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Abstract
Initial insurance losses are often reported with a textual description of the claim. The claims manager
must determine the adequate case reserve for each known claim. In this paper, we present a framework for
predicting the amount of loss given a textual description of the claim using a large number of words found
in the descriptions. Prior work has focused on classifying insurance claims based on keywords selected by a
human expert, whereas in this paper the focus is on loss amount prediction with automatic word selection.
In order to transform words into numeric vectors, we use word cosine similarities and word embedding
matrices. When we consider all unique words found in the training dataset and impose a generalised
additive model to the resulting explanatory variables, the resulting design matrix is high dimensional. For
this reason, we use a group lasso penalty to reduce the number of coefficients in the model. The scalable,
analytical framework proposed provides for a parsimonious and interpretable model. Finally, we discuss
the implications of the analysis, including how the framework may be used by an insurance company and
how the interpretation of the covariates can lead to significant policy change. The code can be found in the
TAGAM R package (github.com/scottmanski/TAGAM).

Keywords: Actuarial modelling; Generalised additive models; GloVe; High dimensional; Lasso; Loss modelling; Risk
analysis; Word embedding; Word similarity; Text analysis

1. Introduction
In actuarial practice, an important task of an insurance claims department is setting the case
reserves for reported claims. The case reserve (case outstanding) for a given claim can be under-
stood as the difference between the reported claim amount and the paid amount for an individual
claim. The task is sometimes outsourced to third-party adjustors. For example, if the insurance
company has made a partial payment of $1,000 but expects to pay out an additional $2,000 in the
future, then $2,000 is set as the case reserve. Note that the case reserve excludes incurred but unre-
ported claims, for which a separate incurred but not reported (IBNR) reserve should be prepared.
Some useful relationships are

Reported Claims= Paid Claims+Case Reserves
Unpaid Claims=Case Reserves + IBNR

Ultimate Claims= Reported Claims+ IBNR
= Paid Claims+Unpaid Claims

The concept of the case reserve is also explained in actuarial textbooks and manuals for ratemak-
ing and reserving, such as Friedland (2010), andWerner &Modlin (2016). For the purpose of this
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paper, the reader should understand that the case reserve is an approximation to the difference
between the ultimate amount of the claim and the sum of the paid claims and the IBNR, given
information available at the time of the report of the claim. Sometimes, the case reserve is set by
the claims department of an insurance company, while in other cases the task is outsourced to an
outside adjustor. Part of the information available to the claims department at the report time of
the claim is a textual description of the claim. In this paper, we are interested in approaches that
use the textual information regarding an insurance claim to predict the case reserve, by regress-
ing the loss amount on a set of covariates derived from the textual description. Given a dataset of
historic loss descriptions and ultimate loss amounts, an actuary may use the approach to improve
the case reserving procedure. The problem is considered in Lee et al. (2019). This paper makes
several extensions with sound statistical theory to make the actuarial work further automatic and
reliable.

Part of the problem in this prediction task is that if we use a large number of keywords in
forming the designmatrix extracted from the textual descriptions of claims, the resulting problem
is high dimensional in nature. In this case study, we use the framework of Lee et al. (2019) and
analyse a dataset of loss descriptions and amounts, downloaded from the National Oceanic and
Atmospheric Administration (NOAA).

For this analysis, a generalised linear model (GLM) may not be appropriate because the lin-
earity assumption may not appropriately fit the data. To solve such a problem, we may consider
using a non-parametric regression technique. A variety of non-parametric regression techniques
have been developed, including but not limited to regression splines, kernel smoothing, neural
networks, and generalised additive models (GAMs). Non-parametric regression has been applied
inmany areas, frommodelling daily pollution in the UK (Wood et al., 2017), to estimating relative
risk for disease mapping of lung cancer (Dreassi et al., 2014). See Simonoff (1996) for more details
and examples of non-parametric regression. In this paper, we consider the GAM.

Hastie & Tibshirani (1986) proposed the generalised additive model that consists of the sum-
mation of smooth functions, allowing for the ability to capture the true, not necessarily linear,
relationship. In the generalised additive model set-up, more information is needed to estimate
each function as compared to the generalised linear model set-up. Therefore, the data must have
many more observations than the number of covariates. In addition, when working with high-
dimensional data, the scalability of the algorithm is also extremely important when considering a
method. Our approach is motivated by these characteristics.

Considerable work has been done in efficiently estimating larger datasets using generalised
additive models. Most recently, Wood et al. (2017) developed a method for estimating GAMs
with the number of coefficients of order 104, and observations up to 108. This method reduces
the number of matrix operations, utilises parallelisation, and reduces the memory necessary by
marginal discretisation of the model covariates. Li &Wood (2019) extended this work by propos-
ing an alternative method of calculating X′WX where X is a model matrix and W a diagonal or
tri-diagonal matrix, which results in a 30-fold reduction in computational time. Previous works
includeMarra &Wood (2011) andWood et al. (2015). Code for these methods are found in the R
package mgcv, Wood (2019).

