
Cite this article: Breiner, S., Pollard, B., Subrahmanian, E. (2019) ‘Functorial Model Management’, in Proceedings
of the 22nd International Conference on Engineering Design (ICED19), Delft, The Netherlands, 5-8 August 2019.
DOI:10.1017/dsi.2019.202

ICED19

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED19
5-8 AUGUST 2019, DELFT, THE NETHERLANDS

ICED19

FUNCTORIAL MODEL MANAGEMENT

Breiner, Spencer (1); Pollard, Blake (1,2); Subrahmanian, Eswaran (1,2)

1: National Institute of Standards and Technology (NIST); 2: Carnegie Mellon University

ABSTRACT
In this paper we use formal tools from category theory to develop a foundation for creating and managing
models in systems where knowledge is distributed across multiple representations and formats. We
define a class of models which incorporate three different representations---computations, logical
semantics, and data--as well as model mappings (functors) to establish relationships between them. We
prove that our models support model merge operations called colimits and use these to define a
methodology for model integration.

Keywords: Semantic data processing, Systems Engineering (SE), Information management, Model
management, Data integration

Contact:
Breiner, Spencer
National Institute of Standards and Technology (NIST)
Information Technology Lab
United States of America
spencer.breiner@nist.gov

1963

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

1 INTRODUCTION

In this paper we consider the problem of model management (MM) in systems of distributed
knowledge representation. We intend the term “model” to apply liberally, including more-or-less any
structured mathematical or computational representation of the world, ranging from databases to differ-
ential equations. Such representations are necessarily scoped by particular domains and demands, and
when new applications arise they often require the extension and integration of existing models. It is
inevitable, then, that practical systems for knowledge representation must provide a space for interaction
between different models built for different purposes using different formalisms.

Towards this end we argue for the use of category theory (CT) as a foundation for MM. CT is the
study of compositional processes, providing a mathematical theory of the way that complicated systems
are built up from simpler pieces. Drawing on applications in programming language theory, formal logic
and databases, we define a class of models which incorporate computation, data and semantic modeling
into one package, as well as model transformations which relate them to one another. We prove that these
structures support a minimal merge operation called a pushout, and use this to develop a methodology
for model integration and evolution, illustrated with an example from collaborative design.

Section 2 gives a brief review of model management applications in engineering. Section 3 is short
but technical, giving formal definitions for our models and model transformations as well as a proof
that these are closed under a family of algebraic integration operations called colimits. To make things
more concrete, Section 4 presents an example of such a model, which is used in Section 5 to motivate a
general methodology for model integration and evolution.

2 MODEL MANAGEMENT

Model management (MM) is a sub-discipline of knowledge representation concerned with the prob-
lem of organizing and synchronizing multiple overlapping representations. In complex contexts like
science, engineering and commerce we are inescapably faced with the need to apply many different mod-
els built for many different purposes expressed in many different formalisms to solve a given problem.
For example, in Chandrasegaran et al. (2013) the authors identify 30 different classes of representations
(e.g., structural analysis) involved in a typical product-design process, and each of these encompasses
a variety of more specific model types (e.g., mechanical, elastic, finite-element). Moreover, the infor-
mation which goes into these representations must often be assembled from many different sources and
stored in many different formats.

With such a broad purview, it is not surprising that elements of MM have already been explored in
engineering design. One early example is the ASCEND system (Piela et al., 1991), which was devel-
oped to model chemical engineering processes by composing unit operations. Using an object-oriented
approach, components could be modeled independently and then combined to construct global opti-
mization models. These could then be analyzed for unit consistency and degrees of freedom before
passing to an appropriate solver based on the structure of the resulting model.

Around the same period, the n-dim group (Levy et al., 1993; Subrahmanian et al., 1997) developed a
prototype-based system which used graphs and graph transformations to manage information exchange
and internal coherence for several collaborative engineering projects. This work later influenced Wynn
et al. (2009), who developed a configurable diagrammatic modeling platform called P3 for the creation
and modeling of prototype engineering solutions.

