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FUNCTIONS OF BOUNDED KTH VARIATION AND ABSOLUTELY
KTH CONTINUOUS FUNCTIONS

S.K. MUKHOPADHYAY AND S.N. MUKHOPADHYAY

Functions of bounded fcth variation and absolutely fcth continuous functions are
considered on sets and various properties are studied.

1. INTRODUCTION

Following the approach of Russell [7] we have introduced the concepts of bounded
fcth variation and of absolutely fcth continuity of a function defined on a set. (For a
different approach we refer to [6]). The concept of a generalised Lipschitz condition
of order fc is also introduced. It is shown (Theorem 5) that the family of functions
satisfying a generalised Lipschitz condition of order fc is a proper subfamily of the family
of absolutely k th continuous functions and that the family of absolutely k th continuous
functions is a proper subfamily of the family of functions of bounded fcth variation.
Other properties are also studied. For related work in this area we refer to [2, 10].
It is worth mentioning that [5] studied various properties of functions of bounded fcth
variation over sets. Also [3] studied properties of fcth absolutely continuous functions.
Unfortunately the results of these papers have serious deficiencies in their proofs. In
fact, in the former paper, Theorem 2.2, on which most of the results depend, is false
and in the latter paper all the results depend directly or indirectly on results of another
paper which needs correction (see MR 87j : 26011).

2. DEFINITIONS AND NOTATIONS

Let / be a real valued function denned on a set E. The fc th divided difference of
/ at the (fc + 1) distinct points zo, Zi, . . . , z/fc in -E is defined by

k

where u(x) = Y[ (x ~ xj)-
i=o
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From the definition it follows that

(x0 -xk)Qk(f;x0, xi, ..., xk) = Qk-\(f;x0, ..., xk-i) - Qk-i{f\xi, ..., xk).

Clearly Qk(f; xo, xi, . . . , xk) is independent of the order of x0, xi, ..., xk.

Let c, de E, c < d. The oscillation of / on [c, d] fl E of order k is defined to be

Ok(f, [c, d]HE) = Sup \(d - c)Qk(f, c, Xl, ..., x t _ ! , d)\

where'Sup'is taken over all possible choices of the points Xi, x2, . . . , zjt-i in (c, d)C\E.

We shall take Ok{f, [c, d] (1 E) to be zero, if (c, d)C\E contains less than (k — 1) points.
The weak variation of / on E of order k, denoted by Vk(f, E), is the upper bound
of the sums ^2Ok(f, [ci, di]C\E), the upper bound being taken over all sequences
{(CJ, di)} of nonoverlapping intervals with end points belonging to E.

DEFINITION 1: If Vk(f, E) < 00 then / is said to be of bounded A:th variation in
the wide sense on E and is written / 6 BVk(E).

DEFINITION 2: If for every e > 0 there is <r(e) > 0 such that for every sequence of
non-overlapping intervals {(<;„, dv)} with end points on E and with J3 (̂ » ~ cv) < °',

we have 53 Ok(f; [cv, dv) H E) < t then / is said to be absolutely Ath continuous on
E in the wide sense and is written / G ACk(E).

DEFINITION 3: If Qk(f;xo, . . . xk) remains bounded for all possible choices of
points xo, xi, ... Xk on E, then / is said to satisfy a generalised Lipschitz condition
of order k and is written / £ BQk(E).

To justify Definition 3 note that a function / is said to satisfy a Lipschitz condition

of order k on a set E if there is M such that

(2.1) \ f { x i ) - f { x 2 ) \ ^M\Xl- x 2 \ k f o r X l , x 2 e E .

Suppose that (2.1) holds. Then for any three points xi, x2, Xs of E we have, when
xi < x2 < x3,

\Q2(f;xi, x2,x3)\ =
Xi - X S

Af | g l - x2\
k~1 + M \x2 -

-x3\
k~2

Proceeding in this way we get after A; steps
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which shows that / G BQk(E). Thus Definition 3 is a generalisation of the usual

concept of a Lipschitz condition of order fc.

