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FUNCTIONS OF BOUNDED KTH VARIATION AND ABSOLUTELY
KTH CONTINUOUS FUNCTIONS

S.K. MUKHOPADHYAY AND S.N. MUKHOPADHYAY

Functions of bounded kth variation and absolutely kth continuous functions are
considered on sets and various properties are studied.

1. INTRODUCTION

Following the approach of Russell {7] we have introduced the concepts of bounded
kth variation and of absolutely kth continuity of a function defined on a set. (For a
different approach we refer to [6]). The concept of a generalised Lipschitz condition
of order k is also introduced. It is shown (Theorem 5) that the family of functions
satisfying a generalised Lipschitz condition of order k is a proper subfamily of the family
of absolutely kth continuous functions and that the family of absolutely kth continuous
functions is a proper subfamily of the family of functions of bounded kth variation.
Other properties are also studied. For related work in this area we refer to [2, 10].
It is worth mentioning that [5] studied various properties of functions of bounded kth
variation over sets. Also [3] studied properties of kth absolutely continuous functions.
Unfortunately the results of these papers have serious deficiencies in their proofs. In
fact, in the former paper, Theorem 2.2, on which most of the results depend, is false
and in the latter paper all the results depend directly or indirectly on results of another
paper which needs correction (see MR 87j : 26011).

2. DEFINITIONS AND NOTATIONS

Let f be a real valued function defined on a set E. The kth divided difference of
f at the (k + 1) distinct points zg, @1, ..., 4 in E is defined by

Qr(fi 20, 21, - - ’”")_Z f(z:)

< w'(z;)

k
where w(z) = jl;lo (z —=j).
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From the definition it follows that

(zO - 3k)Qk(f;201 Tly eeny zk) = Qk—-l(f;zoa ey zk-—l) - Qk-—l(f;zla ey zk)-

Clearly Qx(f;zo, ®1, ..., k) is independent of the order of z¢, z1, ..., zk.
Let ¢, d € E, ¢ < d. The oscillation of f on [c, d]N E of order k is defined to be

Ok(.fa [C, d]nE) = Sup](d—C)Qk(f, Cy Tl - -y Th—1, d)|

where ‘ Sup’ is taken over all possible choices of the points 1, £2, ..., zg—1 in (¢, d)NE.
We shall take O(f, [¢, d]| N E) to be zero, if (¢, d)NE contains less than (k — 1) points.
The weak variation of f on E of order k, denoted by Vi(f, E), is the upper bound
of the sums ) Oi(f, [ci, di]N E), the upper bound being taken over all sequences
{(ci, d;)} of nonoverlapping intervals with end points belonging to E.

DEFINITION 1: If Vi(f, E) < oo then f is said to be of bounded kth variation in
the wide sense on E and is written f € BVi(E).

DEFINITION 2: If for every € > 0 there is o(¢) > 0 such that for every sequence of
non-overlapping intervals {(c,, d,)} with end points on E and with ) (d, ~¢,) < 7,
we have Y Ox(f;[cv, dv) N E) < € then f is said to be absolutely kth continuous on
E in the wide sense and is written f € ACx(E).

DEFINITION 3: If Qi(f;zo, ... k) remains bounded for all possible choices of
points zg, 1, ... 2 on E, then f is said to satisfy a generalised Lipschitz condition
of order k and is written f € BQy(E).

To justify Definition 3 note that a function f is said to satisfy a Lipschitz condition
of order k on a set E if there is M such that

(2.1) |f(z1) = f(z2)| < M |21 — z3|* for 21,2, € E.

Suppose that (2.1) holds. Then for any three points z;, 22, s of E we have, when
) <z2 <1z3,

Q:i(f; 21, 32) - Q1(f; ”2,38)

(2.2) |Q2(f; 21, 22, z3)| = P
< M |E1 - 22|k—1 + M |Zz —_ Zs'k_l
h jz1 — @s]

é 2M|21 - .‘lek—z .

Proceeding in this way we get after k steps

lQlc(f;zly ey xk-f-l)l < 2k_lM
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which shows that f € BQx(E). Thus Definition 3 is a generalisation of the usual
concept of a Lipschitz condition of order k.

It is clear from the definitions that if E C F and if f € BV,(F) (respectively
ACw(F), BQw(F)), then f € BVy(E) (respectively ACi(E), BQr(E)).

