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WEIGHTED MAXIMAL INEQUALITIES FOR 
€r- VALUED FUNCTIONS 

BY 

H. P. HEINIG 

1. C. Feffermann and E. M. Stein [2] have shown that the continuity 
property of the Hardy-Littlewood maximal functions between Lp -spaces, 1 < 
p<°° , extends to ^'-valued functions on Rn. Specifically, if / = ( / i , / 2 , * • •) is a 
sequence of functions defined on Rn, let for l< r<oo ? |/(x)| r be given by 

l/(*)lr = { Î |/k(*)|r}1/r. 

If /* denotes the sequence of functions whose kth term is the maximal function 
of /, that is 

/*(*) = sup r?-[ |/k(f)|dl, 

where the supremum is taken over all cubes Q in Rn centered at x and \Q\ 
denotes the Lebesque measure of Q <= IRn, then their result is: 

THEOREM 1. If Kr, p<°° , then 

(1) I l/*(jc)lfdjc<Ar,pf l/(x)l?dx. 

Moreover, 

(2) |{x e Rn : l/(x)lr > y}| < - f l/(x)lr dx 
y jRn 

where \{ }| denotes Lebesgue measure of the set { }. 

For 0 < p < l , Theorem 1 fails of course, although there are well-known 
results that show that integrability of a function insures the existence of the 
Hardy-Littlewood maximal function in If for 0 < p < l over a set of finite 
measure (See e.g. [4, §21.80]). Similarly, / e ( L l o g + L ) implies integrability of 
the maximal function over a set of finite measure. 

Recently, a number of estimates involving scalar valued maximal functions 
between weighted Lp-spaces appeared in the literature (see e.g. [5], [6], [7]). A 
particularly elegant characterization of weight functions for which such a norm 
estimate holds was given by B. Muckenhoupt [6]. However, unlike the scalar 

Received by the editors February 10, 1975 and, in revised form, October 6, 1975. 

445 

https://doi.org/10.4153/CMB-1976-067-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1976-067-3


446 H. P. HEINIG [December 

valued functions considered there, it is the purpose of this paper to extend 
Theorem 1 to a weighted Lp-estimate and consider further the case when 
0 < p < l for the weighted vector valued case. Our results depend on two 
lemmas which may be of independent interest. 

It is the purpose of this paper to extend these results to ^"-valued functions 
on Rn. In fact, we will extend the results to ^"-valued functions which belong 
to weighted Lebesgue spaces whose weights satisfy a somewhat special condi­
tion. The main result is obtained via two lemmas which are also used to extend 
Theorem 1 to weighted Lp-spaces. 

Throughout, A, Ap, Ap>r, are constants dependent only on the indicated 
parameters, but may be different at different occurrences. XE denotes as usual 
the characteristic function of a set E. 

2. The weights we consider in the sequel satisfy 

DEFINITION 1. A non-negative weight function w defined on Rn is said to 
satisfy condition M, if there exist a constant A, such that 

w*(x)<Aw(x), 

where w* is the maximal function of w. 

For convenience, we state the Calderon-Zygmund-Lemma as we apply it in 
the arguments below. 

LEMMA. (Calderon-Zygmund; [6; §3.2]). If lf(x)\r is integrable over Rn, then 
for any y > 0 , there exists a collection of disjoint cubes {Q7} in Rn satisfying 

(a) | Q j | < - | \f(x)lrdx 

(b) l /(x)l r<y if x ^ a - U Qj 
i 

(c) —— l/(x)lr dx < Ay for each Q7. 

We introduce the following notation: By Ey and Ef
y we denote the sets 

{ x e R n : | / k ( x ) | > y } , y > 0 , fe = l , 2 , . . . ; 

and 

{xe R n : l / (x) l r>y} y > 0 , 
respectively. 

Let w be a weight function on Rn. If E c Rn we write 

JLL(E)= W(X) dx. 
JE 
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The /x-measure of the sets Ey and Ef
y are denoted by 

Dl(y) and Dft(y), 

respectively. 
Our first result extends (2) of Theorem 1. 