It is clear from the definitions that if E C F and if / G BVk(F) (respectively

ACk{F), BQh{F)), then / G BVk(E) (respectively ACk(E), BQk{E)).

DEFINITION 4: (see [4, p.280]). Let x G E be a hmit point of E. If there exist

real numbers fr(x, E), 1 ^ r ^ n such that

/(x + h) = f(x) + ... + ̂  -jfr{*, E) + -en(x, h)
r=l

where en(x, h) —» 0 as h —• 0 with x + h G ^ , then fn(x, E) is called the Peano

derivative of / at x relative to E of order n.

If / r(x, .E) exists we shall write

7 r ( / , x, *, E) = r ! ^
(t-x)

t=o

Kzi,Z2, . . . x,, . . . xk are distinct points of E and if x, is a hmit point of E then we

write

Qfc(/;*i, . . . x., x» . . . x*) = lim <?fc(/;xi, . . . x,, (, ... xk)

provided the limit exists where the hmit is taken over E.

PRELIMINARY RESULTS

THEOREM 1 . For all choices of points x0, ... xk in E, [xk —xo)Qk{f,xo, ...xjfc)

remains bounded if and only if Qk-i(f;x0, •••, xjb-i) is bounded for all choices of

points xo, . . . xjfc-i in E.

PROOF: A proof is given in [7, Theorem 4]. However for completeness we give a

different proof.

Let (zjt — xo)Qk{f; xo, . . . , xk) be bounded for all choices of points Xo, • • • > xjt

in E. Let ag, ..., ak-i be a fixed collection of points in E and let A =

|<3*-i(/;ao, ••-, a*-i) | -

Let M be such that

|(xjb -x o )Qfc( / ;x o , . . . , xfc)| ^ M,

for all choices of points xo, . . . , xk in E. Now we claim that

(3.1) |Qf c_1( / ;x0 , . . . ,x J f c_1)
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for all choices of points xo, ..., Xk-i in E. In fact, if Xi — a,-, for ali i , 0 ̂  t ^ fc — 1,

then (3.1) is clear. If xi = at, for all i except i = j, then

\Qk-i(f;xQ,..., n - i ) - Qk-i{f;a0,..., a*_i)|

= \(xi -ai)Qk(f;x0, ..., lifc-i, ay)| < M

and so (3.1) is true. In general if there are m indices i'i, . . . , im such that Ojn ^ Xin ,

for n = 1, . . . , m, then

\ Q k - i { f , x 0 , • • - , X i l t . . . , X i m , . . . , x k - i ) — Q k - i ( f ; a 0 , . . . , O j j , . . . , a , m , . . . , a j . _ i ) |

^ | < ? f c - i ( / ; * o , • • • , X i l t . . . , X i m , . . . , X k - i ) — Q k - i { f ; x 0 , . . . , a i t , X { 7 , . . . , x i m ,

+ \ Q k - i ( f ; x 0 , . . . , O J J , X { 2 , . . . , x i m , . . . , X k - i ) — Q k - i ( f \ x 0 , . . . , a i j , a j , , x i
3,

..., xim, ..., xt-i)|

\Qk-i(f,x0, ..., OJJ, Ojj, ..., a;m_1, Xim, ...rjfc_i) - Qfc_1(/;a0, ..., ak-i)\

n=l

^ 771 M,

a n d so (3.1) is t rue .

Since (xk - xo)Qk(f;x0, . . . , xk) = Q k _ i ( / ; j ; o , • • • , x f c - i ) - <5*- i ( / ; x i , • - . , x * ) ,

the o the r pa r t is easy. U

COROLLARY. It f e •BVjt(.E), then Qk-i{f;x0, . . . , x*_ i ) remains bounded for

aZZ choices of the points Xg, • • •, x/b-i in E.

PROOF: Since / 6 BVk(E) implies that (xk — xo)Qk(f;xo, ..., xk) remains

bounded for all choices of the points xo, • • • , xk in E, the result follows from The-

orem 1. D

LEMMA 1. Let E be a bounded set. If f e BVk(E) and c is such that

dist.(E, c) > 0, then / £ BVk(E U {c}), f(c) being defined arbitrarily.

