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Abstract

We study the distribution of principal ideals generated by irreducible elements in an algebraic number
field.

2000 Mathematics subject classification: primary 11R27.

1. Introduction

In an abstract algebra course, students learn that the concepts of prime and irreducible
elements do not coincide in an integral domain without unique factorization. Usu-
ally, various examples are given in Z [ v ^ 5 ] , for instance, showing the existence of
irreducibles which are not prime. Of course, as every student knows any prime is
irreducible and so generally there are more irreducibles than primes.

This difference leads naturally to two questions. First, can one give a characteriza-
tion of irreducibles in familiar integral domains where unique factorization need not
hold, such as the ring of integers in an algebraic number field? Second, how are the
irreducibles distributed, again in an algebraic number field?

The problem of characterizing irreducibles involves, among many challenges, a
good characterization of all the prime ideals in any given ideal class of the ideal class
group of the field. This has a particularly nice solution when the Hilbert class field
of the number field is an abelian extension of the field of rational numbers Q, for
class field theory shows us that the solution involves congruences, modulo certain
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integers depending on only the field, for the rational primes contained in the prime
ideals. (As a minor aside, we give a characterization of the irreducibles and primes in
two imaginary quadratic number fields of class number two in the last section of this
paper.) In other cases such a satisfactory characterization is not known and probably
even nonexistent.

In this note, we study instead the distribution of irreducibles. First, we give a little
background. Let K be an algebraic number field and denote by M(x) the number
of nonassociate irreducible elements a with \NK/Q(a)\ < x. In the 1960's, Remond,
[11], showed that

M(x) ~ C—^— (log log A:) 0 " 1 , a s x ^ - o o ,
log*

where C is a positive constant not explicitly given and D is the Davenport constant
which is a positive integer depending on only the structure of the ideal class group of K.
Now, if we let P(x) denote the number of nonassociate primes n with \NK/Q(7T)\ < x,
then by a classical density result

1 x
P(x) ~ -

h log* '

where h is the class number of the field, that is, the order of the ideal class group. If
h > 1 (so D > 1, see Section 2), then there are 'many more' irreducibles than primes.
If h — 1, however, then the ring of integers is a unique factorization domain and hence
the irreducibles and primes coincide. This is consistent with the estimates above once
we observe that in this case, C = 1 and D = 1; see the next section for more on these
constants.

Subsequently, Kaczorowski, [6], gave a major extension of Remond's result, which
we state here in simplified form:

M(x) = - i - (yV-(log log*)') + O f-4-(loglogjc)() ,
lo8* \jlZ I Vlo8 * /

as x -*• oo, for some constant c > 0 and complex numbers mr In particular,
mD_i = C the coefficient in Remond's estimate. As in Remond's case, the constants
depend on K but are not explicitly given.

Later, Halter-Koch and Miiller in joint work [5] showed, among many results, how
to determine the constant C and as a result showed that it depends on only the class
group of K.

This result prompted us to explore the dependence of some of the other coefficients
in Kaczorowski's estimate on the arithmetic of A'. In particular, we consider mD_2 and
give an explicit expression for this coefficient. We then apply this to the special case
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[3] Distribution of irreducibles 371

of a number field with cyclic class group in which case we find that mD-i contains
explicit arithmetic information about the field and some of the subfields of its Hilbert
class field. (We chose the case of cyclic class group due to the messy combinatorical
arguments in the general case. It would still perhaps be of interest to see what
happens in general.) Finally, we compute—more precisely, approximate—/wD_2 for
two imaginary quadratic number fields with class number two. Indeed, this calculation
shows that more than just properties of the class group figure into the makeup of mD_2.

2. A Dirichlet series associated with irreducibles

Let K be an algebraic number field, that is, a finite extension of the rational number
field, Q, and let &K denote its ring of integers. We denote by N(x) the norm of
an element x from K to Q. Also, we denote by Na the norm of an ideal o of GK.
Furthermore, let Cl = Cl (^) denote the class group of K and h — hK the class
number, that is, the order of Cl(K).

In studying the distribution of the irreducibles, we introduce the following function.

