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LASSO with cross-validation for genomic selection
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Summary

We used a least absolute shrinkage and selection operator (LASSO) approach to estimate marker
effects for genomic selection. The least angle regression (LARS) algorithm and cross-validation were
used to define the best subset of markers to include in the model. The LASSO-LARS approach was
tested on two data sets: a simulated data set with 5865 individuals and 6000 Single Nucleotide
Polymorphisms (SNPs); and a mouse data set with 1885 individuals genotyped for 10 656 SNPs and
phenotyped for a number of quantitative traits. In the simulated data, three approaches were used
to split the reference population into training and validation subsets for cross-validation: random
splitting across the whole population; random sampling of validation set from the last generation
only, either within or across families. The highest accuracy was obtained by random splitting across
the whole population. The accuracy of genomic estimated breeding values (GEBVs) in the candidate
population obtained by LASSO-LARS was 0-89 with 156 explanatory SNPs. This value was higher
than those obtained by Best Linear Unbiased Prediction (BLUP) and a Bayesian method (BayesA),
which were 0-75 and 0-84, respectively. In the mouse data, 1600 individuals were randomly allocated
to the reference population. The GEBVs for the remaining 285 individuals estimated by
LASSO-LARS were more accurate than those obtained by BLUP and BayesA for weight at six
weeks and slightly lower for growth rate and body length. It was concluded that LASSO-LARS
approach is a good alternative method to estimate marker effects for genomic selection, particularly
when the cost of genotyping can be reduced by using a limited subset of markers.

1. Introduction thresholds (e.g. Maher, 2008). To implement genomic
selection, a prediction equation of marker effects must
first be derived in a reference population, where in-
dividuals have both genotypes and phenotypes. The
estimation of the marker effects is complicated by the
fact that the number of markers is usually consider-
ably larger than the number of phenotyped indi-
viduals in the reference population. To deal with this
problem, Meuwissen et al. (2001) proposed treating
the markers as random effects. They then used meth-
ods to estimate the effects including Best Linear
Unbiased Prediction (BLUP), where the effect of each
marker was assumed to come from a normal distri-
bution with equal variance across all markers, and

New selection methods based on information from
very large numbers of molecular markers have re-
cently become feasible due to advances in genotyping
technology. Meuwissen ef al. (2001) proposed pre-
diction of breeding values from a genome-wide dense
map of markers, which they termed genomic selec-
tion. The method exploits linkage disequilibrium
(LD) between the markers and quantitative trait loci
(QTLs) across the whole genome, in contrast to the
approaches using variation explained by a small num-
ber of markers discovered with stringent significance
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assumed to follow a ¢ distribution or a mixture
distribution, with marker-specific shrinkage. In simu-
lation, high accuracies of genomic estimated breeding
value (GEBV) were obtained with both types of
model, though the Bayesian approaches achieved the
best accuracy.

The priors proposed by Meuwissen et al. (2001) for
the chromosome-specific variances of effects have
been criticized for being too ‘strong’, e.g. it is not
possible for information from the data to overcome
the effect of the priors (Gianola et al., 2006, 2009),
though in practice this may not affect inferences at the
level of the SNP effects (Yi & Xu, 2008). In fact,
BayesA can be extended so that the parameters de-
fining the prior distribution of the marker-specific
shrinkage variances is assumed to come from a third
(usually non-informative) distribution (Yi & Xu,
2008). However, if non-informative priors are used at
this third level, large data sets are needed in order
to derive informative posterior distributions on the
SNP-specific variances and therefore appropriately
‘shrink’ estimates of the SNP effects.

An alternative method to estimate the SNP effects
would be to use the least absolute shrinkage and
selection operator (LASSO) approach (Tibshirani,
1996). This operator has the desirable feature of in-
cluding in the model only a subset of explanatory
variables, setting to zero those that have nil effects.
This agrees with the assumption that many chromo-
some segments will not contain quantum trait locus
(QTL) and therefore have zero effect, and only few are
real QTLs (Hayes & Goddard, 2001). The challenge
with implementing the LASSO approach is how to
best choose the constraint parameter which in turn
depends on the size of the subset of explanatory vari-
ables, in this case the number of SNPs (Foster et al.,
2007). In this paper, we adopt a LASSO approach to
estimate the marker effects for genomic selection
using the least angle regression (LARS; Efron et al.,
2004) algorithm, including a cross-validation step
to define the best size of the subset of variables
(i.e. SNPs). In livestock populations, choosing a cross-
validation set is complicated by the degree of re-
lationship between subsets of animals.