PROOF: Since / G BVk(E), by the Corollary of Theorem 1, Q A . _ I ( / ; X 0 , • • • , Zfc-i)

r emains bounded for all choices of t h e points x ; , O ^ i ^ k — 1 , on E and hence

/ £ BVk-X(E). Repeat ing this argument, / G BVi(E), for i = 1, 2, . . . , ifc. Hence

Qi(f> xo, • • •, Xi) remains bounded for all choices of points xo, •••, xt, 1 ̂  i ^ k — 1

and / is bounded on E. Define / ( c ) arbitrarily. Since dist.(.E, c) — a > 0,

\Qi(f;x,c)\ = f(*)-f(c)
X — C

\f(*)-f{c)\
, for xeE.
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Since / is bounded on E, Qi(f; x, c) is bounded for a; £ E. Since

<3l(/;3l, X2)-Ql(f\X2, c)
\Q2(f;x1,x2,c)\ =

X\ — C

f;*i, x2)-Qi(f;x2,

for all zi, x2 € E, and since Qi{f,xi, x2), Qi(f;x2,c) are bounded, Q2(f;x1,x2,c)
remains bounded.

Repeating this argument, Qk{f', x\, x2, . •., Xk, c) is bounded for all x\, x2, • •., xjt
in E. Hence from the definition of BVk on a set, the lemma follows. D

LEMMA 2 . If f E BVk{E) and a, c2) . . . , cn are such that inf{dist. (£, a)} >0 ,

then / £ BVk(E U {ci, . . . , cn}), / being defined arbitrarily on {ci, c2, . . . , c n } .

This can be deduced by Lemma 1.

LEMMA 3 . Let E and F be bounded sets and let dist.(£, F) > 0. li f 6
£Fife(.E) n BVfc(F), then f £ W ^ E U F).

PROOF: In view of Lemma 2, we suppose that both of E and F are infinite. We
may further suppose that each element of E is less than every element of F. Let
{(cw, <£„)} be any sequence of non-overlapping intervals with end points on EUF. The
only case that needs to be considered is cv £ E, dv £ F for some v, since in all other
cases

and hence

; [cy, dv\ fl(£U F)) ^ Vk(f, E) + Vk{f, F),

Vk(f; EUF)^ Vk(f, E) + Vh(f, F).

So we suppose that cp 6 E, dp £ F. We shall prove that (dp — cp)Qk

( / ; p> remains bounded for all choices of the points
[cp, dp) n(El)F). Let 6 , • • •, 6 -1 be arbitrarily fixed in (cp, <fp) n (E U F) and
6 < 6 • • • < 6 - i • Let & £ E, 1 ̂  i < r and ̂  £ F, • r + 1 < i < fc - 1.
Choose supE < ui < «2 < . . . < «*._! < inf F and define /(«<), 1 < i < fc - 1
arbitrarily and write cp = xQ; ^ = Z;, 1 ^ i ^ r; m = a;r+i, 1 ^ * ̂  fc — 1;
& = ZA-i-H, r + l ^ i ^ f c - 1 ; dp = x2k~i •

Now, by [7, Corollary of Theorem 1], we have

\Qk-i(f;cp, (u ...,
t-1

Qk-i(f;b,
it

•, dp)\

t = 0 t = l
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where ai, f3i are positive numbers such that

Hence

(dp-cp)\Qk{f;cp, iu ..., ^fc_i,(fp)|
fc-i

= \ocoQk-i{f;x0,..., !*._!) + '^/(ai- ^i)Qk-1(f;xi,..

+ PkQk-l(f->Xk, ...,X2k-l)\
J f c - 1

< \Qk-i(f;xo, ••-, »* - i ) | +

»=0 »=r+l

By Lemma 2, / e BVA(£; U {ua, .. .ujb-i}) n BVk(F U {ui, .. .ufc_i}). Hence by the
Corollary of Theorem 1, Qk-i(f;Xi, ..., Xi+k-i) remains bounded for all choices of
points Xi, . . . , Xi+k-i in E U {ui, . . . , u*-i} or in FU {ui, . . . , Uk-i} and so there is
M > 0 such that

Hence

v

< yfc(/, £?) + (fc + 1)M + V»(/, F).