LEMMA 1. If w satisfies condition M, then 

D J K ( y ) < - [ l/(x)lrw(x) dx, K r < * , 
y jRn 

provided the right side is finite. 

Proof. Let f=(fu fi, • • •) be a sequence of continuous functions with com­
pact support in Rn satisfying 

\f(x)lrw(x)dx<oo. 
J[Rn 

Then l/(x)lr is integrable so that the Calderon-Zygmund Lemma applies. 
For each k, let 

f'k = fk'X^n\W and n = fk-fk, 

then by Minkowski's inequality 

lf*(x)\r<lf'*(x)lr + lf"*(x)\r. 

It suffices, therefore, to prove 

(3) D,>, r(y)^— I l/(x)lr W(JC) dx 

(4) D, r*, r(y)<—f lf(x)lrw(x)dx. 
y jRn 

for then by the usual density argument the Lemma follows. 
To prove (3), observe that by [2, Lemma 1] and (b) 

Jo 

<rj" v.{xeRn:t\f£W\'>tr}tr~1dt 

= f J x e R " : £ \f£(x)\r>s)ds 
Jo I k = \ J 

= f £ \f'k*(x)\'w(x) dx 

(s=n 
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oo /• 0 0 / 

= 1 \f'k*(x)\r
W(x)dx^ArYJ 

k = \ J[RM k = l J 

^Ar\ £ |/'k(x)|rw(x)dx 

^Arf-'l lf(x)\rw(x)dx^Ary
r-1\ 

\fr(x)\r w*(x) dx 

\f(x)\r W(x) dx. 

It remains, therefore, to prove (4). 
Define 

/k, fc = l , 2 , . . . ; by 

^ J à l ^ " 1 ,,I€Q' 
lO ifxéQ,-. 

For x G Q7, Minkowski's inequality and (c) show that 

l /w,'={IIrâlo,IA<01 *]T" 
< - U l/(t)lrdt<Ay. 

m i jQi 

while xéd implies /k = 0, for all k, that is l/(x)lr = 0 if xtÉÇl. NOW by (a) we 
obtain 

\f(x)\r
rw(x)dx<Ayr\ w(x)dx 

= A y r £ w(x) dx 
y Jn 

= A y r ? I Q | - ( iè iL w ( x ) d x ) 
^ A y r Z - f |/(x)lrdxfi-^-r f w(x)dx) 

i y Jo, MUjI Joj ' 

^ A y ^ Z ! l/(x)lr w*(x) dx 
j Jo, 

< A y r - 1 | l/(x)lr w(x) dx 
Jn 

< A y r _ 1 | l/(x)lr w(x) dx. 
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Using as before [2, Lemma 1] and the fact that /£(*)< Afk(x), shown in the 
proof of [2, Lemma 1] 

y r D J H ( y ) ^ Ë f \n*to\r w(x) dx 
k=i J^n 

^ A r t \ \mx)\rw*(*) dx 
k=i JR» 

< A r | \f"(x)Yrw(x)dx 

< A r \f(x)\r
rw(x)dx 

<A r y
r _ 1 \f(x)\rw{x)dx 

JRn 

which implies the lemma. 
The next lemma sharpens the previous result. 

LEMMA 2. If w satisfies condition M and 0 < / < 1, then 

provided the integral is finite. 

Proof. For k = 1, 2 , . . . ; define 

gkW = (o 
f/k(x) if | /k(x) |>y/2-k , y > 0 

otherwise, 

so that 

f , , „, [ Ë l / k W r « xer\{x:\fk(x)\r>(yjy2-kr}, 
L \gk(x)\ =\k=i k=i 

k=i 

^0 otherwise, 
Let 

then 

0= D {x:\fk(x)\'>(yjY-2-kr}, 
k = l 

e^[xeR":\f(x)\r>y^yE
f
yi. 
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But since 
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= SUP{jèjlo ^(t)^--t(t)dt + è J Q f^)^-XByiMt)]d^ 

Minkowski's inequality yields 

l/*(x)lr^lg*(x)l + W 

from which E;
y c E ^ { H ) follows. Therefore, by Lemma 1 

yD,7*,r(y) = y w(x)dx<y 
JEJ* E / * ( 1 - J ) 

w(x)dx = yD?g%(y(l-j)) 

:-^[ \g(x)\rw(x)dx<^:\ \g(x)\rw(x) dx: 

|/(x)lr w(x) dx. 

