsabs.harvard.edu/abs/2007Sci...318..777L
https://doi.org/10.1017/pasa.2024.46

Publications of the Astronomical Society of Australia

Macario, G., et al. 2022, JATIS, 8, 011014

Macquart, J.-P., et al. 2010, PASA, 27, 272

Macquart, J. P., et al. 2020, Natur, 581, 391

Magro, A., etal. 2011, MNRAS, 417, 2642

Marr, J. M, Snell, R. L., & Kurtz, S. E. 2015, Fundamentals of Radio Astronomy:
Observational Methods, Vol. 13 (CRC Press)

Morrison, L. S., et al. 2023, PASA, 40, e019

Mozdzen, T., Mahesh, N., Monsalve, R., Rogers, A., & Bowman, J. 2019,
MNRAS, 483, 4416

Naldi, G., et al. 2017, JAI, 6, 1641014

Nicastro, L., et al. 2021, Universe, 7, 76

Offringa, A. R,, et al. 2014, MNRAS, 444, 606

Parent, E., et al. 2020, APJ, 904, 92

Pastor-Marazuela, I, et al. 2021, Natur, 596, 505

Petroff, E., Hessels, . W. T., & Lorimer, D. R. 2019, A&AR, 27, 4

Petroff, E., Hessels, J]. W. T., & Lorimer, D. R. 2022, A&AR, 30, 2

Pilia, M. 2021, Universe, 8, 9

Pleunis, Z., et al. 2021, APJ, 911, L3

Prochaska, J. X., et al. 2019, Sci, 366, 231

Qasaimeh, M., et al. 2019, in 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), 1

Ransom, S. 2011, PRESTO: PulsaR Exploration and Search TOolkit,
Astrophysics Source Code Library, record ascl:1107.017, ascl:1107.017

Romein, J. W. 2021, A&A, 656, A52

Rowlinson, A., et al. 2016, MNRAS, 458, 3506

Ryder, S. D., et al. 2023, Sci, 382, 294

Sault, R. J., Teuben, P., & Wright, M. C. H. 2011, MIRIAD: Multi-channel
Image Reconstruction, Image Analysis, and Display, Astrophysics Source
Code Library, record ascl:1106.007, ascl:1106.007

Schwab, F. R. 1984a, in Indirect Imaging. Measurement and Processing for
Indirect Imaging, ed. J. A. Roberts, 333

https://doi.org/10.1017/pasa.2024.46 Published online by Cambridge University Press

17

Schwab, F. R. 1984b,, 89, 1076

Sokolowski, M., Price, D. C., & Wayth, RANDALL, B. 2022, in 2022 3rd URSI
Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 1

Sokolowski, M., et al. 2018, APJ, 867, L12

Sokolowski, M., et al. 2021, PASA, 38, €023

Sokolowski, M., et al. 2024, arXiv e-prints, arXiv:2401.04346

Spitler, L. G., et al. 2014, APJ, 790, 101

Swainston, N. A., et al. 2022, PASA, 39, 020

Tendulkar, S. P., et al. 2017, APJL, 834, L7

Thompson, A. R., Moran, J. M., & Swenson, GEORGE W., J. 2017,
Interferometry and Synthesis in Radio Astronomy (3rd edn.), doi:
10.1007/978-3-319-44431-4

Thornton, D., et al. 2013, Sci, 341, 53

Thyagarajan, N., Beardsley, A. P., Bowman, J. D., & Morales, M. F. 2017,
MNRAS, 467, 715

Tian, J., et al. 2022a, PASA, 39, e003

Tian, J., et al. 2022b, MNRAS, 514, 2756

Tian, J., et al. 2023, MNRAS, 518, 4278

Tingay, S. J., et al. 2013, PASA, 30, e007

Tingay, S.J., et al. 2015, AJ, 150, 199

Tremblay, S. E,, et al. 2015, PASA, 32, 005

van der Tol, S., Veenboer, B., & Offringa, A. R. 2018, A&A, 616, A27

van Es, A. J.], et al. 2020, in SPIE Digital Library, Vol. 11445, Ground-
based and Airborne Telescopes VIII, ed. H. K. Marshall, J. Spyromilio,
& T. Usuda, INTERNATIONAL Society for Optics and Photonics (SPIE),
1449

van Haarlem, M. P., et al. 2013, A&A, 556, A2

Varghese, S. S., Obenberger, K. S., Dowell, J., & Taylor, G. B. 2019, APJ,
874, 151