Hence / € BVife(£ U J1). D

LEMMA 4 . If / e #Vjt(-E n [a, c]) n SVfc(£ n [c, 6]), wiere c is isoiated at ieast
from one side of E, then f £ BVk(E H [a, b]).

PROOF: Since c is isolated at least from one side, dist. (E fl [a, c), E l~l [c, 6]) > 0,
and so by Lemma 3,

/ 6 BVk{E n [a, 6]).

D
LEMMA 5 . Let a < c < b, where c is a two sided limit point of E, (c may or may

not belong to E). If f £ BVk(E n [a, c]) H BV^S 0 [c, 6]) and if tiere is a > 0 such
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that (xk — xo)Qk{f] xo, ..., Xk) is bounded for all choices of points Xo, xi, ..., xk in
(c — a, c + cr) D E, then (£* — £o)Q*(/; £o, £1, • • •, £k) remains bounded for all choices
of points £i in E D [a, 6].

PROOF: We may suppose that (c - cr, c + a) C (a, b). Let £0, 6> 6 i • • • > 6=-i (k
be arbitrary points in E f~l [a, 6]. Suppose that £r ^ c < i ; r + i . Choose the points z;,
r + l ^ i ^ r + 2k-2 such that «< 's belong to (c - a, c) n E for r + 1 ^ i ̂  r + fc - 1
and an's belong to (c, c + a) C\ E ioi r + k ^ i ̂  r + 2k - 2.

Since (yj. — yo)Q*(/; J/o> • • • j 1/fc) remains bounded for all choices of points t/o> • • •, Vk
in (c — <r, c + a) (~) E, we conclude from Theorem 1 that there is M > 0 such that

r+ib-l

(3.2) J2 IQ*-i(/;*«, ...,*i+fc-i)l<(*-i)M.
»=r+l

Writing £0 = x0, £i = Xi, 1 ̂  i ^ r and ^r+J- = xr+2k+j-2, 1 ̂  j <; k - r - I,

£k — X3k-2 , and applying [7, Corollary of Theorem 1], we have

(3.3)

2fc-2 2fc-2

^ ai<3fc_i(/; Xi, . . . , Si+fc-l) - Y^ PiQk-l{f>
i=0 t=0

where a; , Pi are positive numbers such that

2fc-2

r+k-1

i=0 t=r+l

Since / G 5Vfc(E n [o, c]) n B V t ( £ n [ c , i i ] ) , by the Corollary of Theorem 1
Qk-i(f,yi, •••, Vi+k-i) is bounded for all choices of points yi, ..., yi+k-i in EC\[a, c]

and similarly for all choices of points in E D [c, 6] and so there is N > 0 such that

(3-4) \Qk-i{f;yi,...,yi+k-i)\^N,
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whenever all of y,-, . . . j/i+j.-! are in E tl [a, c], or all of them are in E D [c, 6]. Hence
from (3.2), (3.3) and (3.4), we have

( 6 - t o ) \Qk(f;Co, 6 , • • •, 6 - i , 6 ) 1 ^ (r + l ) N + ( k - 1 ) M + ( k - r ) N

^ 2 k N + kM.

u
LEMMA 6. If f e BVk(E n [a, c]) n BVk(E n [c, 6]), where a < c < b and c is

a two sided limit point of E, (c may or may not belong to E) and if there is a > 0
such that (xt — xo)Qk(f; XQ, • • •, sjt) is bounded for all choices of points xo, ..., xk in
(c - a, c + <r)r\E, then f e BVk{E i~l [a, b]).

PROOF: Let {(<:„, dv)} be any countable collection of non-overlapping subintervals
of [a, 6] with end points in E D [a, b]. The only case that needs consideration is
cv 6 E H [a, c], iv 6 E D [c, 6] for some v. Let cp G E C\ [a, c], dp £ E l~l [c, 6].