DEFINITION 4: (see [4, p- 280]) Let z € E be a limit point of E. If there exist
real numbers f.(z, E), 1 < r < n such that

n hT h™
flz+h)=f(z) +...+ 2_:1 — fr(2, E) + —€a(z, h)
where en(z, h) = 0 as h — 0 with ¢ + h € E, then f,(z, E) is called the Peano

derivative of f at z relative to E of order n.

If f-(z, E) exists we shall write

71‘(fa z, t, E)

- ) f()—z“ ”)f.(z B)|.

If 2y, 3, ... 2,, ... z} are distinct points of E and if z, is a limit point of E then we
write

Qr(fiz1, ... 25y s ... :ck)=£lin=1 Qr(fiz1, ... 25, & ... Tk)

provided the limit exists where the limit is taken over E.

PRELIMINARY RESULTS

THEOREM 1. For all choices of points z¢, ... z in E, (zx — zo)Qr(f;To, ... Z¢)
remains bounded if and only if Qk-1(f;Zo0, ..., Zx—1) is bounded for all choices of
points g, ... ¢x—1 in E.

PROOF: A proof is given in [7, Theorem 4]. However for completeness we give a
different proof.

Let (zx — z0)Qk(f; 0, ..., zx) be bounded for all choices of points zg, ..., Tk
in E. Let ap,...,ar—; be a fixed collection of points in E and let 4 =

|Qk—1(f;ao, teey ak—1)|-
Let M be such that

l(zx — z0)Qn(f3 20, ---, zR)| < M

for all choices of points zy, ..., zx in E. Now we claim that

(31) |Qc-1(fizo, -y zh-1)| S KM + A
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for all choices of points zg, ..., 43 in E. In fact, if z; = a;,forall 1, 0 <1< k~1,
then (3.1) is clear. If z; = a;, for all i except i = j, then

1Qk-1(f; 20, -y Zke1) — Qr-1(f; a0, - .-, ar—1)|
= I(zj - aj)Qk(f;zO, ooy Tk, a‘j)l <M

and so (3.1) is true. In general if there are m indices 13, ..., im such that a;, # z;,,
for n=1,..., m, then

IQk——l(f;mo’ cevy Tip,y "'72im1""Zk—l)_Qk—l(f;aoa ceey @iy, -'-,aimaw-aa'k—l)l

< |Qk_1(f;zo, ey Tiyg ooy Tignyooey Zk-l)—Qk—l (f;:co, ey By Tigy ey Tigys
ey zk_l)l
+ IQk—l(f;ZO’ ey By s Tigy oy Ty 0oy mk—l)_Qk—l (f;th ceey Qipy Gy, Tig,

ey Bipy oeey Th1)|
+

+ |Qk_1(f;zo, e iy Bigy ey @iy Tigyy - Tho1) — Qe—1(f; @0, .-, ak_.l)l
m

< E I(zin - ain)Qk(f; Loy cvvs Tigy o0y Th—1, al'n)l
n=1

<mM,

and so (3.1) is true.

Since (zk - zO)Qk(f; Loy -+ zk) = Qk—l(f; Loy -+ zk—l) - Qk—l(f; L1y -y :Bk),
the other part is easy. 0

COROLLARY. If f € BVy(E), then Qix—1(f; 2o, ..., Tk—1) remains bounded for
all choices of the points zq, ..., zp—; in E.

PrOOF: Since f € BVi(E) implies that (zx — z0)Q«(f; 20, ..., Tx) remains
bounded for all choices of the points zg,..., z in E, the result follows from The-
orem 1. 0

LEMMA 1. Let E be a bounded set. If f € BVi(E) and c is such that
dist.(E, ¢) > 0, then f € BV,(E U {c}), f(¢) being defined arbitrarily.

PROOF: Since f € BVj(E), by the Corollary of Theorem 1, Qx—1(f; o, ..., Zk—1)
remains bounded for all choices of the points z;, 0 < i £ k — 1, on E and hence
f € BVi_1(F). Repeating this argument, f € BV;(E), for i = 1,2, ..., k. Hence
Qi(f;=o, ..., zi) remains bounded for all choices of points zg, ..., z;, 1 <1< k—1
and f is bounded on E. Define f(c) arbitrarily. Since dist.(E, ¢} =0 >0,

< M)~ 1)

Q:1(f;z, ¢)| = lf(’-';): : f(c) , forz € E.
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Since f is bounded on E, Q,(f;z, ¢) is bounded for z € E. Since

Qu(fiz, 20, o)) = | LelLizn 22) = Dlfizn o

g ’Ql(f;z].) 2:2) - Ql(f, T3, C)

o

for all z,, z; € E, and since Q:1(f;z1, z2), Q1(f; 22, c) are bounded, Q(f;z1, z2, ¢)
remains bounded.