DEFINITION 1. /J.(S) = £ ( a ) a i r r c d \N(a)\~s, where s is a complex number with real
part, a > 1.

The sum runs over the principal ideals generated by irreducible elements of GK.
We obviously do not wish to count all associates of an irreducible since there are
infinitely many when the unit group is infinite, that is, anytime K is not Q or an
imaginary quadratic number field.

Ultimately, we shall be interested in the 'summatory' function given by

DEFINITION 2. M(x) = £,„,,„ irred.,i/v(a>i<* 1> where x is any positive real number.

We shall first determine properties of fj,(s) and then use a well-known Tauberian
theorem to glean information about the distribution of M(x).

To this end, consider the following. Write Cl = {Ci = 1, c 2 , . . . , ch}.

DEFINITION 3. For each positive integer m, let

9m=\k = (*„ . . . , kh) e Hh
0 : fjc*m=" 1, jfc, + • • • + kh = m ,

where f] c*1 =" 1 means that f| c*' = 1 and if f ] c'1 = 1 for some I, such that
0 < /, < K; for / = 1 , . . . , h, then /, = 0 for all i or /, = kt for all i. (Here No denotes
the set of nonnegative integers.)
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Notice that "̂ ? guarantees that a product of elements is 1 but no nontrivial subproduct
is 1. Hence the product gives a 'minimal' representation of 1.

Later on it will be more convenient to think of the elements of Q)m as functions in
the usual way; namely,

"0

ceCI

DEFINITION 4. The Davenport constant of Cl, denoted by D or D(C1), is the largest
positive integer m such that S>m is nonempty.

The Davenport constant is defined as above for any finite abelian group. In general,
the relation between the Davenport constant and the structure of the group is not
known. On the other hand, it is well known (and easy to prove) that the Davenport
constant is no larger than the order of the group.

We now have the following proposition which gives a connection between irre-
ducibles and prime ideals. First, we denote the set of nonzero prime ideals of 6K

by P.

PROPOSITION 2.1. For any complex s with a > 1 and where ^ a is defined to be 1
whenever £, = 0,

= E E fl E
m = l *e@ m 1 = 1 a.

3p,i pî

«i=Pii-pii,

PROOF. For k e 9>m, define

.o/k_ = (a : a = a, • • • a,,, a, = p,, • • • pik., some p,7 e ^ f l c , } ,
where a, = 1, if k, = 0. Now let srf = (J M where the union is over all k in (Jm 2>m.
By the uniqueness of the factorization of ideals into prime ideals, we see that this
union is disjoint. Moreover, by the multiplicativity of the norms, we have

where a, are as above in the definition of #/k. Now notice that if a € $/, then
for some k_e Qim. Thus the ideal class [a] containing a satisfies
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by definition of 2>m. Hence a = (a) for some nonzero, nonunit integer a in A". But
notice that a must be irreducible for otherwise [o] = n*=i c**' = 1< would not be a
minimal representation of 1.

Conversely, if a is irreducible, then (a) € jtfk for some k; namely,

for some it, 6 No and p,y e ^ f l c , . D

Next, we examine the right-hand sum in the proposition above. To this end we
define the following family of polynomials.

DEFINITION 5. Let it be a positive integer and z\, • • •, Zk independent variables.
Then

*&) = * (* . * ) = £ W|,...,,t,
1
1 k^-<-

Moreover, let Po(z) = 1.

PROPOSITION 2.2. Let k be a positive integer and x\, x2, JC3, . . . be a sequence of

independent variables. Moreover, for j — 1 , . . . ,k, let Sj = Yllti xi- Then

(n, nk)eNk

n\ <--<nt

PROOF. First we introduce some notation. Let x_n = xni • • • xni for any n =
( / i l t . . . , nk) e N*. Let T = {n e N* : nx < • • • < nk). Also, let Sk be the symmetric
group on {1, . . . ,&} ; for CT € Sk,\ttan = (nff(ni,, ...,na(nt)). Next, let C — C(o) be
the conjugacy class of o in Sk, that is, C{a) = {/o-y"1 : y € Sk}. Let

be a factorization of cr into disjoint cycles, where Vj e No and for each j and
i = l , . . . , Vj, the permutations /?;, are the distinct y-cycles, say fj,, = (a^-i • • -aj^)
with a ,̂; € { 1 , . . . , k], and with the convention that 1-cycles are included so that
\Jjjlcijn,..., Oj.j] = [I,..., k}. Recall that r € C(a) if and only if r has the same
type of cycle decomposition, that is, if
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into disjoint cycles with the same conventions as above, then v'j = Vj for j = I,..., k,
(see, for example [2]). Notice then that a conjugacy class in 5* is determined uniquely
by a it-tuple, (vy,..., vk) € Hk