In view of Lemma 5, (dp — cp)Qk(f;cp, xp,i, xPt2, • • -xPtk-i, dp) is bounded for all
choices of the points xPti, ..., xPtk-i in (cp, dp) n E. The rest is clear. D

LEMMA 7. Let f be defined on E and let x0 € E be a Hmit point of E. If f is
continuous at xo then

Urn . . . lim Qr(f;x1,...,xr+i) = —fr(f;x0,xr+ltE)
xr—xo zl—'"0 T\

provided fr-i(xo, E) exists finitely where the timits are taken over E.

The proof is in [1, Lemma 4.1] when E is an interval. The same argument will
apply here and so the proof is omitted.

LEMMA 8 . If x\, X2, . . . , xk are distinct points of E which are also Hmit points
of E and if f: E —> R is differentiable at these points with respect to E, then

k

i , •••,xkj = ^2QkU;x!,..., xh, xh,..., xk),
h

where f^ denotes the derivative of f with respect to E.

The proof is the same as [7, Theorem 8].

LEMMA 9. If f e AC2(E), then fM exists on EQ, where Eo is the set of all
Rmit points of E which are in E, the derivative f^ being taken with respect to E.

PROOF: Let e > 0 be arbitrary. Since / G AC2(E), there is <T = a(e) > 0 such
that for every sequence {(cv, dv)} of non-overlapping intervals with end points on E
and with 5Z (̂ «- ~ cv) < °" and for every choice of points xv in (<:„, dv) D E, we have

\(d» ~ cv)Qi{f; c»> x», d»)\ < £•
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[9] Functions of bounded fcth variations 99

Let £ £ Eo . If ( is a two sided limit point of E, then for zi, x2 G Ef\(( - a/2, £ + a/2),
Xi < £ < X2 , we have

Letting Xi£—, x2 —> £+ through £ independently, it can be shown, as e is arbitrary,
that / ^ ( £ ) exists finitely. So / ^ exists on Eo. If £ is a one sided limit point of E,
say from the right, choose £ < x\ < x2 such that xi, x2 £ E Cl (£, £ + <r) and so

and by Cauchy's criterion exists finitely. U

4. MAIN RESULTS

THEOREM 2 . II Qk-i{f\ xo, • • •, z*-i) remains bounded tor all choices oipoints
O^i ^ fc-1, on E, then / £ ACk-i(E).

PROOF: From the hypopthesis, there is M such that

for all choices of the points xo, . . . 3jt-i on E.
Let {(cv, dv)} be any countable collection of non-overlapping intervals with end

points on E and let e > 0 be arbitrary. Let cv = xVto, xV)i, ..., xv^—2, &v,k-\ — dv

be distinct points on [cv, dv] fl E. Then

if £ (dv - cv) < e/M. Hence £ Ofc_i(/; [c,, d.] D E) < e, whenever
e/M. So /6vlC,fc_i(£).

THEOREM 3 . II f e ACk(E), where E is a bounded set, then

/ G

- c,) <

D

PROOF: Let a = inf E, b — supE. Since / G >lCjfe(£;), there is a > 0 such that
for every sequence {(cO) <£„)} of disjoint intervals with end points on E,
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whenever £)(d,, — cv) < a and xVti, ..., xVlk-i are in E D (cv,dv). So
/ G BVk(E n [c, d]) whenever (d - c) < a.

Let E be the closure of E. There are only a finite number of contiguous intervals
of E whose lengths are greater than or equal to a/2. Let (clt d\), ..., (cn, dn) be
these intervals. We show that / G BVk(E f"l [dj, CJ+1]), for each j — 1, . . . , (n — 1).
If CJ+I — dj < a, then / G BVk(E D [dj, cj+i]). If Cj+i - dj ^ <r, divide the interval
[dj, cj+1] by points dj - pia < pjt2 < ...< piim = cj+1 such that pj^-pj^-x = 3<r/4
for r = 2, 3, . . . , (m - 1) and Pj,m-Pj,m-i < 3<r/4. Then / € BVk(E D [pi.r-i, Pj,r])
for r = 2, . . . , m and so / £ 5VJb(-En [dj, c3+i]) by Lemmas 4 and 6. Similarly
/ G 5Vfc(^n[a, ci]) and / € BVfc(£ n [dn, 6]) and so the theorem is proved by
Lemma 3. D

THEOREM 4 . Let E be a bounded set and let EQ be a nonempty subset of E
such that every point of Eg is a Hmit point of E. Let f^ exist in EQ where the
derivative f^ is taken with respect to E. Let k > 2.