Repeating this argument, @x(f; 21, 22, ..., Z&, ¢} is bounded forall z;, z3, ..., zx
in E. Hence from the definition of BV}, on a set, the lemma follows. 0

LEMMA 2. If f € BVi(E) and ¢y, ¢z, ..., ¢n are such that inf{dist. (E, ¢;)} >0,
then f € BVi(EU{c1, ..., cn}), f being defined arbitrarily on {c1, ¢z, ..., cpn}-

This can be deduced by Lemma 1.

LEMMA 3. Let E and F be bounded sets and let dist.(E, F) > 0. If f ¢
BVi(E)N BVi(F), then f € BV,(EUF).

PROOF: In view of Lemma 2, we suppose that both of £ and F are infinite. We
may further suppose that each element of E is less than every element of F. Let
{(cv, d.)} be any sequence of non-overlapping intervals with end points on EUF. The

only case that needs to be considered is ¢, € E, d, € F for some v, since in all other

cases

Eok(f; [cua du] n (EU F)) < Vk(fs E) + Vk(f1 F)7
and hence Vi(f; EUF) < Vi(f, E) + Vi(f, F).

So we suppose that ¢, € E, d, € F. We shall prove that (d, —c,)Q&
(f;¢py &1, - -+, €k—1, dp) remains bounded for all choices of the points £, ..., éx_; in
(cpydp) N(EUF). Let &,...,&—1 be arbitrarily fixed in (cp, dp) N (E U F) and
b1 <& ... <é€p—1. Let  €eE, 1 <i<randé; e F,yr+1<i< k-1.
Choose supE < u; < u2 < ... < ugp—3 < inf F' and define f(u;), 1 < i< k-1
arbitrarily and write ¢, = zo; & = 25,1 <1 € 7; U = Zppi, 1 €4 € k-1
Li=zp_14i,7+1< 1<k ~1; dp = 29_1.
Now, by {7, Corollary of Theorem 1], we have

I(dP - CP)Qk(f; Cp, éla sery Ek—la dp)l
= le—l(f; Cp; Ela [EEE) £k—1) - Qk—l(f;gla LR dp)l

k-1 E
= ZaiQk—l(f; Biyoeny Titk—1) — EﬂiQk—l(f}zi, ey Titk-1)|,

1=0 i=1
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where a;, (; are positive numbers such that

Yaz1=Y 4

Hence

(dP - CP) le(f) Cps 613 ey £k—ls dp)l

k-1
= |aoQr—-1(f; Zoy- -y T—1) + Z(ai — B:)Qi—1(f; iy .- - Tigr—1)
=1

+ ﬂka—l(f;zk, L) z2k—1)|
k-1
<1Qu-1(f520s -+ T—1) + I [Qe1(fi iy -+ -, Tigk-1)]
i=1

+|@Qr-1(f;zky - - -5 T2k—1)]

r k
= Z |@k—1(fi2iy ...y Tign-1)| + z |Q—1(f;2:, ... Titr—1)]
i=0

i=r+1

By Lemma 2, f € BViy(E U {u1, ... ug—1}) N BVi(F U {u1, ...ux_1}). Hence by the
Corollary of Theorem 1, Qx—1(f; @i, ..., itx—1) remains bounded for all choices of
points 2, ..., Tiyk—1 in EU{u1, ..., up—1} orin FU{u;, ..., up—1} and so thereis
M > 0 such that

(dP _CP)le(f;cp, El) teey fk—l) dp)l < (7'+1)M+(k—1‘)M = (k+ 1)M

Hence

Z(dv - Cv) |Qk(.f, Cuvy Ty, 0y ++vy Ty, k-2, dv)l

< Vi(f, E) + (k+ 1)M + Vi(f, F).
Hence f € BVy(E U F). 0

LEMMA 4. If f € BVi(E N |a, c]) N BVi(E N e, b)), where c is isolated at least
from one side of E, then f € BVx(E N a, b]).

