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ON FINITE SIMPLE SEMIGROUPS
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Implicit operations (new operations commuting with all old homomorphisms) on pseudovarieties have been
shown to play an important role in the study of these classes. They may be used to axiomatize sub-
pseudovariaties and to describe recognizable subsets of (relatively) free objects. This paper presents a case
study for the pseudovariety CS consisting of all finite simple semigroups. Based on a result of profinite group
theory, a structural description of semigroups of implicit operations on finite simple semigroups is used to
deduce that CS is join-irreducible.

1980 Mathematics subject classification (1985 Revision): 2OMO7, 20M35.

1. Introduction

Following the publication of Eilenberg's treatise [12] which set up an apropriate
framework for the study and applications of finite semigroups and monoids, there has
been an increasing interest in pseudovarieties of these types of algebraic structures (cf.
Lallement [17] and Pin [18]). However, in spite of the obvious connections with
standard constructions of universal algebra (cf. Eilenberg and Schutzenberger [13]), it
took several years before they started to be explored in a systematic manner.

A pseudovariety is a class of finite algebras of the same type which is closed under the
formation of homomorphic images, subalgebras and finitary direct products. There are
several interesting and useful alternative ways of describing pseudovarieties (see, e.g.,
[2]). Among these, the most significant appear to be the correspondence with the so-
called varieties (or streams) of rational languages obtained by Eilenberg [12], the link
with the theory of Birkhoff s varieties via "generalized varieties" (upper directed unions
of varieties) established by Ash [7], and the definition of pseudovarieties by means of
"pseudoidentities" as given by Reiterman [20]. Reiterman's approach consists in
considering new algebraic ("implicit") operations which do not conflict with the old
homomorphisms. He then shows that, fixing the arity, they form a compact metric space
in a reasonable way and uses this property to prove that pseudovarieties are defined by
formal equalities of implicit operations. Banaschewski [8] and the author [1,3,4] have
generalized and given alternative treatments of this result.

In this paper, we propose the study of a pseudovariety of semigroups which, for their
algebraic properties, have always deserved a lot of attention in the general theory of
semigroups, namely completely simple semigroups. The first significant structure
theorem about semigroups deals precisely with completely simple semigroups (cf.
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Lallement [17]) For the case of finite semigroups, the property characterizing com-
pletely simple semigroups is equivalent to the semigroup being simple, i.e., having no
proper non-empty ideals. Based on Clifford's description [10] of free completely simple
semigroups, we describe the implicit operations on the pseudovariety CS of all finite
simple semigroups and we use it to describe the subsets of a free semigroup over a finite
alphabet which may be recognized by a homomorphism into a member of CS. As a
different kind of application, we study the join-irreducibility of CS, showing that it is a
consequence of a property of groups of implicit operations on finite groups.

2. Preliminaries

Let V be a pseudovariety of semigroups. The set finV of all n-ary implicit operations
on V consists of all V-indexed families n=(nA)AeV such that:

(i) nA:An-*A is a function;
(ii) if A,Be\ and h:A-*B is a homomorphism, then honA = nB°h".

Define a product on QnV pointwise: for n,peQnY, AeV and veA",

Then obviously QnV is a semigroup under this operation. Represent by x, the element of
QnV such that {xi)A:A"->A is the projection onto the ith component (i=l,.. . ,«). Then,
as it is well-known [9], the subsemigroup finV of £2nV generated by {xl,...,xn} is freely
generated by this set in the (Birkhoff) variety generated by V. The members of QnV are
called n-ary explicit operations on V. An important and common example of an implicit
operation which is not explicit on most pseudovarieties of semigroups is the unary
operation xm: for a finite semigroup S and seS, take sw to be the unique idempotent in
S which is a power of s. We will also consider the unary implicit operation x""1: with S
and s as before, if sa> = sr, let s™"^*2'"1.

We endow HnV with the initial topology for the homomorphisms into members of V,
which are viewed as discrete topological spaces. Then one may show that HnV is a
topological semigroup which is compact zero-dimensional having QnV as a dense subset.
Moreover, for a finite semigroup S, S lies in V if and only if there is a positive integer n
and a continuous onto homomorphism f2nV-»S. For details see [1,4,8,20].