There are other areas of engineering design where MM has been recognized as an important issue,
although the connection with more abstract model integration may not be recognized. One example is
the management of configurable products and product variety (Männistö and Sulonen, 1999), where
different configurations with different model schemas must be compared to one another. More recently,
Eckert et al. (2017) has identified data integration for product and process designs as an obstacle in
contemporary engineering design.

A common feature in all these problems is the need to identify overlapping concepts and data
which occur in distinct contexts. A rather different approach to addressing such problems has emerged
from the field of database management, specifically with regards to problems like data integration,

ICED191964

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

federation and migration. Bernstein et al. (2000) sets out a vision for addressing these challenges
through the use of model mappings, leading to the creation of a model management group at Microsoft
Research (Microsoft Research, 2001–2011) which explored many practical and theoretical aspects of
these problem from 2001 to 2011.

Category theory (CT) is the mathematical study of compositional mappings. Once the MM problem
has been framed in these terms of mappings, CT becomes a natural candidate with which to formulate a
solution. In fact, this was already recognized in some of the group’s earliest work (Alagić and Bernstein,
2001). While there is some overlap between our work and theirs (notably, the use of pushouts for
model integration), the earlier work assumes a category of models and mappings as given and considers
the properties it might exhibit; here we define those structures for ourselves and verify the desirable
properties directly.

Our approach is closer to the recent paper Schultz et al. (2016), where schemas and mappings are
defined as categories and functors. This uses the fact that CT is highly expressive meta-modeling lan-
guage, able to support translations from database schemas (Rosebrugh and Wood, 1992; Spivak, 2012),
OWL ontologies (Patterson, 2017), UML class diagrams (Sarala et al., 2018) Entity-Relation diagrams
(Johnson et al., 2002) and more. We can then use mappings between categories (called functors) to
express relationships between any of these formats.

Our work here builds on Schultz et al. (2016) in two main respects. First, as we saw above, practical
MM requires connecting to tools and solvers, so we place a much stronger emphasis on the role of
computation in our models. Second, we encapsulate computations, semantic models and data into a
single package, providing a more coherent interface for managing all three in a uniform way.

3 A CATEGORY OF INTEGRATED MODELS

In this section we provide formal definitions for our models and model tranformations. These incor-
porate three distinct types of representation: computations, semantic/ontological modeling and data.
We also prove that these structures are closed under algebraic integration operators called colimits
(specifically, pushouts).

Our approach is based on a branch of mathematics called category theory (CT). By defining our
models in terms of such mathematical structures, we can guarantee that operations like model integration
and composition of transforms are well-behaved. Unfortunately, the material is quite technical and a
proper introduction is beyond the scope of this paper. However, this section may be omitted from a first
reading without interrupting the flow of the discussion, and we will use an example in the next section
to explain the intuitions underlying our definitions.
Definition 1. Fix a Cartesian closed category Type and a functor eval : Type→ Set. In this context,
a model S is defined by:

• a (finitely-presented) category1 S,
• a projection functor2 π : S→ 2,
• an implementation functor impl : S1 := π−1(1)→ Type,
• and a data functor data : S→ Set,
• making the diagram to the right commute.

S1

impl
��

⊆ S

data
��

Type
eval
// Set.

Because our models are defined in terms of categorical structures, we can easily define model
transformations using functors and natural transformations.
Definition 2. A model transformation F = (F ,ϕ) : S→ T consists of:
• a functor F : S→ T commuting over 2
• which agrees on implementation: implS = F .implT
• and a natural transformation ϕ : dataS ⇒ F .dataT which restricts to the identity on types.

Since both functors and natural transformations can be composed, it is clear that these mappings form
a category which we denote Mod.

1 By abuse of notation, we use the same symbol S to refer to a model and its underlying schema.
2 Here 2 is the category {0 ≤ 1} with two objects and one non-identity arrow.

ICED19 1965

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

The model integration approach we describe in the Section 5 relies on the following theorem, which
states that our models are closed under a class of algebraic operations called pushouts (more generally
colimits). These allow us to construct a merged model from two (or more) component models, but only
once the overlapping elements of the models (schemas, data and computations) have been specified.
Theorem 1. The category of models is closed under finite colimits.