PROOF: Since c is isolated at least from one side, dist. (E N {a, ¢), EN|c, b)) > 0,
and so by Lemma 3,

f € BVA{(EN[a, b]).
0

LEMMA 5. Let a < ¢ < b, where c is a two sided limit point of E, (¢ may or may
not belong to E). If f € BVi(E N |a, c])N BVi(E N |[c, b]) and if there is ¢ > 0 such
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that (zr — z9)Qx(f; 2o, -.., &) is bounded for all choices of points zg, z1, ..., Tk in
(c—0,c+a)NE, then (éx — &)Qr(f; &0, &1, - - ., &) remains bounded for all choices
of points ¢; in E N [a, b].

ProoOF: We may suppose that (¢ — o, ¢+ o) C (e, b). Let €0, &1, &2, .-+ €k—1 &k
be arbitrary points in E N [a, b]. Suppose that & < ¢ < €r41. Choose the points z;,
r+1 <7< r+2k—2 such that z;’s belong to (¢ — o, cJNEfor r+1<i<r+k-1
and z;’s belong to (c,c+ad)NE for r+k <i <7+ 2k~ 2.

Since (yx — ¥0)Qk(f;¥o, - - -, yr) remains bounded for all choices of points yo, ..., Yk
in (¢— o, c+ o) N E, we conclude from Theorem 1 that there is M > 0 such that

r4+k-1

(3:2) 3 1Qe-1(f;2iy -, zipr—1)| < (k- 1)M.

i=r4l

Writing é = @0, & = @i, 1 <1 < 7 and &4 = Tri2ktj—2, 1 S J < k—7r—1,
¢ = T3k—2, and applying [7, Corollary of Theorem 1], we have

I({k - EO)Qk(f; 607 61, ceey ék—la Elc)l

(3.3)
= |Qk—1(f; &o, &1, ---fk—1) - Qk-l(f; &, .-y €1,y fk)l
2k-2 2k—2
= E iQr—1(f; @iy ooy Tigh-1) — Z BiQr—1(f; Tit1s -+, Titk)
=0 1=0

where a;, f; are positive numbers such that

Zai=1=2ﬂ‘ia

2k—2

= |aoQr-1(f; 20, .-+, Th—1) + Z (i — Bic1)Qr—1(f;2i, - . Tigk—1)
=1

1=

—Pak—2Qr—1(f; T2k-1, - .-, T3k—2)|

r r+k—1

<Y 1Q-1(Fizir - iva-1)l+ Y 1Qe-1(f52i, oo, Titko1)]
=0 i=r41
2k-1

+ Z |Qr—1(f;2s, - -+ Titr—1)|.
i=r+k

Since f € BVi(Enla,c]) N BVi(EN|e, b)), by the Corollary of Theorem 1
Qik-1(f; %, - .., Yit+r—1) is bounded for all choices of points y;, ..., yitk—1 in ENJa, c]
and similarly for all choices of points in E N [c, b] and so thereis N > 0 such that

(3.4) |@k—1(f;9is -+ Yitr-1)| < N,
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whenever all of y;, ...yitk-1 arein E N|a, c], or all of them are in E N [c, b]. Hence
from (3.2), (3.3) and (3.4), we have

(€ — &) |Qr(Fib0s b1y -y 1, &) S (P + 1N + (k= 1)M + (k—7)N
< 2kN + kM.

0

LEMMA 6. If f € BVi(ENa, c])N BViy(EN|c, b]), where a < ¢ < b and c is
a two sided limit point of E, (¢ may or may not belong to E) and if there is ¢ > 0
such that (zx — zo)Qr(f; o, ..., 2&) is bounded for all choices of points =z, ..., €} in
(c—o,c+o)NE, then f € BVi(EN[a,b]).

ProoF: Let {(¢,, d.)} be any countable collection of non-overlapping subintervals
of [a, b] with end points in E N [a, b]. The only case that needs consideration is
co € ENfa,c], d, € ENfe, b for some v. Let ¢, € EN|a, c|, d, € EN|c, b].

In view of Lemma 5, (dp — ¢;)Qk(f; cp, Zp,1, Tp,2, - - Tp,k—1, dp) is bounded for all
choices of the points 2,1, ..., Zp,k—1 in (cp, dp) N E. The rest is clear. 0

LEMMA 7. Let f be defined on E and let zy € E be a limit point of E. If f is
continuous at xo then

. . 1
lim ... hmer(f;zlr (RN} 31‘+1) = ﬁ’)’r(f;zo, Tr+1, E)

Tp—rZo z1—T
provided fr—1(z¢, E) exists finitely where the limits are taken over E.

The proof is in [1, Lemma 4.1] when E is an interval. The same argument will
apply here and so the proof is omitted.