Our aim was to investigate the accuracies of GEBV
from the LASSO approach, and compare these
with those obtained from the BLUP and BayesA ap-
proaches. We have also investigated the effect on
accuracy of GEBV from the LASSO approach using
different strategies for cross-validation to define
the marker subset size. The methods were compared
in both a simulated data set and a mouse data
set. Legarra et al. (2008) and de los Campos et al.
(2009) used the same mouse data set to assess the
predictive ability using Bayesian regression and a
Bayesian LASSO, respectively, to derive the predic-
tion equation.
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2. Materials and methods
(1) Data sets

The simulated data came from the XII QTL-
MAS Workshop 2008, Uppsala (http://www.
computationalgenetics.se/QTLMASO08/QTLMAS/
DATA html). A population of animals was simulated
whose genomes contained 6000 marker loci evenly
distributed over six chromosomes (1000 markers per
chromosome), with 0-1 cM between markers. There
were 48 QTLs distributed on the genome of which
44 had additive effects randomly sampled from a re-
flected gamma distribution and four had predefined
large additive effects. Moreover, there was an epistatic
interaction between two of the QTLs. The QTLs were
not among the 6000 marker loci. LD between markers
and QTL was generated by simulating a population
of size 100 for 50 generations (Lund et al., 2009).
Then a population of individuals was created by ran-
dom mating 15 sires and 150 dams to generate the
next generation. Following this, the next three gen-
erations consisted of 1500 individuals (15 sires)
per generation. The last three generations (generation
five to seven) of selection candidates were 400 in-
dividuals (15 sires) per generation, randomly selec-
ted from the 1500 individuals in the previous
generations.

For each QTL, the genomic location, allelic sub-
stitution effect and the additive genetic variance were
known. The true breeding values (TBVs) of all in-
dividuals and the heritability were also known. The
animals from the first four generations (4665 in-
dividuals) had both genotypic and phenotypic infor-
mation available. The animals from generation five to
seven (1200 individuals) had no phenotype but had
genotypes.

The second data set was a heterogenecous mice stock
with a wide range of phenotypes and genotyped for
10656 genome wide SNPs (Valdar et al., 2006). The
data including pedigree, genotypic and phenotypic
information are freely available at http://gscan.
well.ox.ac.uk/. Three traits were analysed, weight at
6 weeks (W6W); weight growth slope (WGS) and
body length (BL). The heritability of these traits was
0-73, 0-30 and 0-13, respectively. The phenotypes
considered were residuals derived from the original
traits adjusted for the main environmental fixed ef-
fects except for the cage effect (Valdar et al., 2006).
Mice had not been randomly allocated to the cages, as
most of the individuals in the same cage were full-
sibs. Indeed over 549 cages only 22 contained
individuals from 2 different families and only 1 con-
tained individuals from 3 different families. Thus,
the cage effect was partially confounded with genetic
effects (Legarra et al., 2008). Treatment of the cage
effect in the different methods for calculating
the prediction equation is described below. The final
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dataset consisted of 1885 offspring in 173 full sib
families and 10656 SNPs. Missing genotypes were
randomly assigned on the base of their allele fre-
quencies.

(i) LASSO-LARS procedure

The LASSO is a constrained version of ordinary least
squares which has been widely used in regression
analysis for large models (Tibshirani, 1996). It mini-
mizes the residual sum of squares while constraining
the sum of absolute values of the regression coeffi-
cients. Consider the model for phenotypes of some
quantitative trait as:

m
yi= E xiB;+ e,
=1

where y; is the phenotype of the ith individual; x;
is the genotype of the ith individual at the jth marker
of 1 to m markers, with x;;=0 for genotype 11; x;=1
for genotype 12 and x;;=2 for genotype 22; f3; is the
allelic substitution effect for the jth marker and e; is
the random residual of the ith individual. Then the
LASSO solution is the set of §; that satisfy

2
min{z (y,-— Zx,-jﬁ]) } subject to Z B, <t.
i=1 j=1 j=1

for=0. )

The constraint ¢ allows some estimated SNP effects
to be exactly zero (¢ is estimated by the procedure
as explained later). The LASSO problem can be
solved by quadratic programming (Tibshirani, 1996);
however, this is very expensive computationally. An
alternative solution is a modification of the LARS
algorithm (Efron et al., 2004). Initially, the LARS al-
gorithm requires the genotypic information be stan-
dardized to have a mean 0 and unit variance, and that
the phenotype has a null mean, so that

iyl:o, ixé/:o and ix?]:l,
i=1 i=1 i—1

for j=1,2,3,...,m.