Q with £ * = 1 j Vj = k. Any permutation in the conjugacy
class has a cycle decomposition determined by the u / s as above. Moreover, recall
that

#C(a) =
l

again see [2]. Furthermore, recall that the cardinality of the orbit of « under Sk,
SkU = {»?« : »? e Sk], is equal to \Sk\/\Sk(n)\ where Sk(n) = [rj e Sk : r)n = «}, the
stabilizer subgroup of n. Moreover, if m e S*n, then the stabilizer subgroups, Sk(m)
and Sk(n), are conjugate and thus have the same cardinality.

Now for the proof: Notice that

V^ Y^ 2—, -a'
meN' ' C ozC

where £ c is the sum over the conjugacy classes of Sk. Now notice that if we
write a = f l j , , »Jyi • • • riJvj as above, then E ^ ^ i , = s,1" • • • s?, which is
independent of the choice of a e C. Hence

/ " f* k f* k

am=m am=m

(u,

E; "/=*

On the other hand,
1

.... I5*^l
since x^ = x^ for any m_ € Skn. Hence

1 1E

neT

T̂ £ £ i.» £
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But YlntT. mzskn 1 = 1 > s m c e o n ly o n e permutation of m can belong to T. Therefore,

E= ]i E E ia =

from above, as desired. •

PROPOSITION 2.3. Let k be a nonnegative integer and c any class in Cl. Then

3pi p
a=Pi-p*

Np-js,forallRe(s) = a > 1.

PROOF. For it = 0, both sides are equal to 1, for the left-hand side consists of one
term, o = GK which has norm equal to 1.

Assume k > 0. Write & n c = {pn : n e N}. For any n € N, let xn = Np~s.
Then the proposition follows directly from Proposition 2.2, once we observe that N
is multiplicative and all series involved converge absolutely, since a > 1. •

We now have the following useful corollary to Proposition 2.3.

COROLLARY 2.4.

(a), a irred m=\ k€@m i=l

where zu = EP,-65»nc,- ^P,7""-

For the next proposition, write zn = Up ê »nc ^P7" = ' + gi> where / =
(\/h)\og(\/{s — 1)), and g< — g\{s). It is well known that gj(s) is regular at
5 = 1. We then have

PROPOSITION 2.5. /x(s) = £ " = 0 ^ " . where c^ = Em=max(i,M)E*e^
fltM- where

ifk = (k , kh), then

a*-« = E • • • E F l ^ . • with b^ = E uul -uV
p^
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where

ifkj > 1, and we define po.o = 1. Pi.i = 1. and p) i0 = 0.

PROOF. First use the definition of the polynomials P*(z) to expand fi(s) in Propo-
sition 2.3, where the indices of summation are v,; for i = 1 , . . . , h and j = 1 , . . . , k,•.
Hence

fl E
m = l (*, *»)€® m i = l (u,i 1-,-i, )

where £(l)M ^ } • • • = 1, if/:, = 0. Now in the right-hand most sum above, sum over
the v,i first in which case we get

v n ! v < t . ! l ^ ^ !
(VH m,) ' ",i=0

with p as defined in the statement of the proposition. Next, expand z,";' = (/ +
as

T h e n

« i l = 0 V ( | - i.,,=0 ' ' • / - ,=0 V M l

where the b are defined as above. But then

i=l î,=0 /i|=0 /'*=0 1 = 1

with the a as defined above.

But now ZieS>m E;=o%,'" = EZUEtea. «*./.'"• H e n c e

E E E ^ " = E( E
m=l /j=

as desired. CH
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Now we rewrite the a* M in Proposition 2.5 in a form more convenient for winning
an explicit formula for cM for 'large' /x.