LEMMA 8. If z,, z3, ..., =} are distinct points of E which are also limit points
of E and if f: E — R is differentiable at these points with respect to E, then

k
Qk-1 (f(l);'-'u, ceey :ck) = EQk(f;-‘Bl, ey TRy Thy ey Th),
h=1

where f(!) denotes the derivative of f with respect to E.
The proof is the same as [7, Theorem 8].

LEMMA 9. I f € AC;(E), then () exists on Ey, where Eq is the set of all
limit points of E which are in E, the derivative f(!) being taken with respect to E.

PRrOOF: Let € > 0 be arbitrary. Since f € AC,(F), thereis o = o(e) > 0 such
that for every sequence {(c,, d,)} of non-overlapping intervals with end points on E
and with Y (d, — ¢,) < o and for every choice of points z, in (c,, d,) N E, we have

Z l(d" - Cy)Qz(f; Cyy Ty, dv)l <E.
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Let £ € Ey. If ¢ is a two sided limit point of E, then for 21, z2 € EN(é — /2, £ + 0/2),
z; < £ < z3, we have

[fle) 1) _ S -1

z3 —¢

Letting ¢,£—, z; — £+ through E independently, it can be shown, as € is arbitrary,
that f(1)(€) exists finitely. So f(1) exists on Ey. If £ is a one sided limit point of E,
say from the right, choose £ < z; < z3 such that z;,z2 € EN(§, £ + o) and so

f(=1) — £(£) _ f(z2) — £(£)
zy — ¢ zz —§

\ = |(z1 — 22)Q2(f; ¢, =1, 22)|
<€ — 22)Q2(f; &, 1, 22)| <€
and by Cauchy’s criterion f(1*(¢) exists finitely. 0

4. MAIN RESULTS

THEOREM 2. If Qx-1(f;zo, ..., zx—1) remains bounded for all choices of points
z;i, 0t <k—1,0n E, then f € AC;_,(E).

PRrROOF: From the hypopthesis, there is M such that

|Qk—1(f; Loy oy zk—l)l <M

for all choices of the points zg, ...zx—; on E.

Let {(cy, dv)} be any countable collection of non-overlapping intervals with end
points on E and let ¢ > 0 be arbitrary. Let ¢y = %40, Tv,15 -+, To,k—2) To k-1 = dy
be distinct points on [¢y, dy] N E. Then

Z |(dv - cv)Qk—l(f; Zy,0y +++9 z:1:,lt:—1)| < MZ(dv - Cv) <€

if 3(dv—c¢y) < e/M. Hence 3 Ok—1(f;[cv, ds] N E) < €, whenever ). (d, — ¢y) <
e/M. So f € ACx_1(E).

THEOREM 3. If f € ACy(E), where E is a bounded set, then
f € BVi(E).

PROOF: Let a = inf E, b = supE. Since f € ACi(E), there is ¢ > 0 such that
for every sequence {(c,, dy)} of disjoint intervals with end points on E,

z (dv - Cu) IQk(f, Coy Tu,dy + 2y Tok—1, dv)l <1
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whenever ) (dy—¢y) < o and zy1,...,Zyk-1 are in E N (cq, do). So
f € BVx(E N ¢, d]) whenever (d —c) <o.

Let E be the closure of E. There are only a finite number of contiguous intervals
of E whose lengths are greater than or equal to /2. Let (¢, d1), ..., (cn, d,) be
these intervals. We show that f € BViy(E N|[dj, cj41]), foreach j =1,..., (n—1).
If ¢cjy1 —dj <o, then f € BVi(EN|[dj, ¢j+1]). If ¢j41 — dj > o, divide the interval
[dj, ¢j+1] by points dj = pj1 <pj2 <...< pjm = ¢j+1 such that p;, —pjr—1 = 30c/4
for r=2,3,...,(m—1) and pjm — Pjm-1 < 30/4. Then f € BVe(E N [pjr-1, Pjr))
for r = 2,...,m and so f € BVi(EN [dj, cj+1]) by Lemmas 4 and 6. Similarly
f € BVi(Enla,c1]) and f € BVi(EN [dy, b)) and so the theorem is proved by
Lemma 3. 0

THEOREM 4. Let E be a bounded set and let Ey be a nonempty subset of E
such that every point of E, is a limit point of E. Let f(}) exist in Ey where the
derivative f(1) is taken with respect to E. Let k > 2.