(@)

Then the LARS procedure starts with the set of active
markers (4,) empty and markers effects (8;y) all set
to zero. In a classical LARS procedure, the estimate
of ﬁ is obtained in successive iterations, with one
new marker added to the model at each iteration.
To obtain LASSO solutions, the LARS procedure
is modified so that either addition or subtraction
of one marker to the active set per iteration may
occur (Efron et al., 2004). Obviously only the markers
inside the model will have non-zero effects. See
Efron et al. (2004) for a complete description of the
algorithm.
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(iii) Cross-validation strategies in simulated data set

The LARS algorithm as described in the previous
section is a good way to produce LASSO solutions but
it does not solve the problem of the selection of the
constraint ¢ in equation (1), where ¢ is the upper bound
of the sum of absolute value of effects of the SNPs
involved in the model. The problem of choosing the
best value for ¢ can also be described as the selection
of the best subset size of explanatory SNPs. In order to
achieve this, a cross-validation approach using ran-
dom sub-sampling replication (Kohavi, 1995) was
performed. Replication of the sub-sampling procedure
was used to attempt to take into account the uncer-
tainty about predictive ability in an independent data
set associated with a particular partition. The re-
sampling approach averages across all possible par-
titions, and provides a measure of variability across
partitions. In each replication, the reference popu-
lation was randomly split into two sub-populations.
The first sub-population, defined as the training sam-
ple (T), was used to estimate the SNP effects using
LASSO-LARS. The second one, defined as validation
sample (V), was used to validate the results obtained
from the training sample. In particular, analysing the
pth replication, the genotype and phenotype dataset
(X, y)was partitioned into two (X7, y7) and (X, yy) for
training and validation, respectively. Then the LARS
procedure was carried out on the X7 and yz. For each
kth LARS iteration, two further steps were added:

Step (i). GEBVs of the validation sample (GEBV))
were calculated as GEBV ;=X VﬁTk’ where ﬁTk is the
SNP effects vector estimated in the kth LARS iter-
ation on 7.

Step (ii). The correlation coefficient between GEBV ;.
and phenotypes of V, {r(GEBVy.yy)} was calcu-
lated, and the LARS iterations continued until
r"(GEBVy,yp)r reached the maximum, such that
max{r(GEBVy.yy)} was achieved.

Then a further 20 LARS iterations were carried out to
check for sub-optimal convergence. If the maximum
at the iteration k was confirmed, the corresponding
number of active markers was retained as best subset
size of the pth replication (ma,). At this point, the
LARS procedure was stopped and the p + 1th random
sub-sampling replication started with a new split of
the reference population into 7" and V.

In the simulated data, we evaluated three different
approaches to splitting the data into training and
validation sets. In the first cross-validation design,
individuals were allocated by random splitting into
two the overall population (RAN), where the indi-
viduals of the reference population were randomly
assigned to either 7 or V, not considering their pedi-
gree or the generation to which they belonged. In the
second cross-validation design, individuals were as-
signed to V or T by splitting within sire families in the
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last generation of the reference such that within fam-
ily predictions of GEBV are included in the cross-
validation (WFAM). In the final cross-validation de-
sign, the validation set was split between families in
the last generation, such that V consisted of in-
dividuals belonging to entire families and other sire
families were in 7 (BFAM). In both WFAM and
BFAM, the V consisted only of individuals from the
last generation (4th) of the reference population,
while the previous generations (1st—3rd) were always
assigned to the 7, so that both these methods ac-
counted for the effect of the generations on the pre-
dictions of GEBV. Furthermore, different sizes of
V(T) were tested, 5% (95%), 10% (90%) and 20 %
(80%) for RAN and the WFAM approach. For
BFAM, the V(T) sizes were different because this ap-
proach is partly defined by the actual size of the fam-
ilies in the data. So the sizes of V tested were 2, 4 and 9
families corresponding to 4-3, 8:6 and 19-3% of the
total reference population. Moreover, a size of V of
50 % was tested for RAN only (this size of V(T) was
not possible for the other two approaches, given the
last generation consisted of 32% of the reference
population only). For each trial (splitting approach x
V' size), 1000 replications were performed except for
BFAM with 2 families where all possible combi-
nations (105 replications) were carried out. For each
trial mean, standard deviation and 95% confidence
interval (CI) of ma (where ma is the vector of the best
subset sizes across replications) were evaluated.
Computational times for each strategy were recorded.