Proof Sketch.We use the standard fact (Adámek and Rosicky, 1994) that both schemas (finitely-
presented categories) and data instances (Set-valued functors) are, independently, closed under colimits.
We can then knit these together using a second construction called a (left) Kan extension (denoted 6).

We give an operational construction of the pushout; it’s correctness follows by unwinding the
definitions. Other colimits can be constructed from pushouts using standard reasoning (Awodey, 2010).

By assumption, we begin with two transformations S O
(L,λ)
oo

(R,ρ)
// T . First, construct a pushout

of schemas P = S⊕
O
T, which comes equipped with two additional functors S

I
// P T

J
oo .

We can then use the universal property of the pushout to define the functors π : P→ 2 and
impl : P1 → Type.

Next, we lift all of our data instances and mappings to the common schema P using Kan extensions.
Formally, this relies on both the functoriality (∗) and the counit of the Kan adjunction ε : 6L(L.X)⇒ X .
For example, starting from the natural transformation λ : dataO ⇒ L.dataS over O, we construct the
following transformation over P (and similarly for ρ):

6L.I (dataO)
6L.I (λ)+3 6L.I (L.dataS)

(∗)
= 6I (6L(L.dataS))

6I (ε) +3 6I (dataS) (1)

With these in one place we can construct the pushout of the data instances (i.e., Set-valued functors)
to form an integrated data set on the joint schema. This comes equipped with maps relating the original
data to that in the integrated model. These define the necessary inclusion mappings to complete the
pushout in Mod.

We note one particularly important feature of this construction: the use of labeled nulls (also called
Skolem variables). These allow us to define canonical database extensions even in the absence of infor-
mation which is required by the data model. For example, suppose we extend a schema by adding a
new, unrelated attribute to one table. We cannot infer these values from the original data, so instead we
create a labeled null to stand in its place. The same problem occurs whenever we merge schemas which
contain independent information. In contrast to the standard use of database nulls, with one global value,
here each variable has an independent identity which can participate (symbolically) in constraints and
calculations.

4 AN EXAMPLE FROM ENGINEERING DESIGN

In this section we explain the categorical structures defined in the previous section by reference to
a concrete example from collaborative engineering. In this scenario two teams are collaborating on a
design project, with one responsible for the material design of a component and the other for its structure.
In this section we focus on the structural design team, with an eye towards integration in Section 5.

A category is a mathematical structure with two classes of elements called objects and arrows, which
are analogous to the nodes and edges in a directed graph. Categories extend the geometric structure of
graphs with additional algebraic operations that let us combine objects and arrows in different ways. For
our purposes here, the most important will be composition f .g and pairing 〈f ,g〉.

Figure 1 shows a database fragment from the structural engineering team. It contains two tables,
Build and Material, which will correspond to two objects in our categorical schema. Furthermore,
the last column of the Build table establishes a foreign-key relationship between the two (indicated
here by ‘@’), corresponding to an arrow material : Build→ Material.

ICED191966

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

While some columns store foreign keys, most store concrete data values. These also correspond to
arrows in the schema, but ones which target abstract datatypes rather than other tables. For example, the
second column of the Material table defines an arrow name : Material→ String.

Consequently, datatypes like String are also objects in our schema. In addition to simple types
like String, schemas may include complex types like lists, user-defined classes (as in object-oriented
programming) and outside data formats. Here we will assume a binary blob datatype CAD as well as two
locally-implemented classes MatProp and TestResults which contain materials-property profiles
and component testing results, respectively.

The goal of our hypothetical team is to produce an optimization algorithm which will accept a pre-
liminary CAD design for the part along with a material profile and return a new geometry optimized to
the given properties. Computations also appear in our schema, as arrows from datatypes to datatypes.
Here the structural team’s output corresponds to an arrow optimize : CAD× MatProp→ CAD.

Thus, all in all, our schema contain two kinds of objects–entities (tables) and types–and three kinds of
arrows: correspondences (entity-to-entity), attributes (entity-to-type) and computations (type-to-type).
Formally, our definition encodes these distinctions as a typing map π : S→ 2, where the target category
2 has exactly two objects and three arrows, corresponding to the 2+3 italicized terms listed above.