(i) If f € ACx(E), then fV) € AC:_,(Eo).
(1) I Qk(f;zo, ..., zx) remains bounded for all choices of points z;, 0 <1 <
k, on E, then Qk—1 (f(l);yo, ..+» Yk—1) remains bounded for all choices
of points y;, 0<i1<k—1,0n E,.
(i) If f € BVi(E), then f) ¢ BV, _(Ey).

PROOF: (i) Let € > 0 be arbitrary. Then there is ¢ = o(e) > 0 such that for every
countable collection of non-overlapping intervals {(c,, dy)} with end points on E,

(4.1) ) " l(do — €0)Qr(f3 €0y Yoty - - - Yo,k1, )| < €/4(k — 1)

whenever Y (dy, —¢,;) < 0 and Y1, ..., Yo k-1 are in E N (cy, dy). Let {(7r, 6,)}
be any finite collection of non-overlapping intervals with end points on E; such that
> (6r —vr) <0o/2 andlet z,1, ..., Z, 12 be pointsin EyN(y,, 6-) and let v, =z,
6, = z,r—1. We first suppose that no two intervals of {(v,, )} have common end
points. To each interval {(v,, 6-)} we associate another interval (a,, b,) such that
ar < vr < 6. < b, and (b, —a,) — (6 —9r) < ¢/2™*! and assume that the intervals
{(ar, b;)} are disjoint. Clearly 3, (b, —a,) < . By Lemma 8

(4.2)
E(zr,k—l ~Zr0) |Qk_1 (f(l); Troy -n-s a:,,k_l)l

= E IQk—l (f(l); Tr0y -, zr,k—z) — Qr—2 (f(l); zr1, ---zr,k-l)l

-¥

r

k—2
Z Qk—l(f; Troy:-->Trty Trty ---y 3r,k—2)
t=0
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k-1
- Z Qk-l(f; Trly cooy Trgy Doty v vy Zr,k—l)

t=1

k-2
S Z Z |Qk—1(f; Tr0y -y Trty LTrty -2y z'r,lc:—z)
=0 r

~Qr-1(fiZr1s ooy Trith1s Trtd1y -0y Trk—1)
k-2
< Z Z |@k—1(F;2r0s oy Trjty Tryty -+ -5 Erk—2)
=0 r
~Qr—1(fiZr0s -3 Trts Erty -+ 2r,k—2)|
+|Qr-1(Fi ey ooy Trptd1s Tritd1s o oey Trk—1)
~Qr-1(FiZr1y -5 Trpt1y Ertty ooy Trp—1)]
FH1Qk-1(F;2r0s - +s Tty Erty ooy Trk—2)
~Qi-1(F5Zr,0, <o Trty Trgtls rtds ooy Ty k-2)|
+1Qk-1(f;2r0s -5 Trty Trtt1s Ertt1s ooy Trk—2)
~Qr-1(f;Tr1y oo o5 Trpa1y Ertty ooy Trk—1))|
where the points §,4, 0 <t < k-2 are in EN(ay,, b,) and they are distinct and in
the vicinity of z,; such that
|@k—1(f;Zr0, s Trty Tryty -~-zr,k—2)
(4-3) —'Qk—l(f; Tr0y -y Tryty fr,t, ceey 3r,k—2)|
<ef4.27.(k—1)
and
|Qk—1(f;3r,1, Tr2y o0y Trgtly Trgtly oovy Er,k-l)
(4.4) —Qr=1(f;2r1y -0y Trpt1s Erpa1y - ooy Trk-1)]
<egf4.27.(k~-1).

This is possible since z,, are limit points of E. Let
(45) T= Z |Qk—1(.f; Tr0y -y Tryty Er,t, ey 33r,k—2)

—Qk—l(f; Tr0 -+ Trt+ly fr,t+1, ceey zr,k-z)l

= Z ‘(Er,t+1 - €r,t)Qk(f; £r,t7 ZTr0y -2y Trk-2, gr,t+l)| -

If p, and g, are the minimum and maximum of the points {,¢, Zr0, -..) Zr k-2, Ertt1,
then

(46) T < Z (qr - pf) ‘Qk(f: Er.h Tr0y -y Trk—2, Er,t+1)| .

https://doi.org/10.1017/50004972700011709 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011709

102 S.K. Mukhopadhyay and S.N. Mukhopadhyay [12]

Also p,, ¢» € EN(a,, b;) and hence {(p,, gr)} is a countable collection of nonoverlap-
ping intervals with end points on E such that ) (¢, — p,;) < o, and so by (4.1) and
(4.6), .