The performance of RAN, WFAM and BFAM as
cross-validation strategies was compared based on the
accuracy of the selection candidate GEBVs derived
from the prediction equation for each strategy. The
GEBVs were calculated as GEBV, =X, ﬂr, where X,
was the design matrix allocating the marker genotypes
in the candidate population, and ,Br was the SNP ef-
fects vector estimated in the reference population.
Accuracy was the correlation between true and esti-
mated breeding values {r(GEBV_.TBV,)}.

(iv) LASSO-LARS in the mouse data set

LASSO-LARS was implemented in the mouse data
by first randomly splitting the entire population into a
reference population of 1600 individuals and a can-
didate population of 285 individuals, without con-
sideration of which family the individuals belonged
to. The RAN cross-validation approach with a vali-
dation sample size of 50% of the reference popu-
lation (800 individuals) was carried out to find subset
size of explanatory variables which maximized
r(GEBVy,yp)r. Note that both cage and SNP effects
were considered as explanatory variables.

In the mouse data, the accuracy of the GEBV
in selection candidates resulting from the LASSO-
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LARS prediction equation could not be assessed as
r(GEBV.TBV,) as TBVs were not available. We
therefore estimated the breeding values (EBVs) using
the full data set, and used these EBVs from the can-
didate set as proxies for TBVs. To calculate the EBVs
from the full data set, the pedigree information from
2882 individuals, including the offspring and their
parents, and all the available records (2511, 2474 and
1942 for W6W, WGS and BL respectively) were used.
The cage effect was treated as random as suggested by
Legarra et al. (2008). Each trait was analysed by the
model y=Za+ Sc+e, where y was the phenotypes
(residuals) vector; a was the additive genetic poly-
genic effects (EBV) vector; ¢ was the cage effects vec-
tor; Z and § were the corresponding design matrices
and e was the random residuals vector. The @ and ¢
were random effects assumed normally and indepen-
dently distributed with mean 0 and variance—covari-
ance Ao and Io? respectively, where A is the additive
relationship matrix among all individuals and I is
the identity matrix. Breeding values and variance
components were estimated by using a Restricted
Maximum Likelihood-based procedure. Then the ac-
curacy of LASSO-LARS was taken as r(GEBV,,
EBV,), where EBVs used information from the full
data set, while the calculation of GEBV excluded
phenotypic data on the candidate set.

Additionally, the ‘predictive ability’ was calculated
as the correlation between true phenotypes (y.) and
predicted phenotypes (y.) in the candidate popula-
tions {r(y., ¥.)}, where y. =X, ﬁr +S8.¢; (where X, and
S. were the design matrices in the candidate popu-
lation and B, and & were the SNP and cage effects
estimated in the reference population).

Finally in order to allow a comparison with the
results obtained by Legarra er al. (2008) a cross-
validation based on the splitting of the whole popu-
lation (1885 individuals) into halves, used as training
and validation, respectively, was carried out. The split
was either across families, where each half consisted of
whole families randomly allocated to training or vali-
dation, or within family where half of each family was
allocated to training and the other half to validation.
The splits were repeated at random 10 times. At each
repetition LASSO-LARS was carried out on the
training population until the best subset size of vari-
ables estimated in the previous analysis (on the refer-
ence population of 1600 individuals) was in the model.
The average of the accuracy and the predictive ability,
of the validation samples, across repetitions were cal-
culated. Note that the accuracy of predicting between
full sib families is not inflated by the cage effect.

(v) BLUP and BayesA

We compared the accuracy of GEBV using prediction
of SNP effects from the LASSO-LARS with GEBV
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calculated from SNP effects predicted by a BLUP
approach and the BayesA methods as described by
Meuwissen et al. (2001). In the BLUP approach, the
variance of the marker effects (0f) was defined as
(assumptions defined in Habier et al., 2007):

2
2 g,

O' —_—
P2y p(—p)

where p; was the frequency of one of the two alleles of
the jth marker and o2 was the total additive genetic
variance (under the assumption of the infinitesimal
model). In the simulated data, the SNP effects were
calculated as B=(X'X+Al) "' X'y, where A =02/} and
I is the identity matrix. The parameters o and o?
(error variance) were assessed from the phenotypic
variance and the known heritability.

In the mouse data, the cage effect was treated as ran-
dom, so the cage and SNP effects were calculated as

¢l _[SS+xl S'X Y
pl | XS XX+l Xy |’

where k=02/c2. In this case 02 (cage effect variance),
o2 and o2 were estimated by the classical polygenic
model described in section 4. The matrix inversion
was carried out by a Cholesky factorization ap-
proach.