While the aforementioned GAM results provide for a scalable algorithm, a hindrance of GAM
is the restriction on the number of covariates. Considering the GLM, there are several methods
for combating the high-dimensionality issue, with the most notable one being lasso by Tibshirani
(1996). Similar to the GLM, the lasso maximises the likelihood, but instead has an additional L1
penalty term. This term is typically referred to as the shrinkage term. Extensions of the lasso have
also been developed, including but certainly not limited to, group lasso from Yuan & Lin (2006)
and adaptive lasso from Zou (2006). The group lasso is applied to variables with group-like struc-
ture, and it uses a slightly altered penalty term where each variable in a group is penalised equally.
This is particularly important due to the group-like structure induced by the basis expansion used
in the estimation of the generalised additive model. The adaptive lasso simply applies a weight to
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each coefficient in the penalty term, with these weights typically estimated through ordinary least
squares or lasso. Wang & Leng (2008) combined these extensions to formulate the adaptive group
lasso and showed the ability of the method to identify the true model consistently.

Our proposed method is a three-step approach consisting of the following steps: (1) weight
calculation by group lasso; this first step uses a preliminary model to generate the weights used in
the second step. (2) The shrinkage step; this step uses adaptive group lasso, using the weights gen-
erated from the first step, in order to have a consistent model selection. (3) The smoothing step;
this step uses the reduced problem from step 2 in order to estimate the smooth functions corre-
sponding to the remaining covariates. The approach combines the adaptive group lasso dimension
reduction technique with the scalable GAM algorithm.

In summary, this paper proposes a method for analyzing high-dimensional data with a non-
linear relationship between the predictors and the response. The method is easy to apply and is
a general approach that can be applied in various contexts. To demonstrate its use, we apply it
to the textual data analysis problem in an actuarial context. We propose using word embedding
matrices and cosine similarities to convert textual data into numeric data, which can be used as
the design matrix for the proposed method. The rest of the paper proceeds in the following order:
in section 2, the dataset used for the analysis is summarised. In section 3.1, the details of themodel
is explained. Section 3.2 explains how the model parameters can be estimated using a three-step
approach, and section 3.3 summarises the approach in the form of an algorithm. Section 4 presents
the results from the data analysis. Section 5 presents some implications and discussions regarding
our model, and section 6 concludes the paper with closing remarks. The Appendix presents the
theoretical foundation for our method.

2. Data and Pre-processing
For our analysis, we utilise the publicly available NOAA Storm Events Database. The analysis is
performed on property loss amounts at the event level, using storm event observations involving
textual descriptions of the events. The data are collected over time; however, we use a cross-
sectional model in this paper in order to focus on the relationship between the textual information
and the response. Only Thunderstorm Wind events taking place in Michigan and from 2000 to
2018 are considered for the analysis. We have selected a specific sample for demonstration, but in
general we have found that the result is similar regardless of the sample chosen, as long as there is a
reasonable number of observations found in the sample. In general, our method would work well
when there is a non-linear relationship between the predictor and the covariates, and the problem
is high dimensional.

For losses spanning a long period, inflation should be taken into consideration in order for the
model to be used in practice. This can be accomplished in many different ways. One approach is
to use trending methods as in traditional actuarial science practices. Alternatively, one may use
statistical models that take the effect of inflation into consideration. For simplicity of demonstra-
tion, in this paper, we assume the effect of inflation is not our primary concern. The resulting
prediction can be adjusted for inflation using trending methods as needed.

For validations, the dataset is divided into training and validation datasets. The reason we use
this dataset is because it contains relatively clean, lengthy descriptions of losses from storm events
in the United States each year, along with the property and crop damage amount estimates. These
damage amounts are initial estimates of the losses and hence are different from the ultimate loss
amounts. Yet, the structure of the data is identical to that available to a claims adjuster and hence
is a good test dataset for the analytical framework explained in this paper. Another advantage of
this dataset is that it is publicly available, allowing dissemination and reproducibility to be easy.

Each event is recorded with an event narrative. An example of an observation with an estimated
property damage of $10,000 has an event narrative that reads: Roof damage was incurred to a barn
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Table 1 Summary statistics for the log(loss) for the training and
validation datasets

N Min Mean SD Max

Training 2,353 2.30 8.97 1.44 17.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Validation 126 6.21 8.78 1.56 14.00
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Figure 1. Frequency for the most common words.

six miles northwest of Mason due to a severe thunderstorm wind gust and a large tree limb was
blown down in South Lansing.

Figure 1 shows the most common words in the descriptions of the losses. Stop-words such as a,
the, and, etc., have been removed. Notice that the word trees is most frequent in the descriptions.
A few of the most common words are typically used to describe what is happening to trees, such as
blown and wind. In addition, several of the other most common words like power, lines, damage,
and outages are used to describe the results of downed trees.

There are a total of 2,353 observations in the training set, with 126 observations in the valida-
tion set. As previously mentioned, the claim descriptions are quite lengthy, with an average of 16.8
words per description. There are a total of 2,642 unique words used in the dataset. To capture only
relevant words, stop words, numbers, and words that only occurred once were removed, resulting
in 1,998 words. Table 1 provides summary statistics for the log(loss) for the training and validation
datasets.