One advantage of collecting computations and entities in one place is that we can encode data con-
straints that incorporate both. For example, we would like to formalize the workflow requirement of the
structural engineers’ design project: the final model for a Build should be determined by applying
the optimize algorithm to the prelim model and the build’s material.

The problem is that the structural team has no way of linking theMaterial entity associated with
a Build to the MatProps datatype required by the optimize algorithm. If the team had access
to an additional attribute matProps : Material→ MatProps, though, we could formulate the
workflow requirement using composition and pairing:

build.final = build.〈prelim,material.matProps〉.optimize (2)

The final schema is shown in Figure 2, with entities at the top and types at the bottom. The schema
is an abstract syntax which identifies the elements of the domain (vocabulary) and how they fit together
(grammar). Complex terms built from composition, pairing and other operations form the statements
of the language, and these can be analyzed using equations, as above, or through more complex
relationships.

In fact, there are two schemas here. S includes everything except the dashed matProps arrow,
and represents the information that the structural engineering team already has. S′ includes both solid
and dashed arrows, and represents the information that they want. The two are connected by functor
X : S→ S′ which identifies one schema as a subgraph of the other.

The remaining elements of a model concern its semantics: what is the meaning of the elements
that appear in a schema. First of all, CT provides a variety of semantic contexts which correspond to

Material name composition matProps
@mat1 IronChromium Fe-14Cr-4Ni-4 ???
@mat2 AluminumSilicon AlSi-10Mg ???
@mat3 TitaniumAluminum Ti-6Al-4V ???

Build date batchID prelim final test material
@build1 1/25/19 3.4.1.20.19 〈data〉 〈data〉 {wear=fail,...} @mat1
@build2 1/28/19 3.4.1.20.19 〈data〉 〈data〉 {wear=pass,...} @mat1
@build3 2/15/19 5.2.2.2.19 〈data〉 〈data〉 {wear=fail,...} @mat2
@build4 3/2/19 3.7.2.15.19 〈data〉 〈data〉 {wear=pass,...} @mat1
@build5 3/7/19 5.2.2.2.19 〈data〉 〈data〉 {wear=pass,...} @mat2
@build6 3/10/19 8.4.3.1.19 〈data〉 〈data〉 {wear=pass,...} @mat3

Figure 1. A database fragment from S = StructEng. The empty matProps column will be the
target of our integration procedure in Section 5.

ICED19 1967

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

Build

batchID

**

date

��

test

''

material
//

prelim

��

final

��

Material

matProps

composition

��

name

��

CAD× MatProp
optimize

//

build.final=build.〈prelim,material.props〉.optimize

CAD Date TestResults String MatProp

Figure 2. Schema for the model S = StructEng. The dashed arrow matProps, however,
belongs to a schema extension S ⊆ S′.

different types of interpretations. Here we use two categories, Type and Set, to model computations and
data, respectively.

Modulo some important technicalities (especially regarding stateful aspects of computation), we can
think of a statically-typed programming language like Java or Haskell as a category. Its objects are types
and its arrows are methods that takes one type as an input and returns another as output. Composition
is defined by calling one method on the output of another. Set is similar, except that we exclusively
consider the input-output behavior of functions, without regard to the way that values are determined.

We can then use mappings called functors to assign meaning to our schematic elements. For
example, the team’s implementation of the optimize method and other datatypes defines a func-
tor impl : S1 → Type, where S1 ⊂ S is the subschema consisting of types and computations. Similarly,
the team’s database defines a functor data : S→ Set. Notice that the latter includes the entire schema,
not just entities and correspondences, because attributes (data columns) involve types as well as entities.

The final element of our model is a coherence constraint, specifying that the input-output behavior
attributed to a method by the data functor should agree with the actual behavior computed from impl.
We can formalize this diagrammatically (see Definition 1) using the fact that running a method and
evaluating its outcome defines a third functor eval : Type→ Set.