The BayesA method used Gibbs sampling to draw
samples from posterior distributions of the para-
meters as described by Meuwissen et al. (2001), but
modified to estimate single SNP effects rather than
haplotype effects. The prior distribution of the SNP
effect variances was a scaled inverted chi-square dis-
tribution. In the simulated data, the scale parameter
(scl) and the degrees of freedom (df) were calculated
from their expectations given the mean and variance
of the distribution of QTL effects (known in the
simulation) to give sc/=0-00042 and df=4-00337, re-
spectively.

In the mouse data, the cage effect was fitted so ad-
ditional parameters were added to the model. In par-
ticular, the cage effects were drawn from a normal
distribution where the variance (c2) was assumed
homogeneous (i.e. common for all the cage effects). At
each Markov Chain Monte Carlo cycle, the cage
effect variance was drawn from a scaled inverted
chi-square distribution. The priors for the SNP effect
variance distributions were selected from a set of
priors ranging from 10~ ¢ to 1 and from 1 to 10 for sc/
and df, respectively. The prior combinations that gave
the higher accuracy in the candidate population were
scl=10"% and df=4 for W6W, sc/=10"* and df=6
for WGS and sc/=10"* and df=6 for BL. The prior
distribution of ¢ was uninformative df = —2.

A Gibbs sampling scheme was run to draw samples
from the posterior distributions of the parameters, for
11000 cycles and 1000 of those were discarded as burn
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Fig. 1. Accuracy of selection (r), regression coefficient (b)
of TBV on GEBYV in the candidate population as a
function of the subset sizes of the active SNPs.

in. The samples of SNP effects from the 10000 later
cycles were averaged to obtain an estimate of the SNP
effects.

Programs for BLUP, BayesA and LASSO-LARS
procedures were written in Fortran90 and were run on
a workstation with a 2-6 GHz processor running
Linux.

3. RESULTS

(1) GEBYV estimation by LARS—LASSO in simulated
data

To evaluate the performance of the cross-validation
procedure for choosing the optimum subset of SNPs,
we first determined the ‘true’ optimum number of
SNPs for predicting GEBV. We ran the LARS al-
gorithm with increasing numbers of SNPs and calcu-
lated the GEBV accuracy r(GEBV.TBV,) in the
selection candidates. The GEBV accuracy reached a
maximum of 0-895 at the 199th iteration when 169
markers were in the model (Fig. 1). In real applica-
tions, however, "(GEBV.,TBV,) will be unknown and
the optimum number of SNPs must be determined by
cross-validation. Note that because the true number
of QTLs was 48, and the number of SNPs which gave
the highest accuracy of GEBV was 169, more than
one SNP was required to capture the effect of each
QTL.

(i1) Best SNP subset selection in simulated data

Table 1 shows the means of the markers subset sizes
from 1000 cross-validation sub-sampling replications
for the sampling methods and sample sizes analyzed.
For each subset size, Table 1 shows the corresponding
GEBYV accuracy in the selection candidates. The sub-
set markers size ranged from 153 for BFAM 5% to
220 for WFAM-10%. The GEBV accuracy ranged
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Table 1. Means of the best marker subset sizes from
1000 replications and corresponding GEBV accuracy
in the candidate population by size of the validation
set (rows) and method of assignment of subjects to
training and validation set (columns)

Mean
Size (%)* RAN WFAM BFAM
5 195 207 153%*
0-8921 0-8907 0-8940
10 200 220 184
0-8915 0-8810 0-8930
20 195 216 197
0-8921 0-8878 0-8921
50 156
0-8941

RAN, individual random sampling overall population;
WFAM, individual random sampling in the last generation
only; BFAM, across families sampling in the last generation
only, the samples size in this case were 200, 400 and 900,
respectively.

*Size of the validation set as percentage of the reference
population.

**Number of replication was 105.

from 0-881 to 0-894 for WFAM-10% and RAN-
50 %, respectively (Table 1). Table 2 shows standard
deviations, 95 % CI of the subset size for the different
sub-sampling validations. Both measures of varia-
bility show the same pattern increasing from RAN to
BFAM and decreasing with an increasing sample size.
The BFAM sampling method provided GEBV accu-
racy values slightly higher than the other two methods
for the common sample sizes (Table 1); nonetheless it
was characterized by the largest 95% CI of subset
size; hence it is less reliable (Table 2). This was par-
ticularly true when the size of the validation set was
small, probably reflecting a very high variability of
r(GEBV,, y,) with small numbers of individuals in V.