COROLLARY 2.6. M(s) = £ * = 0 cM /", where cM = E ™ ( . . M ) - M £*eSW *_.*. with

t\ h h . u, , |

u,=o
Vj H

where (as above)

PROOF. (Sketch) In Propostion 2.5 change variables as follows: let v = m — /x, let

Vi = ki — /A,, and let A.,- = fc, — vn. •

From this corollary we extract the following result.

COROLLARY2.7. Letfi(s) = Yl^=oc^'1- Then

(iii) IfD>2, then

h h , h

J=l

E M^
7=1

The proof is a straightforward application of the previous corollary.
We further obtain the following expressions for ^i(s) for some fields with small

class number.

COROLLARY 2.8. (i) Suppose D = 1 whence h = 1. Then fi(s) = I + gu

(ii) ifD = 2 so h = 2, say Cl = {1 = c,, c2}, then

(gt + X-g\ + l-z

PROOF. In light of the formulas for the cM above, it suffices to compute 3>m for each

of the groups listed.
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Let Cl = {1 = Cj}. Then we have only one minimal representation of 1, namely
1 =" 1, implying that &\ = {1}. Using this with the previous corollary yields (i).

Now let Cl = (1 = C|,a = c2}. Then we have two minimal representations
of 1, namely, 1 =" 1, and aa =" 1 implying that ®x = {(1, 0)} and ®2 = {(0, 2)},
respectively. This yields (ii). •

3. The summatory function M(x)

Having established formal properties of the Dirichlet series n-(s), we now use well-
known results relating a Dirichlet series to its associated summatory function as in [6].
We present the following weaker form of Kaczorowski's 'Main Lemma' given in [6],
which will be sufficiently strong for our purposes.

Let f(s) = X ^ l , a,,n~s be a Dirichlet series where s = a + it with an,a,t real
numbers and an > 0.

As in [6] we have the following definition.

DEFINITION 6. We let srf be the set of those Dirichlet series / as above satisfying
the following three additional properties:

(i) For all x, y e K such that 1 < x < y.

for some c\ > 0, 0 < 1 where the constants depend on / only.
(ii) There exists a nonnegative integer k and functions gj(s) for j = 0 , . . . , k,

such that
1

for a > 1 and such that g*(l) ^ 0 and gj(s) is regular for a > 1 and can be
analytically continued to a regular function in the region Sf. given by

% = I s = a + it : a > 1 - Cl

log( | r |+2)

for some c2 > 0.
(iii) In the region &, \gj(s)\ <C log"(I?I + 3), for some c3 > 0.

PROPOSITION 3.1 (Corollary to Kaczorowski's Main Lemma). Let

oo

f(s) = y^anii~
s
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be a Dirichlet series in class srf as defined above. Let S(x) = ^2n<x an be the
summatory function associated with f(s). Then for all e > 0 and all x > ee,

as x ->• oo, where the ej are complex numbers given by

ej = T -.gv(l)h-j, with Im = i-Z^^- f ^ ( logz )" dz,

where *£ is the path of integration consisting of the segment (—oo, —1] on the lower
side of the real axis (so that the argument of log z is —it), the circumference of the
unit circle taken counter-clockwise, and the segment [—1, — oo) on the upper side of
the real axis.

The proof may be found in [6] where we take Case I and q = 0 in the Main Lemma.

LEMMA 3.2. Let t be any positive real number with t < 1. Then

(a) /0 = 0,

0>) E ~ = i ' " " ' / « = e x P (K ' + £r=2(- l )"~ '£(") '7K)> where Y = 0 .577. . . is
Euler's constant,
(c) /i = 1 and I2 = y.