(i) If f € ACk(E), then fW G AC^Eo).

(ii) If Qk(f', Xo, ..., Xk) remains bounded for all choices of points x<, 0 ^ i ^
k, on E, then Qk-i {f^',Vo, • • •, Vk-i) remains bounded for all choices
of points yi, 0 ^ i < k — 1, on Eo.

(iii) IffE BVk(E), then f^ e BVk-i(E0).

PROOF: (i) Let e > 0 be arbitrary. Then there is <r = a(e) > 0 such that for every
countable collection of non-overlapping intervals {(cv, dv)} with end points on E,

(4.1) - cv)Qk{f;cv, yVil, ..., yVtk-U dv)\

whenever £ (dv - cv) < <r and yv>i, . . . , yv<k-i are in E l~l (cv, dv). Let {(7,., 6r)}

be any finite collection of non-overlapping intervals with end points on Eg such that
Z)r (*r - IT) < <̂ /2 and let xr,i, . . . , xTtk-2 be points in Eo n(-yr, 6r) and let j r = xTfi ,
Sr — xr<k-i • We first suppose that no two intervals of {(7,-, Sr)} have common end
points. To each interval {(7r, #r)} we associate another interval (ar, bT) such that
ar < j r < 6r < K and (6r — ar) — (6r -jr) < <r/2T+1 and assume that the intervals
{(ar, br)} are disjoint. Clearly £) r (^r - o r ) < ff. By Lemma 8

(4.2)

. a ,

Jb-2

t=0

• , Xr,t, XTit, . . . , X r i J f c _ 2 )
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[11] Functions of bounded fcth variations 101

k-i

fc-2

t = l

* - l ( / i zr,0,
t=0 r

A-2

t=0 r

r,t, • • • , Xr,k-1

- Q f c - l C / i ^ r . l , • • • » xr,t+l, ^r,i

\ Q k - l { f ; X T , 0 , ••-, X r , t , ^ r , t , • • - , z r , f c - 2 )

- < ? * - l ( / ; z r , 0 , • • • , z r , < , J !r , t+1 , ^r,t

where the points £Ttt, 0 ^ i ^ k — 2 are in 2? fl (o r , 6r) and they are distinct and in
the vicinity of xr<t such that

. . , Xrit, Xr,t,

Qfc-l(/;*r,0

e/4.2r.(Jfc -

Xr>t, £r,t(4.3)

and

IQfc-l(/;zr,l,

(4-4) - Q f c _ i ( / ; 2 r ] 1 , . . . , x r i t + i

< e/4.2r.(fc - 1).

This is possible since xT<t are limit points of E. Let

(4.5) T = ZZ IQ*-l(/: X' .°' • • • ' X'.«> ^.«. • • •
r

— Qk-l(f',Xrfi, • • •, «r,t+l> ^

^.*+l ~ Cr,t)Qk{f\ (r,t, XTto, ..

T-,fc—2)

If pr and qr are the minimum and maximum of the points £r i t ) Zr,o, • • • j xr>k-2 , £r,t+i i
then

(4.6) T
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Also pr, qT 6 En(aT, br) and hence {(pT, qr)} is a countable collection of nonoverlap-
ping intervals with end points on E such that 5Z(<?r — Pr) < v, and so by (4.1) and
(4.6),

(4.7) T < e/4(* - 1).

Hence from (4.5) and (4.7)

fc-2
(4-8) ^ ^ | Q f c _ i ( / ; a : r i o , . . . , xr,«, (r,t, ..., xTtk.2)

t=0 r

-Qk-l(f,Xr>0, ••-, Xr<k-2, £ r , t + l ) |

Similarly

* - 2

(4.9)
1=0 r

< [e/4(fc - l)](i - 1) = e/4.