Say that a subset L of QnV is V-recognizable if there is a homomorphism
<p:Qn\-*Se\ and K^S such that L = (p~1K. These subsets are intimately related with
the structure of QnV. Indeed, a subset L of finV is V-recognizable if and only if
L = K n QnV for some clopen (i.e., closed and open) subset K of flnV [3].

A \-pseudoidentity is a formal equality n = p between implicit operations on V of the
same arity. The V-pseudoidentity n = p is said to hold in S e V if 7rs = ps. In the following
we will always refer to "pseudoidentities" meaning "pseudoidentities over the class of all
finite semigroups". For a set Z of pseudoidentities, [£] denotes the class of all finite
semigroups in which all pseudoidenities from E hold. Certainly every class of the form
[£] is a pseudovariety. The converse was proved by Reiterman [20]. For example, the
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class CS of all finite completely simple semigroups and the class G of all finite groups
are given by

CS = [(xyxr = x<°, x<° + ' = x]

where xa+1 represents xxm and x '°=l abbreviates x^y = yxw = y.
Recall that completely simple semigroups may be represented as Rees matrix

semigroups, a result sometimes referred to as the Rees-Suschkewitich theorem. We will
use the following notation for Rees matrix semigroups [11]: given a group G, sets A and
/, and a / x A-matrix P with entries in G,

J?(G;A,I;P)

denotes the semigroup whose elements are all triples of the form (X,g,i) with Xe\,geG,
and iel, in which multiplication is given by

(X,g, i)(fi, h, j) = (X,gpillh, j),

where pitl is the entry of P in row i and column /z. We will always distinguish an
element of A and an element of / which will be taken to be 1 in both cases, and we
assume that the matrix P is normalized along row 1 and column 1: if either i = l or
A=l , then piX=\. Then gi—>(l,g, 1) defines an embedding of G in Jt{G\k,l;P) so that
we usually identify G with the subgroup {1} x G x {1} of Jt{G\ A, /; P).

In case G, A and / are also viewed as topological spaces, we endow the set
J((G;\,1,P) with the product topology. Since we are only interested in the case where
A and / are discrete spaces, we then have that J?(G;A,I;P) is a topological semigroup.

Lemma 2.1. The semigroup HnCS is completely simple and it has n M-classes and n
^-classes.

Proof. Let 7t,peQnCS. Then the pseudoidentities.

n(npn)a> ~l npn = n

hold in CS and, therefore, the corresponding equalities of implicit operations hold in
HnCS. Since nn10'1 = na>~ln = nw and if is an idempotent, from the second equality
above we deduce that n lies in the group with idempotent Tt". But, by the first equality,
the idempotents in nnCS form a rectangular band. Hence finCS is completely simple.

If wefJnCS starts with x; and ends with xJt then wa) = (x,xJ)
CD in any member of CS

and so Xj JjfwfflXi in HnCS. Moreover, since CS contains all finite rectangular bands, for
i ^ ;, X; and Xj do not lie in the same M- or if-class.
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If 7t = limwt in HnCS with wkefinCS, we may assume that all wk start with the same
x, and end with the same Xj. Let xi=wkpk with ptefinCS. Since HnCS is compact, we
may assume that \impk = p. By continuity of the product operation in HnCS, x, = 7tp.
Hence x, ^an. Analogous arguments show that x7-£?7î 2x,. Hence HnCS has n ^-classes
and n if-classes. D

Since finite completely simple semigroups do not satisfy any nontrivial semigroup
identities (because finite groups do not, cf. Evans [14]) QnCS is the free semigroup on
{x! , . . . ,x B }. This is not, of course, in contradiction with Clifford's characterization [10]
of the free completely simple semigroup, since we are not considering here the same
algebraic type. Nevertheless, the free completely simple semigroup on n generators is the
subalgebra of type (2,1) of HnCS generated by (xu...,x^, where the unary operation is
precisely x™"1. Thus, in view of Clifford's results, the above lemma and our structure
theorem for QnCS in the next section should be no surprise, and so the theorem could
perhaps be derived from these results. However, a more direct approach as the one
adopted here seems more appropriate, as it openly shows the interaction between group
implicit operations and implicit operations on CS.

3. Implicit operations on simple semigroups

In the following, we fix a positive integer n and we take m = n + {n— I)2. We will refer
to the canonical generators of the group QmG by x 1 ; . . . ,x n (projections to the first n
components) and yy with i,j = 2,...,n (projections to the remaining (n— I)2

components).
Consider the mapping

defined by

for AeG and a^a^&A where S = J({A;n,n;P) with P obtained from the matrix (a,7) by
adding a first row and a first column of l's.