PROOF. Part (a) follows since /0 = fv ez dz = 0.
With respect to Part (b), consider the formal sum

m=0

But then since 70 = 0, we have

( i r )
\ n=2 /

by [13].
Part (c) follows immediately from (b). D

COROLLARY 3.3. Let e ; be defined as in Proposition 3.1. Then

(i) ifk> l,ek-1=kgt(l),
(ii) ifk > 2, ek_2 = (k- D g t - . d ) + k(k - l ) g t ( l ) y .
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The proof is immediate from the preceding lemma and proposition.
We now apply these results to fj.(s) to obtain information about M(x). By [6],

using results in [7], /z(s) belongs to the class srf'.
We shall state a well-known result about ^ p e c ( l /A^p s ) , for c € Cl, but first we

recall some definitions.
Let K be an algebraic number field of degree n over Q with class group Cl( K) = Cl

of order h. Let Cl denote the character group of Cl, that is, the group of homomor-
phisms from Cl into the multiplicative group C*. As usual, we denote the principal
character, that is, the constant character 1, by either xo or simply by 1.

Let x be an arbitrary character on Cl, then we define the L-series

a

where the sum is over all (nonzero) integral ideals of K.
Ux = 1, the principal character, then L(5, xo) — £*(•*), the Dedekindzeta function

of A".
As is well known, L (s, x) converges absolutely and uniformally on compact subsets

in the half plane o > 1. Moreover, since the norm map N is completely multiplicative
on the set of ideals of AT, we have

X(P)V

for all o > 1 and where the product is taken over all (nonzero) prime ideals of A". It is
also well known that in the half plane a > 1 - 1/n, the series for L(s, x) converges,
if X ih 1, and L(s, x) 1S regular there. On the other hand, £K(S) has a continuation
into the same half plane but with a simple pole at s = 1 with (nonzero) residue aK.

Furthermore, in the region S$.K given by

a > 1
log( | r |+ 2 ) '

L(s, x) does not vanish, where cK depends on A" but not on x-
Now, since L(s, x) ' s nonzero in the region above, we see that log L(s, x) is defined

and regular in this region.

PROPOSITION 3.4. Let c be an ideal class of Cl Then

p€C r X m=l P
X^\ P™€C

fora > 1.
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For a proof see, for example [8], (or just about any text on algebraic number theory).
Notice that this proposition allows us to analytically continue £ p e c Np~s onto the

reg ion^ .

COROLLARY 3.5. Let gc(s) = Epec(l/AfpI) - (l//i)log(l/(s - 1)). Then

m=2 P
p"ec

hence regular in £#,K. In particular,

X^l p"ec

where aK is the residue of^K(s) at s = 1.

PROOF. Write t;K(s) as (l/(s - l))(s - l )^(^) and then apply log. •

We now apply this result to M(x).

PROPOSITION 3.6. Let K be an algebraic number field with class number h and
associated Davenport number D. Then

D-2
SD-1M(x) = DcDh-°^ Qoglogx)0'1 + -^-Yej (\oglogx)j + 0

log* lo&xj^

where the e^ are given in Proposition 3.1 with gj(s) = h~>Cj(s).

PROOF. The proof is immediate since /x(s) = '£°=ocll(s)h~'i(\og(\/(s — 1)))M.

•
As an immediate corollary we have

COROLLARY 3.7. M(x) ~ DcD/j-D(A:/logA:)(loglogA:)D-"1.

Compare this with [5, Theorem 1]. But we also get the following result.

THEOREM 3.8. For D > 2,

M(x) = ^ (COoglog*)0-' + fl(loglog;c)D-2) + O (E(x)),
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where C = DcDh~D and B = (D - l)cD_,(l)/i'-D + D(D - l)cD/rDy, with y,
Euler's constant, and where

otherwise.

4. The special case of number fields with cyclic class group

We now investigate the asymptotic behavior of M{x) when the number field K has
cyclic class group Cl of order h > 1. Then we see, by Theorem 3.8, that in order to
compute the coefficients C and B, we need to determine cD and cD_i(i). First of all,
notice that D = h, for we have already observed that D < h for any Cl. But now
since Cl is cyclic generated by c, say, then c* =" 1, whence h < D in this case.

Now by Corollary 2.7, we need to determine *2)m for m = D = h and m = D — 1 =
h-\.

To this end, we cite the following main result of [3].