(4.7) T < e/a(k - 1).

Hence from (4.5) and (4.7)

k—2
(4'8) Z Z IQk—l(f; Tr0y---3 Tty fr,h R zr,k—z)

t=0 r
—Qk—l(f; Tr0y -0y Trk—2, fr,t+1)|
< [e/4(k—1)](k—1) = ¢/4.
Similarly
k—2
(4.9) E |Qk—1(f;Zr 05 -+ Trk—2, Ert1)
t=0 r

—Qk—l(f; Trly---y Trt+l, €r,t+1, ceey l‘r,k—l)l
< [e/a(k —1)](k — 1) = €/4.

So from (4.2), (4.3), (4.4), (4.8) and (4.9), we get
Z (zr,k—l - zr,O) ’Qk—l (f(l)) Troy ---, zr,k—l) ‘

<efd+efdt+efdtefd=c.

(4.10)

In the general case, that is, when two intervals of {(+,, §;)} have common end points,
we can divide {(v,, §-)} into two classes {(v}, é.)} and {(v”, é!')} such that no two
intervals of {(7;], 6.)} or of {(v, 6)} have common end points. Then (4.10) is true for
the classes of intervals {(v;, 6.)} and {(4/, 6/')} and hence (4.10) is true for {(v,, 6,)}
with € replaced by 2e¢. Thus (i) is proved.

(ii) Let yi, 0 <7 < k— 1 be arbitrary points on Ey. Then by Lemma 8, we have

k-1
Qk—l (.f(l)v Yo, -- -, yk—l) = EQk(fr Yoy <« s Yy Yhy -y yk—l)-
h=0

Since Qi(f;®o, ..., *k) remains bounded for all choices of points z;, 0 < 1 < k, on
E, there is M such that

IQk(f;yov"'7yh7yh1"'1yk—1)|<Ms 0<h<k-1
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Hence |Qk-1 (f(l), Yo, --- s yk_1)| < kM. So the result follows.
(iii) The proofis similar to that for ACk. The only change needed here is to replace
e/4(k—1) by V =V(f, E) in (4.1), (4.3), (4.4), (4.7), (4.8), (4.9) and (4.10). 1
THEOREM 5. For any bounded set E,

BVi(E) G BQs—1(E) G ACk_1(E) G BVi_1(E).

Proor: The inclusions follow from Corollary of Theorem 1, and Theorems 2 and
3. To show that the inclusions are strict, consider the following examples:

EXAMPLE 1: There exists a BV}, function which is not ACy. Let f be the Cantor
singular function on [0, 1], which is of bounded variation but is not absolutely contin-
uous on [0, 1]. Let ¢ be the (k — 1)th repeated integral of f over [0, 1]. Then, by (8,
Corollary 6.2], ¢ is BV} on [0, 1]. But ¢ is not ACy on [0, 1]. For if ¢ € ACk([0, 1}),
then since ¢(*~1) exists on [0, 1], by Theorem 4, ¢(*~1) is absolutely continuous on
[0, 1] and hence f is absolutely continuous on [0, 1], which is a contradiction.

EXAMPLE 2: There exists an AC} function on [0, 1] which is not in BQ([0, 1]).

Let f(z) = /z on [0, 1]. Now f is absolutely continuous on [0, 1]. But f does
not satisfy the Lipschitz condition on [0, 1].

EXAMPLE 3: There exists a function which is in BQk—_1([0, 1]) but is not in
BVk([O, 1]). Let )

f(z) = z?sinl/z, z#0
=0, z=0.

Then f satisfies the Lipschitz condition of order 1 on [0, 1] but does not belong to
BV,([0, 1]). For if

! 1
g(z)=2zsm;—cos;, z#£0

=0, z=0,
then f'(z) = g(z), for z € [0, 1].

Also g(z) is bounded on [0, 1]. Hence f satisfies Lipschitz condition in [0, 1].
But f ¢ BV,([0, 1]). Forif f € BV,([0, 1]) then since f' exists on [0, 1], by Theorem
4(iii), g € BV4([0, 1]), which is a contradiction because g ¢ BV;([0, 1]). 1]

THEOREM 6. Let k > 2 and let E be a bounded perfect set. Let f(*) denote
rth successive derivative of f with respect to E.