Lemma 3.1. The mapping <p is a well-defined continuous homomorphism.

Proof. Suppose that h:A-*B is a homomorphism with A,BeG and let ak,ai}BA
(k=l,...,n;i,j = 2,...,n). Then

h'\ Jt{A; n, n; P) -> Ji{B; n, n; Q)

https://doi.org/10.1017/S0013091500007112 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007112


ON FINITE SIMPLE SEMIGROUPS 209

defines a homomorphism, where P and Q are defined as above for the matrices (ay) and
(h[a,j)) respectively, since

h'L(i,", Mk, a', /)] = (i, h(aajka'), I) = h\i, a, j)h'(k, a', Q.

Hence, for neQnCS,

<t>(n)B ohn = nTo (hT\Ar. = V o ns\An = h' o ^(n), , ,

where T = ^r(B;«,n;g). Whence <£(7r)eQmG.
It is straightforward to check that <f> is a semigroup homomorphism. As for

continuity, given any homomorphism a:QmG->G with GeG, the composite
a o </>:&„CS-»G is a homomorphism and, therefore, it is continuous since GeCS. Hence
<p is continuous. •

Next, consider the mapping

defined by

•/'(rc)s(si, • • •, sB) = nG[£Y,..., gn, (

for SeCS and Sx^.^SnSS where G denotes the J^-class of s,, and gk,gijeG are given
by

Su=(si s , ) ^ , ) - • (i, j = 2 , . . . , n). (2)

Lemma 3.2. T/ie mapping ^i is a well-defined continuous homomorphism.

Proof. Let 9:S-*T be a homomorphism with S, T e C S and consider elements
s , , . . . , s n eS together with the associated gk,gij given by (1) and (2). Then 6 maps the
J^-class G of s, into the ^"-class / / of 0(sj). It follows that the parameters hk,htj

corresponding to 6(s1),...,6(sn) according to (1) and (2) are precisely #(£*)>0(£y)
respectively. Hence

) , . . . , 0(sj] = itH[hlt..., fc.,(*y)]

= G[nG[glt...,gB,{g,jy\] since 7teftBCS
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Thus, we indeed have ij/(n) e&nCS. Moreover,

since i^(71)5(5!,...,sn) belongs to the ̂ -class of s,, and so i]/ assumes all its values in the
JP-class of xt.

Again ij/ is easily seen to be a homomorphism. To show that tj/ is continuous, let
fi:£inCS-*S be any homomorphism. Then Poij/:CimG-*S is a homomorphism defined on
a group, so that its image is in G. Hence fioip is continuous. Whence \j> is
continuous. •

We claim that <f> restricted to the Jf-class of x, and \\i are mutually inverse
isomorphisms. To establish this, consider first an arbitrary 7teQnCS in the J^-class of
Xj. Then, for SeCS and s1,...,sneS,

= ns(su...,sn),

where G denotes the Jf-class of sx and the g's are as in (1) and (2), since the
subsemigroup of S generated by {«! s,} is a homomorphic image of a subsemigroup
of Jl{G\ n, n; P) with P as before, by the Rees-Suschkewitsch theorem.

On the other hand, if neQnG, GeG, gk,gi}eG, and we take S = JS(G;n,n;P) with P
as before, then

where we identify geG with (l ,g, 1), so that

l(l,gl, l)(i,gt,()YlU,gj, J)(Lg» l)r=(1,1,0(7, l, l)=(l,gw, l)=«u

and

In view of the Rees-Suschkewitsch theorem, we have established the following:

Theorem 3.3. QnCS^J?(fimG;n, n;P) as topological semigroups, where P denotes the
matrix obtained from (y;j) by addition of a first row and a first column of Vs.