PROPOSITION 4.1. Let S = (at,..., an-k) be a sequence ofn — k {not necessarily
distinct) elements in Zn = Z/nZ. Suppose 1 < k < n/6 + 1 and that 0 cannot be
expressed as a sum over a nonempty subsequence of S; then there exist an integer c
coprime to n and a permutation a of the set [1,2,.. .,n — k] such that caaii) = 1 for
i = 1, . . . , n — 2k + 1, and Yl"iIn-2k+2 la<r(>)l« <2k — 2, where \x\n denotes the least
positive inverse image ofx under the natural homomorphism from the additive group
of integers onto Z,,.

In particular, there are at least n — 2k + 1 terms in S which are relatively prime to
n and all congruent to one another modulo n.

We use this result to prove the following lemma.

LEMMA 4.2. Suppose Cl — (c). Then

9D = \Kk : 1 <jfc <h,(k,h) = \],

where Kk : Cl -*• No with Kk(c
k) — h andKk{t') = 0 otherwise;

3>D-I = {h:\<k <h,(k,h) = 1},

where kk : Cl ->• No with Xk(c
k) = h-2, Xk(c

2k) = 1, and kk(c') = 0 otherwise.

PROOF. We start by determining the elements of 3>D. Suppose c , , . . . , ch € Cl and

n*=i Ci =" 1- Then the h sequences S; = (ci, . . . , c), . . . , ch) (where c, is omitted)
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satisfy the hypotheses of Proposition 4.1 with k = 1. Hence in each S; there are at least
h — 1 terms which are equal and generating Cl. Hence, we must have Ci = • • • = ch = c
and (c) = Cl. Thus <2)D is as stated above.

Now consider S>D-X. Suppose c , , . . . , c _ ; 6 Cl and n^Ti'c< == *• T h e n t h e

h — 1 sequences S; = (Ci , . . . , c), . . . , ch-\) satisfy the hypotheses above with k = 2
provided h > 6. (For h < 6 the lemma follows by a straightforward calculation.)
Hence, assume h > 6 in which case in each S, there are at least h — 3 terms which
are equal and generate Cl. But then, without loss of generality, Ci = • • • = cft_2 = c
where (c) = Cl. Thus ch~2Vi = 1 for some 0 € Cl; whence D = c2, as desired. •

This lemma along with Corollary 2.7 and Theorem 3.8 yields the following propo-
sition.

PROPOSITION 4.3. Let K be an algebraic number field with cyclic class group
Cl = (c) of order h > 1. Then

M(x) = (C(loglog;tr-1 + B(loglogx)"-2) + O(E(x)),
log x

where C = <p(h)/((h — l)\hh), and

cpih) h - 1B =

(*','/>)=i

where a(h) = 1/2, ifh = 3, and a{h) = 1, otherwise; and where gc is as appears in
Corollary 3.5.

The proof follows immediately from Corollary 2.7 and Theorem 3.8. (Notice that
when h = 3, \92\ — 1, not <p(h).)

We now give an (partially) arithmetic interpretation of YJ k=\ gc*(l)- First, we
introduce some notation.

Once again assume K has cyclic class group Cl = (c) and let L be the Hilbert class
field of K. For each divisor d of h let Ld denote the intermediate field in the extension
L/K of degree d over K. (Since by class field theory Ga\(L/K) ~ Cl and Cl is
cyclic, Ld is uniquely determined.) Notice in particular that L\ = K and Lh = L.
Finally, let aLd be the residue of the Dedekind zeta function KL,,(S) at 51 = 1.

THEOREM 4.4. Given the assumptions of the previous paragraph,

E d
k=\ d\h m>2 p

(*.*)=! ([p»])=CI
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PROOF. By Corollary 3.5 we have

± SAS) = v-f log ((, - DM*)) + {
(k.

where

k=\ m=2 k = l P
(k.h)=l (k.h)=\ p».€c*

X(ck) log L(s,X)-
X k=\

X& (k.h)=l

For _/ = 0 , . . . , A — 1, let X; be the character on Cl determined by xy(c) = f/ for i;h a
primitive /ith root of unity. More generally, let Xdj be the character on Cl determined
by Xd,j(t) = £j> for any positive integer d dividing /;. Also let

k=\
(k.h)=i

the usual Ramanujan sum. Then
/i-i

ch(—j)\ogL(s, Xj)-

But the Ramanujan sum has the explicit representation (see, for example, [4, page 238])

CnU) = V(h)-

and thus

(h,j)=h/v

log M*.
v\h V^' 7 = 1

p(/i.;")=

Now, by [8, page 230], we have

uj^ 7 mod u
(y.")=1

log L(s, Xj) =
j mod h j mod v d\v

But then by Mobius inversion,
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Thus

£

d\h v\h
d\v

d\v

since

vlh <P(v) <P(v) d

see, for example, [1, Lemma 3]. Hence

E /j.(d)
log^Cs) — (p(h) logf^(s).