\f(x)\rw(x) dx 

which proves the result. 

3. We are now in the position to prove the main result. 

THEOREM 2. Let w satisfy condition M and 

w(x) dx<™ 

for E ç Rn. If 0 < p < K r < o o , then 

(5) | If 

Moreover, if 0 < / < 1 then 

(6) 

(x)iP w(x) dx < Arp\ w(x) dx J w(x) dx\ \f(x)\rw(x) dx 

I l/*(jc)lr w(x) dx<-\ w(x) dx + - ^ r I (|/(x)|r log+ \f(x)\r) dx 
JE } JE l-J J|R» 

Proof. Let y > 0 , then by Lemma 2 

[ \f(x)\p
rw(x)dx = p\ yp-1Drf%(y)dy 

JE JO 

= p{\y"+\ jy^WKCy) <*y 
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^ ' ^ " I L . W{x)dx}dy 

f r £ f yP~2\\ lf(x%w(x)dx)dy 

<n w(x) dx 

+ r ^ f l/(x)lrw(x)ff yp-2^Ey/(x) dy\ dx 

s H I w ( x ) d x + ^ [ l/(x)l,w(x)| yyp-2dydx 
\}/ JE I - / JR" Jr/,-

from which (5) follows on minimizing the last expression with respect to y. 
To prove (6) Lemma 2 applies again, so that 

J I f (x)lr w(x) dx = [ DiK(y) dy = { [ + J } i>Wy) <*y 

S dy w(x) dx 
JO JEyt* 

~ \ — f l/(x)l rw(x)dx 
1—7 Ji/j y JE,/ 

7 JE 
w(x) dx 

+ T M l/Wlrw(x)dxf *E,/(X)^ 
1 - / J I R " -I// y 

< M w ( x ) d x + - ^ M l/(x)lrw(x) 
/ J E I " / J R " 

"(T> 
= T w(x) dx 

7 JE 

+ 7 ^ f ( l / W l r l O g + l / ( x ) 0 w ( x ) d x 
1 - 7 Jp>" \ / 

which completes the proof of the theorem. 

Lemma 2 may also be applied to extend (1) of Theorem 1 to weighted 
spaces, provided the weights satisfy condition M. 
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THEOREM 3. If w satisfies condition M and l < p , r<°°, then 

I l/*(x)l? w(x) dx < Ar,p f l/(x)l? w(x) dx 

Proof. By Lemma 2 

f l/*(x)lfw(x)dx = p f y ^ D Ç ^ y ) dy 

^YT'\ yP~2[\ jlf(x%w(x)dx^dy 

= ^ : [ I/Wlrw(x)(f yp-2
t o y / (x) dyl dx 

=ï^ Li/(x)ir w ( x ) { [ ' x ) ' y P 2 d y ) d x 

(I-/)(P-I)JR-

which is the result. 

As in [2] we observe that if fk = xok, where Qk are disjoint cubes in Rn, then 

where yk is the centre of Qk. Tr(x) is a modification of the Marcinkiewicz 
integral of order r, corresponding to {Qk}. Lemma 1, then asserts that for 
l < r < » 

A °° 

Dl(x)^~^ X /x(Qk), 
y k=i 

where /x is defined above and w satisfies condition M, while Theorem 2 states 
that for 0 < p < l < r < o o 

f Tr(x)p/2w(x) dx < A ( f w(x) dxV I £ ^ (Q k ) ] P . 
JR" UR" J U = i J 
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