We next spell out what the isomorphism in Theorem 3.3 does to a word w6HnCS.
Denote by 9 the isomorphism QnCS-*^(CimG;n,n;P) issuing from the above discussion.
Write 0(w) =(i(w),y(w),t(w)). Then i(w) and t(w) locate respectively the 3fr- and if-class
of w and so they are the indices of the first and last letter in w. The description of the
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group component is a bit more complicated. In general, we have the following
expression:

yW = « [ x 1 ( x i x 1 H " - 1 x 1 w x 1 [ ( x 1 x / x 1 ] ' » - 1 ) (3)

where i = t(w) and j = i{w) and <f> was defined above. In particular, if w lies in the
J^-class of xu i.e., if it starts and ends with xx, then y(w) = <p(w). Moreover, in view of
the definition of <f>, </>(w) = 011(w) where <pab(w) is the word obtained from w by inserting
ytj between xt and Xj whenever an occurrence of x, is followed by an occurrence of Xj in
w with i^a and j^b. For example, 4>{xlxix3x2) = x2y22

x2xix3y32x2-
In the above discussion we singled out the Jf-class of xx. But the same argument

applies to any other Jf -class. For the ,^-class Hab of the element xaxb, the isomorphism

CinCS-+J?(timG;n,n;Pab)

is given by a formula analogous to (3) with the mapping <f)ab instead of <f> and the matrix
Pab normalized so as to have row a and column b filled with l's.

Corollary 3.4. A language L £ QnCS is CS-recognizable if and only if the language
(l>ij(Lij)^QmG is G-recognizable for each i, je{l,...,n) where Ly is the set of words in L
which start with x; and end with Xj.

Proof. By Theorem 3.3, each Htj is clopen. Hence a subset of finCS is clopen if and
only if its intersection with each Hi} is clopen. Since each mapping </>,7: flnCS—>QmG
extends to a continuous homomorphism f2nCS-»nmG which, restricted to HfJ-, is an
onto isomorphism of topological semigroups, K s Q n C S is clopen if and only if each
0 y ( /Cn/ / y )£ f i m G is clopen. Finally, since $y maps finCS into fimG, it suffices to apply
the characterization of V-recognizability quoted in Section 2, noting that, if L =
K n QnCS, then L,j = Kn Hiy •

If one wishes to make the language transformations </>y more symmetrical—at the
expense of dealing with more variables—one just observes that the type of construction
in this section also yields an embedding (as a closed subsemigroup)

ClnCS^ Jt(Cln+n2G;n,n;{yiJ))

for which the image of weQnCS which starts and ends with Xj has group component
the word t//(w) obtained from w by inserting ytJ between x; and x} for any i, je{l,...,n}.
Hence, if L^ftnCS is such that every word in L starts and ends with x t and

n2G is G-recognizable, then L is CS-recognizable.

4. Join-irreducibility of CS

By the already mentioned theorem of Reiterman [20], sub-pseudovarieties of a given
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pseudovariety V are defined by formal equalities between implicit operations on V.
Thus, knowledge of the structure of finCS should lead to information about the lattice
of sub-pseudovarieties of CS. In this section we indicate an application of Theorem 3.3
of this type, by considering the join-irreducibility of CS in that lattice. Since the
structure theorem reduced the description of HnCS to the study of SlmG, it is natural to
expect that the work of this section will translate the join-irreducibility of CS to a
property of the groups HnG.

As a starting observation, we note that G is join-irreducible. To prove this assertion,
we first point out that one may embed the symmetric group Sn in the alternating group
A2n, for example by sending osSn to the permutation a' such that a'i — ai if i^n and
a'i = n + o(i—ri) if i>n. Hence any infinite set of finite alternating groups generates G.
Now, if G £ V v W, then, for each n ̂  5, An e V v W. But An is a simple group, and so it
follows that /4neV or AneW (for a much stronger statement, see [12, Th. V.I 1.1]).
H e n c e G c V o r G s W .

Let V be any pseudovariety of finite simple semigroups. Consider the associated
congruence

This is a closed fully invariant congruence on finCS (see [2] for further properties). Let
H be a maximal subgroup of QnCS. Then the class Hy of the idempotent e of H for the
congruence 6n v restricted to H is a closed fully invariant subgroup of H.

Lemma 4.1. With the above notation, the following are equivalent:

(i) V satisfies no nontrivial CS-pseudoidentities in n variables;

(ii) for each maximal subgroup H ofClnCS, Hy={e};

(iii) for some maximal subgroup H of£lnCS, Hy = {e}.