5 MODEL INTEGRATION

In this section we use the models and mappings defined previously to describe a new method and
methodology for model integration. In contrast to most discussions, which focus on identifying the
minimal merge of two models (ideally automatically), here we emphasize the importance of extending
a minimal integration with additional bridging structure to mediate mismatches between distinct but
related concepts.

Our integration procedure can be broken down into four steps, as shown in Figure 3. Given two
models S and T to be integrated, the first step is to identify the overlap O. Next, one constructs the
minimal merge P via pushout. The resulting merged model is then extended with additional bridging
structure. Finally, one typically restricts attention to a smaller chunk of the merged and extended model.
We illustrate this procedure by integrating the structural engineering model described in Section 4 with
the data from the materials engineering team who formulates and tests the raw materials.

Write S = StructEng for the structural engineering team’s model. Recall that S involves two CAD
models, one preliminary and another optimized, and the latter is created by an optimization algorithm
which takes a material-properties profile as input. In order to collect the necessary information both
now and in the future, the structural engineers would like to interface with the material team to identify
nominal values for the necessary properties. The material team’s schema and data define a second model
T =MatEng.

The materials team creates new material formulations in batches, and tests each batch to record the
resulting material properties. A fragment of their model is shown in Figure 4. Our goal in this section
is to fill the extended schema from the previous section (i.e., the arrow matProps : Material→
MatProps) through reference to the data in T.
Step 1: Match. We begin by identifying overlapping elements (matches) which are shared between the
two models. We can consider this question at three separate levels: type, schema and data. On the type

ICED191968

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

Input: Models S, T; Schema extension X : S→ S′.
1) Identify the overlap S F

← O G
→ T

S

H

X
// S′

M��
O

F ==

G !!

P
L
// E

(1) (2) (3) (4)

T
K

>>

2) Construct a minimal merge (pushout) P

3) Extend with bridging structure L : P→ E

4) Restrict to a smaller model S X
→ S′ M

→ E

Figure 3. Four phases of model integration.

side, we can consult the implementation functor to identify matching types and computations; since
model transformation functors are required to commute over implementation, any types in O must be
implemented the same way in S and in T. In this case, S and T share three types, String, Date and
MatProp, and no computations.

Unfortunately, contra the vision of Bernstein et al. (2000), universal matching operators for onto-
logical and data elements cannot exist. The easiest way to see this is to identify two different semantic
situations (corresponding to different integrated models), both of which are compatible with the same
component models. For example, semantically distinct data elements may share all the same attribute
values, so that they are “observationally equivalent”. Usually we correct for this by keying, but keys
are model-specific and cannot be used to disambiguate data elements coming from different models. In
matching this leads to problems like, e.g., deciding whether John Smith from model A corresponds
to the John Smith in model B who lives at 123 Park Avenue, or the one who lives at 456
Seventh Street.

Fortunately, there are a variety of heuristic methods that can assist users by prototyping schema and
data overlaps. Matching based on names is one obvious strategy: both models contain a Material
table, suggesting an overlapping element in their schemas. Although names play no role in model
transformations—namespaces in different categories are disjoint—common usage can still provide a
useful guide for automated prototyping of maps.

Such linguistic matches need not be exact; using typeside computation we can implement arbitrarily
complicated similarity measures (e.g., edit distance, word2vec) on String and other types to assess
possible matches. Conversely, we cannot assume that matching terminology implies an actual overlap:
both S and T contain date fields (associated with Build and Batch), but there is no indication that
these represent the same information.

As well as matching based on similarities in the namespace of a model, we can also try to identify
“correspondences” in the data itself (Bernstein and Melnik, 2007). For example, there is a fairly unique
string "Fe-14Cr-4Ni-4" which occurs in both Material tables. This suggests that the two data
elements @mat1∈ StructEng and @mat3∈MatEng might be matched in the overlap. This is partic-
ularly powerful, as it allows us to infer schema matches as well as data; here we can infer that the
composition attribute in S corresponds to the chemistry attribute in T.