(i) If f € ACk—1(E) then f(7) exists on E and isin ACy_,_(E), 0<r <
k — 2, and hence f*~1) exists almost everywhere on E.
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(i) If f € BQx-1(E) then ) € BQiy_,—1(E), 0 < v < k —2 and hence
f*=2) satisfies a Lipschitz condition on E.

(i1) If f € BVi(E) then fﬁ:) exists almost everywhere on E, where .Sf.) is
the approximate derivative of f(¥=1),

PROOF: We first prove the theorem for k£ = 2.

If f € AC,(E) then f is absolutely continuous on E and hence f(!) exists almost
everywhere on E. In fact, by Theorem 5, f € BV;(E) and so by [9, Lemma 4.1, p.221],
F1) exists almost everywhere on E.

If f € BQ:(F) then Q1(f;zo, 1) remains bounded for zo, z; € E and so f
satisfies a Lipschitz condition on F.

If f € BV3(FE) then f € AC,(E) by Theorem 5 and so f(l) exists almost ev-
erywhere on E. Let § = {z : ¢ € E;f(!)(z) exists}. Then since f € BV,(E),
f®) € BV;(S) by Theorem 4 and so (f(l))(l) exists almost everywhere on S, that is,
fg‘;,) exists almost everywhere on E.

Thus the result is true for k = 2.

We suppose that the result is true for £ = m > 2 and prove it for k = m + 1.
Then the proof will follow by induction.

Let f € ACm(E). Then, by Theorem 5, f € ACz(E) and so, by Lemma 9, f()
exists on E. Hence, by Theorem 4, f(!) ¢ AC,,_;(E). Since the result is true for
k=m, F+7) exists on E and is in ACp_p_y (F), 0 <7 < m-—2, that is, f(') exists
on E and is in AC,,—,(E), 1 < 8 < m —1. Since this is obviously true for s = 0, (i)
follows for k =m + 1.

Let f € BQm(E). Then, by Theorem 5, f € AC,n(E) and since (i) is true for
E=m+1, f) exists on E and by Theorem 4, it is in BQu—3(E). Since the result
is true for k = m, f0+7) € BQu-,—1(E), 0 <7 < m —2, that is f(*) € BQ,n_,(E),
1 < s < m — 1. This being trivially true for s = 0, the proof of (ii) for k =m +1 is
complete.

Let f € BVppi1(E). Then f € ACn(E) and as above f(}) exists in E and so
F&) € BV,,(E). Since the result is true for k =m, (f(l)):p exists almost everywhere

on E, that is, f;’l')'-"l) exists almost everywhere on E and so (iil) is proved for k =

m+1. 0

THEOREM 7. If f € ACi(E), then fx_1(z, E) exists finitely at every point = of
E,, where E; is the set of all points of E which are also limit points of E.

PROOF: For k = 1, there is nothing to prove. For k = 2, the theorem is true
by Lemma 9. We suppose it to be true for k = m > 2. Let f € ACpn41(E). Then
f € ACn(E) and so by hypothesis, fm—_i(z, E) exists finitely at every point z of E;.
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Let zo € E be a limit point of E, say from the right, and let € > 0 be given. Then
there is o = o(€) > 0 such that whenever 20 < 21 < ... < Zm41, |20 — Tm41| < o and
z; € E, we have

I(z0 — Zm+1)Q@m+1(f; 20y -+ -5 Tms1)| <€
that iS, |Qm(f; Loy ---, zm) - Qm(f;zla L ] zm-f-l)l <e.

Since fm—1(zo, E) exists finitely, letting z; — z¢ first and then z; — zo and lastly
Zm—_1 — Zo through E we get

im ... im Qun(f;z0,21,..., Tm)
Tm—1Z0 2120
- lim ... Bim Qm(f;lo, 22,...,2m+1)
Zm-—1—%T0 2320
<e,

the iterated limits existing by Lemma 7.

Again letting z,, — 2o and then z,,4+1 — 2o, we have

lim im ... im Qun(f;zo,.. ) Zm)
Tm—ZTO Tyn—-1 20 T1—ZTo
—  lim Lm ... lim Qm(f;zo, 22,.-.) Tm+1)
Tmi1—rzg T F2TEO
L E.
Since € is arbitrary, lim .... lim Qu(f; 20, ..., Tm) exists finitely. A similar ar-
Tm—Zo z1—2Z9

gument holds if zy is a limit point of E from the left or from both sides. Hence, by
Lemma 7, fm(zo, E) exists finitely., Thus the theorem is true for ¥ = m + 1. This
completes the proof by induction. 1]
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