Now notice that

lim fi(s) = h ^ log(s — l)^Ld(s) — <p(h) log(s
°~* d\h

-<p(h)\\og(s-\)
dll, " /

2_^ log aK,
d\h

since cp(h) = h Yld\h fjL(d)/d. This gives us the result. •

5. Examples

The coefficient C of M{x) depends on the class group of K, more precisely, on
the Davenport constant and the order of the class group. On the other hand, the
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coefficient B seems to depend more intrinsically on the arithmetic for the field K. In
this section we consider approximating B for two imaginary quadratic number fields
of class number 2, namely, Kx = Q ( \ / ^ 5 ) and K2 = Q(V—15) to see if the B are
unequal. But before we carry out the calculations in these special cases, we consider
Proposition 4.3 for the case where h = 2.

COROLLARY 5.1. Let K be a number field with class number 2. Denote by c the
nonprincipal ideal class ofC\. Finally, let L be the Hilbert class field of K. Then

M W = ^ t o g l o g , + i C 0 + $ i ( 1 ) ) + ) , ) r ^ + o ( * ) ,
" ' * ' \(log-x)3/2/

X

l o g * ' " 0 " 0 ' " ' 4V"V" ' o t v * " ' " tog"*

where y is Euler's constant and

1

m>3 pec r

We need to compute aK, aL, and 5 = ^2 «>J £ p e c l/(mNpm).
To this end, let F be any algebraic number field. Then the residue of %F(s) at s = 1

2r>(2ny*RFhF
aF =

where n and r2 are the number of inequivalent real and complex embeddings of F
into C, respectively; RF is the regulator of F; hF its class number; wF the number of
roots of unity in GF\ and dF is the discriminant of F.

For A", = Q ( v ^ 3 ) , r , = 0, r2 = 1, RK, = l,wKt =2,anddKl = - 2 0 , and hence
aKy = 7r/\/5.

For K2 = Q ( V - 1 5 ) , r, = 0, r2 = 1, RK, = 1, WK2 = 2, and dKl = - 1 5 , and
hence aK, = 2n/\f\5.

The Hilbert class fields of Q ( V ^ 5 ) and Q C V ^ l I ) are L, = Q C v ^ , V5) and
L2 = Q(V—15, \ / 5 ) , respectively. To compute aLi in these two cases, we first notice
that r\ — 0 and r2 = 2. To compute the other invariants, we shall use the fact that
Lt are CM-fields, which will allow us to compute the regulators RL, and the fact that
Gal(L,/Q) ~ C(2) x C(2), the Klein four group, which will give us a way to compute
the class numbers.

To this end, let L+ = L n R = Q(V5) in both cases L = L,. Now RL+ = log(( l +
V5)/2) and by [12, Proposition 4.16] (for example) RL = (1/Q)21og((l + V5)/2),
where Q = (EL : WLEL+) e (1,2) with EF and WF the group of units, respectively,
roots of unity in OF for any number field F. But in our two cases, Q = 1; see [10,
Theorem 1]. Thus in both cases

RL = 2\og——-.
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By [8, Proposition 17, page 68] (for example) we see that dLi = 202 and dL^ = 152.
Finally, to compute the class numbers, we use Kuroda's class number formula:

hL = -q(L)hih2hi,

where the /i, are the class numbers of the three quadratic subfields of L, and q(L) —
(EL : E1E2E3) with £, the group of units in the quadratic subfields, see, for example,
[9]. In our cases, hih2h3 — 2and since L/K isunramified^(L) = 1, [10, Theorem 1].
Hence in both cases hL = \.