The two approaches are complimentary. When we find namespace matches, we can use them to
narrow the search for correspondences. When matches from names and correspondences line up, this
provides independent support in our assessment of a match. Though not demonstrated in our example,
correspondences can also invalidate potential namespace matches.

We should emphasize that our integration procedure is agnostic with respect to (or better yet, para-
metric over) the strategy for identifying matches. The problem lacks a canonical solution and different

Batch @batch4
material:Material @mat3

date:Date 1/20/19
thermProps:ThermProps 〈conductivity = . . .〉
testProps:MatProps 〈elasticity = . . .〉

material
// Material @mat3

chem:String Fe-14Cr-4Ni-4

Figure 4. A fragment of the model T =MatEng with selected data values.

ICED19 1969

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

matching algorithms may be appropriate for different contexts (e.g., domain-specific databases). Con-
sequently, we neither encourage nor discourage any particular matching algorithm, instead providing a
precise and flexible context for defining the problem and its potential solutions.
Step 2: Merge. Next we use the diagram constructed in Step 1 to build the pushout P = S⊕

O
T, which

represents the minimal merge of S and T relative to the specified overlap O. The merged model comes

equipped with transformations S P
−→ P

Q
←− T mapping the component models into the merge. The

merged model consists of a copy of S and a copy of T side by side, except that those objects and arrows
which appear in the overlap O are shared between the two copies.

Here we can see an example of the use of labeled nulls. Suppose the MatEng model also contains a
brass alloy: 〈@mat7 : chemistry = Cu− 7Zn− 3〉. This has no match in the StructEng model, so
the the integrated database has no name attribute for that entry. Rather than leaving such holes blank, the
6 and colimit operations create labeled variables to track their provenance (e.g., @mat7.name). Some-
times we can infer missing information from these constraints: if we formalized the intuitive naming
scheme in the StructEng model we could deduce that @mat7.name="CopperZinc".
Step 3: Extend. In the third step of the integration we extend P with additional bridging structure.
This allows us to introduce new model elements which do not occur in either component but which are
needed to interpolate between them.

Recall that our goal is to identify the nominal material properties for each material in the database.
However, the materials engineers associate material properties with batches, not with materials, and
we will need to aggregate these empirical values in order to obtain the desired nominal quantities. We
proceed in three steps.

First we observe that any input-output function f : X→ Y can be converted into an auxil-
iary function Fiberf : Y→ List[X]. Here Fiberf(y) is a list of all the elements x ∈ X such
that f(x) = y (called the inverse image or the fiber of f over y). In particular, the T-arrow
material : Batch→ Material generates an associated mapping Material→ List[Batch]
which collects together all the batches of each material.

Next we can apply the testProps arrow to each batch, one by one, to generate a list of
MatProps. In computer science, especially functional programming, this is refered to as a “map”
operation. More specifically, any function f : X→ Y defines an associated function map(f) which acts
on lists in an obvious way, sending 〈xi〉 7→

〈
f(xi)

〉
.

Finally, we need a way of collapsing this collection of material profiles down to a single nominal
value. We model this as a computation List[MatProp]→ MatProp. If a MatProp element is just
a vector of properties, then this computation could be be implemented by simply averaging each com-
ponent. In other circumstances we may need a more sophisticated algorithm to aggregate these values.
For example, destructive testing may mean that we do not have all property values for each MatProp
element so that a simple average is not appropriate. Alternatively, we may want to factors in the uncer-
tainties associated with of different measured values, giving greater weight to more precise observations.

In total, then, we add three new arrows into the extension model E, in addition to some constraints
associated with the Fiber construction:

batches : Material→ List[Batch]
map(testProps) : List[Batch]→ List[MatProp]
aggregate : List[MatProp]→ MatProp

Step 4: Restrict. In the final step of the integration we clean up our model. The integration E contains
a lot of extraneous material about batches and thermal properties in addition to the MatProp attribute
and matProps arrow that we want. We can amend this by projecting to a smaller schema.

Specifically, we create a functor M : S′→ E in order to extract the instance data we want, where
S′ ⊇ S is the extension schema defined in the previous section. In order to define M , we first observe
that S already sits inside the pushout P, and hence inside E as well.