In cases where the structure of the population
might be either unknown or not homogenous, split-
ting the data between families might not be possible.
Our results suggest the RAN method will give good
results regardless of population structure. The best
sample size of V' for RAN was 50% of the total
reference population. The following results for the
LASSO-LARS are from RAN-50%.

(ii1) Comparison with other methods in simulated data

Figure 2 shows the absolute value of SNP effects
predicted by BLUP, BayesA and LASSO-LARS
compared with the true QTL effects. The effects pre-
dicted by BLUP were much smaller than those pre-
dicted by other methods, and are thus shown on
a different scale. The largest effects from BLUP
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corresponded well with the location of the true QTL
with the largest effects; however, when the QTL ef-
fects were small the predicted effects were not different
from those at non-QTL locations. The marker effects
predicted by BayesA and LASSO-LARS showed
a much better correspondence with the true QTL
effects. Nonetheless BayesA did miss some QTL
positions in particular among those with small effects.
LASSO-LARS detected QTL at nearly all of the QTL
positions; however, there were some moderate effects
predicted where there were no true QTL effects. Both
BayesA and LASSO-LARS under-estimated the ef-
fects of the SNPs near to the QTLs with large additive
and epistatic effects and typically over-estimated the
remaining QTLs with small additive effects. The fact
that regression of TBV on GEBV was approximately
I could indicate that the under-estimation of large
effects and the over-estimation of small effects ap-
proximately cancelled each other out in this case. One
important difference between BayesA and LASSO-
LARS is that BayesA predicts very small effects for
locations not containing QTL, whereas LASSO-
LARS set the majority of these effects to exactly 0.

The candidate population GEBV accuracy corre-
sponding to the average subset size of RAN-50%
sampling was compared with the accuracy obtained
by using BLUP and BayesA approaches (Table 3).
The accuracy obtained by LASSO-LARS exceeded
that of BLUP and BayesA. Table 3 also shows the
regression of TBV on GEBYV, indicating that
LASSO-LARS GEBYV underestimates the TBVs to a
small extent. However, it is important to point out
that some of the QTLs had simulated epistatic action,
and our LASSO-LARS (as well as the other two
methods) did not account for this.

The computing time needed to run LASSO-LARS
was higher than for BLUP or BayesA (Table 3). A
large proportion of the time in LASSO-LARS is
spent in cross-validation used to define the best mar-
kers subset size. Actually this time might be con-
siderably reduced; indeed almost the same results
were obtained carrying out half of the replications
used here.

(iv) Performance of LASSO—-LARS in mouse data

The best subset sizes obtained by RAN-50% on the
mouse population were 435 (262 SNPs and 173
‘cages’), 348 (180 SNPs and 168 ‘cages’) and 218 (125
SNPs and 93 ‘cages’) for Wo6W, WGS and BL, re-
spectively. For W6W, the accuracy r(GEBV,EBV)
from LASSO-LARS was considerably higher than
for BLUP and BayesA; for WGS, both BLUP and
BayesA out performed LASSO-LARS by a small
margin; while for BL, LASSO-LARS out performed
BLUP but not BayesA, though differences between
the methods were very small (Table 4). The regression
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Table 2. Standard deviation and 95 % CI of the best marker subset sizes from 1000 replications, and
computational time required for the different cross-validation strategies
St. Dev. 95% ClI Time

Size (%)* RAN WFAM BFAM RAN WFAM BFAM RAN WFAM BFAM

5 108 111 112%* 66433 46434 4-400%*  21:21:07 18:17:03  01:36:27**
10 85 96 100 95-387 89408  34-408 18:39:11 17:43:07 18:46:19
20 58 62 73 105-312 113-342  44-352 14:52:35 14:12:43 17:14:08
50 32 100222 07:06:20

RAN, individual random sampling overall population; WFAM, individual random sampling in the last generation only;
BFAM, across families sampling in the last generation only, the samples size in this case were 200, 400 and 900, respectively.
*Size of the validation set as percentage of the reference population.

**Number of replication was 105.

* BLUP /. BayesA 4 Additive large QTL 4 Epistatic QTL ® QTL from v distribution € LASSO
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Fig. 2. Comparison of SNP effects estimated by LASSO, BLUP and BayesA methods with the true QTL effects.

coefficients /(GEBV,EBV) for LASSO-LARS were
close to one for W6W but not for the other traits,
perhaps reflecting the low to moderate heritability of
these other traits.