Therefore,

and aLl = —— log

Next, we need to approximate the two series

*-" z-^ mNpm

m>3 P6C,
msl(2)

for the fields Kt,i = 1,2 and where C1(AT;) = (c,>. Now, since

1 = 1 /logfe
mzm 2 \\og(z

m=T(2)

we see that

-1) J'

pec m>3 r pec

We now truncate the series S at Np < x for x > 3 and estimate the truncation error
by a little elementary calculus. To this end, we write 5 = S(x) + E(x), where

2

and

E(x) =

Now, notice that

P€C m>3 r

Vp>^m=l(2)

mkm Jx_xmNpm ^ mkm Jx-xtnt1" m{m -
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since Np = k can occur at most twice (when p&K splits where p\p). Hence

m=3 v

1 1
^ L—l (Y — -2) 3U-2)2 '

Next, to approximate S(x), we need to find out which prime ideals are not principal
in GKi. But since the L are abelian over Q, the prime ideals that are nonprincipal
are determined by congruences on the rational primes contained in these ideals. We
now review this procedure. We consider the case K = K\. Let {dK/ ) denote the
Kronecker symbol and suppose p |p , p a positive rational prime; then (dK/p) = — 1
if and only if p = p@K-, that is, p is inert in K. By reciprocity, this occurs when
p s 11,13,17,19 mod 20. Hence in this case, p is a principal ideal. Therefore, if p
is nonprincipal, then (dK/p) = 1 or 0, that is, p splits or is ramified, respectively,
in K. Suppose first that p6K = pp, for distinct prime ideals p and p. Then by
properties of the Hilbert class field of K, p and p are nonprincipal if and only if pGL

is a prime ideal. For Ku this happens if and only if (—20/p) = 1 and (— l/p) = — 1,
that is, if and only if p = 3, 7 mod 20. (Notice then that p and p are principal when
p = 1, 9 mod 20.) On the other hand, the ramified primes in K{ are the (unique)
prime ideals dividing 2 and 5. But if p|5 then p = >/—5^*,, which is principal;
whereas if p|2, then p is nonprincipal, since otherwise p = (a + Z?\/—5)^V, for some
a,b € 2, in which case 2 = /Vp = a2 + 5b2, which is absurd. Similarly, for K2,
p is nonprincipal when (—15/p) = 1 and (—3/p) = — 1, that is, when p|p where
p = 2 ,8 mod 15, and for p = 3, 5 (ramified case). (On the other hand, p is principal
whenever p = 1, 4, 7, 11, 13, 14 mod 15.)

Thus,

p<x
/>=3.7(20)

and

p
p=2,8(15)

To approximate 5 to four decimal places, say, we use

in which case we may take x = 84. Then notice that p = 3, 7 mod 20 with p < 84
if and only if p = 3, 7, 23, 43, 47, 67, 83. Also p = 2, 8 mod 15 with p < 84 if and
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only if p = 2, 17, 23, 47, 53, 83. Hence 5, % 5,(84) ^ 0.077827 and 52 « 52(84) %

0.232435 good to four decimal places.

On the other hand,

1 f 0.71229745 for/ = l;
log aK. — - log aLi R» \

2 b (0.36572386 for i = 2.

Therefore, gC|(l) % 0.6343 andgC2(l) « 0.1333.

This shows that the coefficient B differs for these two quadratic number fields.

Finally, as promised in the introduction, we characterize the primes and irreducibles

in 2 [V^5 ] and Z[V—15] in terms of rational primes.

PROPOSITION 5.2. (a) An element n is prime in Z [ ^ / ^ 5 ] if and only if n\p a

positive rational prime such that p = 5 or p = 1,9, 11, 13, 17, 19 mod 20.

(b) n is prime in l[y/—\5] if and only if p = 1, 4, 7, 11, 13, 14 mod 15.

(c) a is irreducible but not prime in Z [ \ / ^ 5 ] if and only if\N(a)\ = p\Pi where

P\, p2 are positive rational primes such that p, =2 or pt = 3 , 7 mod 20.

(d) a is irreducible but not prime in T\\/ —15] if and only if\N(a)\ = P1P2 where

Pi = 3,5 or pi = 2, 8 mod 15.
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