Wayth, R, et al. 2022, JATIS, 8, 011010

Wayth, R. B, et al. 2018, PASA, 35, €033

https://doi.org/10.1117/1.JATIS.8.1.01101410.48550/arXiv.2109.11983
https://ui.adsabs.harvard.edu/abs/2022JATIS...8a1014M
https://doi.org/10.1071/AS09082
https://ui.adsabs.harvard.edu/abs/2010PASA...27..272M
https://doi.org/10.1038/s41586-020-2300-2
https://ui.adsabs.harvard.edu/abs/2020Natur.581..391M
https://doi.org/10.1111/j.1365-2966.2011.19426.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.417.2642M
https://doi.org/10.1017/pasa.2023.15
https://ui.adsabs.harvard.edu/abs/2023PASA...40...19M
https://doi.org/10.1142/S2251171716410142
https://ui.adsabs.harvard.edu/abs/2017JAI.....641014N
https://doi.org/10.3390/universe7030076
https://ui.adsabs.harvard.edu/abs/2021Univ....7...76N
https://doi.org/10.1093/mnras/stu136810.48550/arXiv.1407.1943
https://ui.adsabs.harvard.edu/abs/2014MNRAS.444..606O
https://doi.org/10.3847/1538-4357/abbdf6
https://ui.adsabs.harvard.edu/abs/2020ApJ...904...92P
https://doi.org/10.1038/s41586-021-03724-8
https://ui.adsabs.harvard.edu/abs/2021Natur.596..505P
https://doi.org/10.1007/s00159-019-0116-6
https://ui.adsabs.harvard.edu/abs/2019A&ARv..27....4P
https://doi.org/10.1007/s00159-022-00139-w
https://ui.adsabs.harvard.edu/abs/2022A&ARv..30....2P
https://doi.org/10.3390/universe8010009
https://ui.adsabs.harvard.edu/abs/2021Univ....8....9P
https://doi.org/10.3847/2041-8213/abec72
https://ui.adsabs.harvard.edu/abs/2021ApJ...911L...3P
https://doi.org/10.1126/science.aay0073
https://ui.adsabs.harvard.edu/abs/2019Sci...366..231P
https://doi.org/10.1051/0004-6361/202141896
https://ui.adsabs.harvard.edu/abs/2021A&A...656A..52R
https://doi.org/10.1093/mnras/stw451
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.3506R
https://doi.org/10.1126/science.adf2678
https://ui.adsabs.harvard.edu/abs/2023Sci...382..294R
https://ui.adsabs.harvard.edu/abs/1984AJ.....89.1076S
https://doi.org/10.3847/2041-8213/aae58d
https://ui.adsabs.harvard.edu/abs/2018ApJ...867L..12S
https://doi.org/10.1017/pasa.2021.16
https://ui.adsabs.harvard.edu/abs/2021PASA...38...23S
https://doi.org/10.1088/0004-637X/790/2/101
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..101S
https://doi.org/10.1017/pasa.2022.14
https://ui.adsabs.harvard.edu/abs/2022PASA...39...20S
https://doi.org/10.3847/2041-8213/834/2/L7
https://ui.adsabs.harvard.edu/abs/2017ApJ...834L...7T
https://doi.org/10.1126/science.1236789
https://ui.adsabs.harvard.edu/abs/2013Sci...341...53T
https://doi.org/10.1093/mnras/stx113
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467..715T
https://doi.org/10.1017/pasa.2021.58
https://ui.adsabs.harvard.edu/abs/2022PASA...39....3T
https://doi.org/10.1093/mnras/stac1483
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.2756T
https://doi.org/10.1093/mnras/stac3392
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.4278T
https://doi.org/10.1017/pasa.2012.007
https://ui.adsabs.harvard.edu/abs/2013PASA...30....7T
https://doi.org/10.1088/0004-6256/150/6/199
https://ui.adsabs.harvard.edu/abs/2015AJ....150..199T
https://doi.org/10.1017/pasa.2015.6
https://ui.adsabs.harvard.edu/abs/2015PASA...32....5T
https://doi.org/10.1051/0004-6361/201832858
https://ui.adsabs.harvard.edu/abs/2018A&A...616A..27V
https://doi.org/10.1051/0004-6361/201220873
https://ui.adsabs.harvard.edu/abs/2013A&A...556A...2V
https://doi.org/10.3847/1538-4357/ab07c6
https://ui.adsabs.harvard.edu/abs/2019ApJ...874..151V
https://doi.org/10.1117/1.JATIS.8.1.01101010.48550/arXiv.2112.00908
https://ui.adsabs.harvard.edu/abs/2022JATIS...8a1010W
https://doi.org/10.1017/pasa.2018.37
https://ui.adsabs.harvard.edu/abs/2018PASA...35...33W
https://doi.org/10.1017/pasa.2024.46

	
	Introduction
	FRB search methods
	Target instruments
	SKA-Low stations
	The Murchison Widefield Array (MWA)
	Radio-astronomy imaging
	Correlation
	Phase corrections and calibration
	Imaging
	Gridding
	Gridding parameters
	Visibility weighting
	Theoretical computational cost
	Implementation of the imager
	CPU imager
	Validation of CPU imager on real and simulated data
	GPU imager
	GPU gridding kernel
	Fourier transform of gridded visibilities
	Validation of the GPU imager
	Production version of the GPU Imager
	Benchmarking the GPU imager
	Summary and discussion