Proof. Clearly (i) => (ii) and (ii) => (iii). So, assume that H is a maximal subgroup of
n {}
By Green's Lemma [11], for any other maximal subgroup K of HnCS, there are

a,P,y,definCS such that

H^K , K-*H
a a n d s

nh^ouip p\-*ypo

are mutually inverse bijections. Hence we obtain (ii). Thus, if n and p are distinct
members of HBCS and \\=n = p, then n p must lie in distinct maximal subgroups.
Moreover, in this case we have \^=n'°=pto, so that 0nV identifies two distinct
idempotents e and / . Suppose, for instance, that e and / are not ^-related. Then e and
(fe)m are 0n,v-equivalent but not ^-related. Hence., we may assume that eS£f Using
Green's Lemma as above and the fact that 9n v is fully invariant, we may further assume
that e = x™ and f = (x2xl)

a>. Applying an endomorphism of nnCS which exchanges xt

with x2, we obtain also x^O^XyX^y0. Hence (x1x2)
c°(x2x1)

O)0^v^2Jci) a n d s o
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x'?0nV(x2xl)'
0- Consequently x^entV(xlx2)'°(x2xl)

a'. But (x1x2)o>(x2x,)a> is one of the free
generators (y22) °f t n e maximal subgroup H containing x? according to the identifica-
tion with HmG of Section 3 (see (2)). Hence Hv^{e}, in contradiction with the
hypothesis. •

From hereon, take H to be the maximal subgroup of HnCS containing xu where n is
given by the context.

By Reiterman's theorem [20], if V is a proper sub-pseudovariety of CS, then V
satisfies some nontrivial CS-pseudoidentity, say in n variables. Thus Hv^{e}. If W is
another proper sub-pseudovariety of CS, we may change n so that also / / w / { e } . Since
^ , v v * = S , v n ^ , w . we have HyvW = HvnHw. So, to conclude that V v W # C S it
would suffice to show that the intersection of two nontrivial closed fully invariant
subgroups of &nG is again nontrivial.

The corresponding property for free groups is certainly true. Indeed, suppose that N
and K are nontrivial normal subgroups of a free group F such that N r\K = {l}. Then,
for l # a e i V and l^beK, aba'^'1 eJV nK and so a and b commute. Thus, the
subgroup generated by {a, b} is a nontrivial abelian subgroup of F. Since it is free by
Schreier's theorem, it must be cyclic. Hence there are integers k and / such that
ak = b'^ 1, in contradiction with N n K = {1}.

However, our proposed property for QmG fails for m=\.

Example 4.2. For a prime p, let Gp denote the class of all finite groups without
elements of order p. Let

By [6], Np is a nontrivial subgroup of fixG. If p and q are distinct primes, clearly the
pseudovariety H = G p v G , contains all finite cyclic groups and so H satisfies no
nontrivial pseudoidentity in one variable. Hence Npn,Nq = {l}. However, as we already
observed, H ^ G and indeed H satisfies nontrivial G-pseudoidentities in two variables.

Nevertheless, we have the following:

Theorem 4.3. For tn^.2, any two nontrivial closed normal subgroups of ClmG have a
nontrivial intersection.

This result was conjectured by the author based, in part, on the above discussion. It
has since been established by M. Jarden in a private communication. A proof of
Theorem 4.3 is included in [5]; it is based on Jarden's proof but avoids getting too
involved in the theory of profinite groups [15].

We sum up the discussion in this section in the following:

Theorem 4.4. The pseudovariety CS is join-irreducible.

Proof. First, if V and W are sub-pseudovarieties of CS satisfying nontrivial
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CS-pseudoidentities in n^.2 variables, then V v W also satisfies a nontrivial CS-
pseudoidentity in n variables. To prove this, it suffices to use Lemma 4.1 and Theorem
4.3.

Next observe that, for any two pseudovarieties V and W of semigroups,

(V v W) n CS = (V n CS) v (W n CS).

Indeed, for the nontrivial inclusion ( £ ) , (suppose SjeV, S2eW, U is a subsemigroup of
SlxS2 and T e C S is a homomorphic image of U. Then T is also a homomorphic
image of the minimal ideal of U, and so we may assume U e CS and, therefore, we may
assume S 1 ,S 2 eCS. Hence CS is join-irreducible in the lattice of pseudovarieties of
semigroups. •

The group fimG is obtained by completion of the free group on m generators with
respect to the initial topology for the homomorphisms into finite groups [4]. This
topology on free groups was introduced by M. Hall [16] and has recently been used by
Pin [19] in connection with a problem proposed by Rhodes [21]. The group HmG is
also a free profinite group, and it is based on known properties of such groups that
Jarden obtained his proof of Theorem 4.3.
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