Consequently, the only element of the M -mapping that must be defined is the image of the new
attribute matProps : Material→ MatProps. The choice is obvious given our work building E;
we need to send matProp to the composite batches.map(testProps).aggregate.

ICED191970

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

Finally, we can use the mapping M to pull data from the integrated, extended schema E back to the
target S′. This black-boxes the manipulations used to construct the matProps values, storing only the
desired data values as attributes.

There are a few points worth noting before we close.
First, the procedure described above is best regarded as a rational reconstruction of the data inte-

gration process, and is pragmatically naïve in a number of ways. For example, our model makes little
provision for typos and other data value mismatches; if we (correctly) match two data elements and
their address attributes, but one contains "100 Bureau Dr."while the other has "100 Bureau
Drive", we are left with the unsavory consequence that "Dr."="Drive" as strings. Our model can
handle this (remove address from the overlap and introduce a disambiguation function in the bridg-
ing structure), but in a practical setting this sort of workaround should be handled automatically. At the
same time, our reconstruction can be quite valuable in setting up such heuristics and recognizing when
they are necessary.

Second, our approach provides the foundation for a distributed, bottom-up approach to shared
semantic representations. Although our example focused on a binary integration problem, the colimit-
based method generalizes immediately to n-component integration. This could allow for the creation of
domain-specific libraries which can be mixed together to build new models and applications.

In our example, the chemistry/composition attributes are semantically deficient, using a
String attribute to represent what is obviously some sort of more structured data. It would be bet-
ter to design a new computational type to store this information, with explicit hooks to related concepts
like Element and chemicalComposition. Designing such a package may be quite complicated,
and is rarely worth the effort for a single user, but could be quite valuable if shared across a community.
By encoding domain knowledge into our models, we make future integrations and extensions easier; for
example, a better model of chemical composition would make it easier to analyze differences between
iron- and nickel-based alloys.

Finally, we note that our methodology can be applied incrementally to evolve and improve models
over time. A careful reader may have recognized another correspondence in our example, between
the batchID associated with a Build and the date associated with a Batch. This is unlikely to
represent a direct match between objects (multiple builds refer to the same batchID), but does indicate
the presence of a bridging arrow Build→ Batch in the extension E. We didn’t need this information
today so we were free to ignore it, but if tomorrow we need to track the provenance of our material to
respond to a product recall we can build on the work we have already done to pull in this information as
well.

CONCLUSION
This paper has developed some introductory steps in the formal foundation of MM, and opens up a

range of research questions both theoretical and practical.
Our models involve several parameters which could be tuned to provide greater flexibility. For

example, the base category 2 provided an abstraction barrier between entities and types, and could
be generalized to allow for more sophisticated abstractions.

Other interesting questions concern the relationship between bridging structure and other stages of
the integration. For simplicity, we included a strong requirement of type-side commutativity in our
mappings, but this could be weakened to a natural transformation, incorporating type-casting directly
into our model transformations. Similarly, weighted colimits are a higher-dimensional generalization of
ordinary colimits, and could be used to incorporate some types of bridging structure into the overlap
between models.

Practically speaking, there is much more to MM than just integration, and we can further validate our
models and methodology by applying them to problems like documentation and traceability, data clean-
ing and transformation and the incorporation of tools and workflow, just to name a few. Future work will
test our framework against the model management desiderata outlined in Bernstein and Melnik (2007).

Another important topic is implementation. In fact, much of the discussion here can already be
implemented in the Algebraic Query Language; see (removed for review) for an earlier version of our
model integration method. Further progress will require a careful consideration of the runtime structures
which manage and modify our models. It would also be quite useful to extend our results to more
expressive schemas, perhaps through reference to structures in the Type category (e.g., coproducts,
function types).

ICED19 1971

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

REFERENCES

Adámek, J. and Rosicky, J. (1994), Locally presentable and accessible categories, Vol. 189, Cambridge
University Press.

Alagić, S. and Bernstein, P. A. (2001), A model theory for generic schema management, in “International
Workshop on Database Programming Languages”, Springer, pp. 228–246.