So from (4.2), (4.3), (4.4), (4.8) and (4.9), we get

*r,fc-l - 3Jr,o)
(4.10)

< e/4 + e/4 + e/4 + e/4 = e.

In the general case, that is, when two intervals of {(7r, 6r)} have common end points,
we can divide {(7r, Sr)} into two classes {(7^, S'r)} and {(7", 6")} such that no two
intervals of {(7^, 6'r)} or of {(7", &")} have common end points. Then (4.10) is true for
the classes of intervals {(j'r, 6'r)} and {(7;', S'r')} and hence (4.10) is true for {(7 r , 6r)}

with e replaced by 2e. Thus (i) is proved.

(ii) Let 2/i) O ^ i ^ f c — 1 be arbitrary points on EQ . Then by Lemma 8, we have

J b - l

h(f,yo, • • • , i / h , yh,
h=0

Since Qk{f',*o, • • • > **) remains bounded for all choices of points a;,-, 0 ^ i ^ k, on
E, there is M such that

\Qk{f;yo, .-.,yH,yh, ...,yk-i)\ ^M, 0 < f c < f c - l .
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Hence \Qk-i{f^\ J/o, • • • > 2/Jb-i)| ^ kM• So the result follows.
(iii) The proof is similar to that for ACk • The only change needed here is to replace

e/4(fc - 1) by V = V{f, E) in (4.1), (4.3), (4.4), (4.7), (4.8), (4.9) and (4.10). D

THEOREM 5 . For any bounded set E,

BVk{E) C BQu-^E) C ACk-i(E) <=

PROOF: The inclusions follow from Corollary of Theorem 1, and Theorems 2 and

3. To show that the inclusions are strict, consider the following examples:

EXAMPLE 1: There exists a BVk function which is not ACk- Let / be the Cantor
singular function on [0, 1], which is of bounded variation but is not absolutely contin-
uous on [0, 1]. Let <j> be the (fc — l ) t h repeated integral of / over [0, 1]. Then, by [8,
Corollary 6.2], <f> is BVk on [0, 1]. But <f> is not ACk on [0, 1]. For if <j> £ ACk({0,1]),
then since c^*"1) exists on [0, 1], by Theorem 4, </>(k~1^ is absolutely continuous on
[0, 1] and hence / is absolutely continuous on [0, 1], which is a contradiction.

EXAMPLE 2: There exists an ACk function on [0, 1] which is not in BQk([0,1]).

Let f(x) = y/x on [0, 1]. Now / is absolutely continuous on [0, 1]. But / does

not satisfy the Lipschitz condition on [0, 1].

EXAMPLE 3: There exists a function which is in SQfc_i([0, 1]) but is not in

BVk([0, 1]). Let

f(x) = x2 sin 1/x, x^0

= 0, x = 0.

Then / satisfies the Lipschitz condition of order 1 on [0, 1] but does not belong to

BV3([0,l]). For if

g(x) = 2x sin cos —, x ^ 0
X X

= 0, x - 0,

then f'{x)=g{x),toi * e [ 0 , l ] .

Also g(x) is bounded on [0, 1]. Hence / satisfies Lipschitz condition in [0,1].
But / i £F2([0, 1]). For if / 6 £V2([0, 1]) then since / ' exists on [0, 1], by Theorem
4(iii), g £ BVi([0, 1]), which is a contradiction because g £ BVi([0, 1]). D

THEOREM 6 . Let k ^ 2 and let E be a bounded perfect set. Let f^ denote
r th successive derivative of f with respect to E.

(i) If f 6 ACk-!{E) then /<r> exists on E and is in ^ C k _ r _ 1 ( £ ) , 0 ^ r <
k — 2, and hence / (* - 1 ) exists almost everywhere on E.
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(ii) If f £ BQk-i{E) then /<r> £ BQk-r-^E), 0 < r ^ Jt - 2 and hence
f(*~2> satisfies a Lipschitz condition on E.