The predictive ability r(y., y.) of LASSO-LARS for
W6W was considerably higher than BLUP but
slightly lower than that of BayesA ; for WGS BLUP
and LASSO-LARS gave very similar results and both
out performed BayesA ; for BL LASSO-LARS gave a
predictive ability slightly lower than the other two
methods (Table 5). The regression coefficients b(y., y.)
for LASSO-LARS were close to one for W6W and
WGS but not for BL, where BayesA gave the co-
efficient closest to one (Table 5).

When the whole population was split into halves,
both the GEBV accuracies and the predictive abilities
in the validation half, obtained by across family
splitting, were lower than those obtained by splitting
the population within families (Table 6). For WGS
and BL, the accuracies were higher than those
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obtained by Legarra et al. (2008) for both across
and within family splits. However, for W6W, the
r(GEBV,EBV) was lower than that obtained by
Legarra et al. (2008) (Table 6). The predictive ability
obtained by LASSO-LARS were slightly lower than
those obtained by Legarra er al. (2008) for all the
traits with the across family splitting. For within
family splitting, the LASSO-LARS predictive ability
was lower than that obtained by Legarra et al. (2008)
for W6W and WGS, while for BL it was very similar
(Table 6). An important consideration in interpreting
these results is that while the EBV will be a more ac-
curate predictor of the breeding value than pheno-
type, particularly for low heritability traits, it is
possible that GEBV predicts the relationship compo-
nent of EBV more accurately than the component
which is derived from the QTL alleles that an indi-
vidual actually carries. For example, Habier et al.
(2007) suggested that BLUP methodology derived
some of predictive ability from relationship.
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Table 3. Accuracy of selection (r), regression coefficient (b) of TBV on GEBV, total computational time and

memory resources required for the three methods used

r(TBV,GEBYV) b(TBV,GEBYV) Computing time Allocated memory (kb)
BLUP 0-7477 0-8676 00:23:50 951448
BayesA 0-8359 0-9155 04:36:10 445552
LASSO-LARS 0-8941 1-1481 07:06:20 926132

Table 4. Accuracy of selection (r), regression coefficient (b) of EBV on GEBV in the candidate population of

mice
r(EBV,GEBV) b(EBV,GEBYV)
BLUP BayesA LASSO-LARS BLUP BayesA LASSO-LARS
Wo6wW 0-3094 0-4769 0-5270 0-2780 1-4805 0-9443
WGS 06246 0:6135 0:6055 0-5724 0-3733 0-6048
BL 04733 0-5188 0-5079 0-3811 0-5307 0-3204

W6W, weight at 6 weeks; WGS, weight growth slope; BL, body length.

Table 5. Predictive ability (r), regression coefficient (b) true phenotypes (y.) and predicted phenotypes (§.) in the

candidate populations of mice

(Ve ¥e) b(ye, Fe)

BLUP BayesA LASSO-LARS BLUP BayesA LASSO-LARS
Wow 0-5265 0-6857 0-6626 0-4813 1-3715 1-1027
WGS 0-5707 0-4233 0-5601 0-9351 0-7534 1-0730
BL 0-3156 0-3128 0-2872 0-7929 11375 0-7172

Wo6W, weight at 6 weeks; WGS, weight growth slope; BL, body length.

Table 6. Mean of the GEBV's accuracy and predictive
ability, of LASSO-LARS, across 10 repetitions of
cross-validation with 50 % splitting

r(EBV,GEBV) r(y, ¥)

Across Within Across Within
Trait families families families families
W6wW 0-2358 0-4757 0-2268 0-5872
WGS 0-3534 0-5670 0-2162 0-4803
BL 0-1736 0-4681 0-1101 0-2657

W6W, weight at 6 weeks; WGS, weight growth slope; BL,
body length.

4. DISCUSSION

Our simulated results demonstrate that LASSO-
LARS can accurately estimate the effects of SNPs
associated with QTL in dense SNP data, leading to
accurate GEBV for genomic selection. Unlike BLUP
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and BayesA, a feature of LASSO-LARS is that some
of the SNP effects are set to zero. Given the very large
amount of SNP data now available, this could be
desirable since it allows the selection of a small subset
of the markers which have predictive value for a
particular trait. Our results suggest that the way in
which the reference population is split into training
and validation sets to determine the optimum number
of markers to include in the model has little impact
on the accuracy of breeding values subsequently pre-
dicted for an independent group of animals.