Awodey, S. (2010), Category theory, Oxford University Press.
Bernstein, P. A., Halevy, A. Y. and Pottinger, R. A. (2000), “A vision for management of complex models”, ACM

Sigmod Record, Vol. 29 No. 4, pp. 55–63.
Bernstein, P. A. and Melnik, S. (2007), Model management 2.0: manipulating richer mappings, in “Proceedings

of the 2007 ACM SIGMOD international conference on Management of data”, ACM, pp. 1–12.
Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F. and Gao, W. (2013),

“The evolution, challenges, and future of knowledge representation in product design systems”,
Computer-aided design Vol. 45 No. 2, pp. 204–228.

Eckert, C. M., Wynn, D. C., Maier, J. F., Albers, A., Bursac, N., Chen, H. L. X., Clarkson, P. J., Gericke, K.,
Gladysz, B. and Shapiro, D. (2017), “On the integration of product and process models in engineering
design”, Design Science 3.

Johnson, M., Rosebrugh, R. and Wood, R. (2002), “Entity-relationship-attribute designs and sketches”, Theory
and Applications of Categories Vol. 10 No. 3, pp. 94–112.

Levy, S., Subrahmanian, E., Konda, S., Coyne, R., Westerberg, A. and Reich, Y. (1993), An overview of the
n-dim environment, Technical report, Engineering Design Research Center, Carnegie-Mellon University.

Männistö, T. and Sulonen, R. (1999), “Evolution of schema and individuals of configurable products”, in
International Conference on Conceptual Modeling, Springer, pp. 12–23.

Microsoft Research (2001–2011), “Model management”.
http://www.microsoft.com/en-us/research/project/model-management/.

Patterson, E. (2017), “Knowledge representation in bicategories of relations”, arXiv preprint arXiv:1706.00526.
Piela, P. C., Epperly, T., Westerberg, K. and Westerberg, A. W. (1991), “ASCEND: An object-oriented computer

environment for modeling and analysis: The modeling language”, Computers & chemical engineering Vol.
15 No. 1, pp. 53–72.

Rosebrugh, R. and Wood, R. (1992), “Relational databases and indexed categories”, in Proceedings of the
International Category Theory Meeting 1991, CMS Conference Proceedings, Vol. 13, pp. 391–407.

Sarala, P., Breiner, S., Subrahmanian, E. and Sriram, R. (2018), Deconstructing UML, part 1: The class diagram.
Under review.

Schultz, P., Spivak, D. I. and Wisnesky, R. (2016), “Algebraic model management: A survey”, in International
Workshop on Algebraic Development Techniques, Springer, pp. 56–69.

Spivak, D. I. (2012), “Functorial data migration”, Information and Computation Vol. 217, pp. 31–51.
Subrahmanian, E., Reich, Y., Konda, S., Dutoit, A., Cunningham, D., Patrick, R., Thomas, M. and Westerberg,

A. W. (1997), “The n-dim approach to creating design support systems”, in Proc. of ASME Design
Technical Conf.

Wynn, D. C., Nair, S. M., Clarkson, P. J. et al. (2009), “The p3 platform: An approach and software system for
developing diagrammatic model-based methods in design research”, in DS 58-1: Proceedings of ICED 09,
the 17th International Conference on Engineering Design, Vol. 1, Design Processes, Palo Alto, CA, USA,
24.-27.08. 2009, pp. 559–570.

ACKNOWLEDGMENTS

We are grateful to David Spivak and Ryan Wisnesky for many discussions on and around these
topics. Blake Pollard was supported by NSF grant # 1746077.
Disclaimer: This paper includes contributions from the U. S. National Institute of Standards and Technology, and is not subject
to copyright in the United States. Commercial products are identified in this article to adequately specify the material. This
does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply the
materials identified are necessarily the best available for the purpose.

ICED191972

https://doi.org/10.1017/dsi.2019.202 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.202

	049_ICED2019_460_CE
	049_ICED2019_460_PE
	199_ICED2019_382_CE
	199_ICED2019_382_PE
	203_ICED2019_557_PE