(iii) If f £ BVk(E) then f±v' exists almost everywhere on E, where faP is
the approximate derivative of / (* - 1 ) .

PROOF: We first prove the theorem for k = 2.
If / £ ACi(E) then / is absolutely continuous on E and hence fW exists almost

everywhere on E. In fact, by Theorem 5, / £ BVi(E) and so by [9, Lemma4.1, p.221],
/(J) exists almost everywhere on E.

If / 6 BQi(E) then Qi{f',xo, x\) remains bounded for Xo, xi £ E and so /
satisfies a Lipschitz condition on E.

If / G BV2{E) then / e Ad(E) by Theorem 5 and so /(1> exists almost ev-
erywhere on E. Let 5 = {x : x £ E;f(-1\x) exists}. Then since / £ BV2{E),
/(i) e #Vi(S) by Theorem 4 and so (/(1))(1) exists almost everywhere on S, that is,
/4p exists almost everywhere on E.

Thus the result is true for k = 2.
We suppose that the result is true for k = m ^ 2 and prove it for k = TO + 1.

Then the proof will follow by induction.
Let / £ ACm(E). Then, by Theorem 5, / £ AC2{E) and so, by Lemma 9, / ( 1 )

exists on E. Hence, by Theorem 4, fW £ ACm_i(£). Since the result is true for
k = m, / ( 1 + r ) exists on E and is inACm-r-i(E), 0 ^ r ^ m - 2, that is, /<*> exists
on £ and is in ACm-,(E), 1 < a < m — 1. Since this is obviously true for s = 0, (i)
follows for k — m + 1.

Let / £ BQm(E). Then, by Theorem 5, / £ ACm(E) and since (i) is true for
k = m + 1, /(J) exists on E and by Theorem 4, it is in i?Qm_i(.E). Since the result
is true for k = m, /(1+r> £ BQm-r-1(E), 0 ^ r < m - 2, that is /(*> £ BQm-.{E),
1 ^ a ^ m — 1. This being trivially true for a = 0, the proof of (ii) for k = m + 1 is
complete.

Let / £ BVm+1(E). Then / £ 4Cm(.E) and as above fW exists in E and so
/(x) £ BVm(E). Since the result is true for k = TO, ( / ^ ) a D exists almost everywhere

on E, that is, /™ exists almost everywhere on E and so (iii) is proved for k —

m + 1. D

THEOREM 7. If / £ ACk(E), then fk-i{x, E) exists finitely at every point x of
E\ , where E\ is the set of all points of E which are also Hmit points of E.

PROOF: For k — 1, there is nothing to prove. For k = 2, the theorem is true
by Lemma 9. We suppose it to be true for k = m ^ 2. Let / £ ACm+\{E). Then
/ £ ACm(E) and so by hypothesis, fm-\{x, E) exists finitely at every point x of E\.
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Let x0 £ E be a limit point of E, say from the right, and let e > 0 be given. Then
there is or — o-(e) > 0 such that whenever xo < X\ < . . . < x m + i , |x<> — z m + i | < f and
Xi G E, we have

that is,

|(x0 -xm+1)Qm+1(f;x0, .

\Qm(f] *0, •••, * m ) - Qm(f; Xi

Since /m-i(xo> E) exists finitely, letting
xm_i -+ x0 through E we get

. , xm+i)| <e

, . . . , x m + 1 ) | < e .

> first and then x2 —* xo and lastly

lim^ •••a.
lim

B Qm(f;xQ, xi, . . . , x m )

- lim . . . lim Q m ( / ; x 0 , x2, . . . , x m + i )

the iterated limits existing by Lemma 7.

Again letting xm —> xo and then z m +i —> xo, we have

lim lim . . . lim Q m ( / ;xo , • • •, x m )

— hm lim . . . lim ;x 0 , x2, . . . , xm+1)

Since e is arbitrary, lim lim Qm(f',xo, ••-, xm) exists finitely. A similar ar-

gument holds if XQ is a limit point of E from the left or from both sides. Hence, by
Lemma 7, / m (xo , E) exists finitely., Thus the theorem is true for k — m + 1. This
completes the proof by induction. U
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