The BayesB approach for predicting GEBYV, as
proposed by Meuwissen et al. (2001) is also a model
selection approach, with a prior assumption that
some of the SNPs will have zero variance. However,
there is limited prior knowledge on what the pro-
portion of chromosome segments with zero effects
should be. Similarly, the LASSO-LARS approach
requires defining a value of 7. We have demonstrated
here that cross-validation is a good approach to do
this. In the simulated data set, our LASSO-LARS
approach gave accuracies of GEBV in the selection
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candidates as high as or higher than BayesA and other
Bayesian approaches, except for one approach which
used marker haplotypes rather than single SNPs
(Lund et al., 2009).

The accuracy of LASSO-LARS compared with
BLUP and Bayesian approaches will depend on the
number of QTLs underlying the quantitative trait and
the distribution of their effects. If there is a limited
number of QTLs, perhaps 10s or 100s, then the
LASSO-LARS could perform well. However, if there
are many thousands of QTLs each of very small effect
affecting the trait, as has been suggested for traits like
height in humans (e.g. Sanna et al., 2008), the limi-
tation of LASSO-LARS is that the number of SNPs
in the model cannot be larger than the number of
phenotypes as described below. This may limit the
accuracy of GEBV achievable with LASSO-LARS. If
the number of QTLs is very large, the assumptions of
the BLUP model may be a better match for the
number of QTLs and their distribution of effects, and
this method of predicting GEBV could outperform
the LASSO-LARS. In the mouse data set, the per-
formance of LASSO-LARS relative to BayesA and
BLUP was trait dependant. For W6W, LASSO-
LARS gave substantially more accurate GEBV than
BLUP or BayesA; however, for BL the reverse was
true. Unfortunately, there is little information on the
distribution of QTL effects for either of these traits.
Further investigations in real data are required to as-
sess the comparative performance of LASSO-LARS
across quantitative traits with widely differing dis-
tributions of QTL effects.

As mentioned above, one limitation with the
LASSO-LARS is that as it is a (constrained) version
of ordinary least squares, LASSO-LARS cannot give
non-zero solutions for a number of explanatory
markers (/ma) larger than the number of individual (n)
minus 1 (z—1 rather than n, because the columns of
the genotypes matrix X have been mean centred). In
fact this means that if we want to use the cross-vali-
dation method with a random sample of 50 %, the
maximum number of SNPs is half the sample size — 1.
Yi & Xu (2008) applied a Bayesian version of the
LASSO (Park & Casella, 2008) which overcomes the
above problem by applying SNP-specific shrinkage.
However, the Bayesian LASSO requires prior distri-
butions on hyper-parameters (Park & Casella, 2008).
de los Campos et al. (2009) demonstrated that al-
though the prior assumptions did affect the posterior
distributions of the hyper-parameters in small data
sets, inferences on the SNP effects were fairly robust
with respect to the values of the hyper-parameters.
One consideration with the Bayesian version of the
LASSO is that if Gibbs sampling is used to draw from
the posterior distributions of the SNP effects, the
point estimates of the effects calculated as the average
of these samples for all markers will be non-zero, even
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though the point estimates may be very small. The
average effect across the Gibbs samples is a posterior
mean, whereas the original LASSO method generates
a posterior mode which is zero in some cases.

Even if the accuracy of GEBV from using the sub-
set of markers from LASSO-LARS is not as high as
that for methods using all SNPs, there is still a prac-
tical application of the method. If a subset of
the SNPs can be genotyped much more cheaply than
the complete set of SNPs, then the subset chosen by
LASSO-LARS could be used as an initial screen
for animals to genotype more fully. In fact, the
LASSO-LARS algorithm could be applied with a
user-defined ¢ reflecting the dimensions of cost effec-
tive genotyping platforms. For example, a dairy cattle
breeding company could screen many thousands of
bull calves with the a small subset of markers (say
100-400), choose a few hundreds of the calves with
the highest GEBV to genotype with tens of thousands
of markers, then either take a hundred or so onto
progeny testing or market semen from the bulls with
the best GEBVs. The profitability of this approach
would depend on the difference in cost of genotyping
the subset of markers relative to the full set of mar-
kers, and the difference in accuracy of GEBV from the
two marker sets.

ARC grant DP0770096 of Mike Goddard contributed to
this project. Graziano Usai was funded during his stay at
the DPI by the Sardinian Government program ‘Master
and Back’, D. G. R. no. 27/13 and no. 59/34.
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