In order to better understand the relationship between the words in the claim description and
the property loss amount, each word is represented by a vector. Recent advancements in word
embedding models have made it possible to obtain these representations easily. We utilise the
300-dimensional word embeddings developed by the authors of Pennington et al. (2014). To form
the design matrix, we follow the framework described by Lee et al. (2019). That is, for two words
with vector representations a and b, respectively, the cosine similarity is defined as:

simcos(a, b)= a · b
‖a‖2·‖b‖2 (1)

Moreover, for a given phrase, letD= (b1, ..., bS) where each bi, i∈ {1, ..., S} is a word in the phrase.
Then define the cosine similarity between a word a and a phrase D as:

simcos(a,D)= max
s=1,...,S

(simcos(a, bs)) (2)

In this way, we construct a matrix of cosine similarities Xn×pn where n is the number of obser-
vations and pn is the number of unique words used. Let W be the vector of unique words with
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Figure 2. Cosine similarity against property loss for house and thunderstorm.

length pn, and let D be the list of descriptions with length n, where each element in the list is a
vector Di containing the words used in description i. Then,

Xij = simcos(Wj,Di) for i ∈ {1, ..., n}, j ∈ {1, ..., pn} (3)

Each value in the matrix is now continuous and restricted to [− 1, 1]. Figure 2 shows the rela-
tionship between cosine similarity and property loss for house and thunderstorm. From the figure,
we see that the relationship between cosine similarity and property loss is non-linear in nature
and therefore a generalised additive model is appropriate.

Regarding the text data processing method, cosine similarities is just one method that works.
Our contribution in this paper is mainly the development of a predictive model after the pre-
processing is done. The reader may observe that there exists noise in the predictors, and in Lee
et al. (2019), this noise was dealt with a cut-off value for the cosine similarities. In this paper,
our focus is on the high dimensionality of the problem, and the cut-off values are set to ε = 0 by
default. Our approach is not meant to be the best candidate in terms of the pre-processing step.
Also, we believe that the predictability is not influenced much by the cut-off, or the ε value in
Lee et al. (2019) In Figure 2, the observations with cosines of 1 are not really outliers, but in fact
observations with high similarity with the word. Hence, these are very important observations,
perhaps more so than the noise corresponding to low cosine similarities. One may imagine there
are some data missing between the cosines of 1 and those with small cosines. Our method tries its
best under this restriction.

Note that the predictive power of each variable is not known in advance, so a variable selection
technique is appropriate first to identify the variables which are statisticallymeaningful.We would
like to emphasise that first, GAM has been proven to work in the high-dimensional set-up, with
solid theoretical foundations; see Huang et al. (2010), Yang & Maiti (2020). It is guaranteed that
the GAM consistently estimates the parameters for the model. Second, the GAM provides more
interpretability than “black-box” machine learning algorithms such as random forest, or neural
networks. We are able to plot each estimated selected function and gain insights from the results.

3. Metholology
In this section, we describe our methodology in specific terms. Section 3.1 specifies the model for
the high-dimensional generalised additive model. Section 3.2 describes the three-step approach to
the parameter estimation. Section 3.3 summarises the approach in the form of an algorithm.
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3.1 High-dimensional generalised additive model
We consider the generalised additive model:

μi = E[yi|Xi]= g−1

⎛
⎝ pn∑

j=1
fj(Xij)

⎞
⎠ (4)

where the link function corresponds to that of the corresponding exponential family distribution.
For each of the n independent observations, the density function is given by:

fyi = c(y) exp
[
yθi − b(θi)

φ

]
, 1≤ i≤ n, θi ∈R (5)

We assume that a matrix of explanatory variables is given. Let’s call it Xn×pn , and use the notation
X = (XT

1 , XT
2 , . . . ,XT

n )T . We have

Xn×pn =

⎡
⎢⎢⎢⎢⎢⎣

X11 X12 . . . X1pn

X21 X22 . . . X2pn
...

...
. . .

...
Xn1 Xn2 . . . Xnpn

⎤
⎥⎥⎥⎥⎥⎦ (6)

Thus, n is the number of observations and pn is the number of explanatory variables available. We
assume that the parameter 0< φ < ∞ is known. Without loss of generality, let φ = 1. Also, we
assume that the density of yi depends on Xi via the structure:

θi =
pn∑
j=1

fj
(
Xij
)

(7)

where θi are defined in equation (5). Assume that the additive components belong to the
Sobolev spaceWd

2 ([a, b]). According to Schumaker (1981), see pp. 268–270, there exists B-spline
approximation:

fnj(x)=
mn∑
k=1

βjkφk(x), 1≤ j≤ p (8)

withmn =Kn + l, where Kn is the number of internal knots and l≥ d is the degree of the splines.
Generally, it is recommended that d = 2 and l = 4, that is, cubic splines:

max
1≤k≤K+1

|ξk − ξk−1| =O(n−v) (9)

For a practical overview of the B-spline basis function, the reader may refer to Wood (2017),
section 5.3.3, starting from p. 204. We want to write

fnj(Xij)=
mn∑
k=1

�
[j]
ik βjk (10)

for some value �
[j]
ik . We call� our design matrix and denote the elements of the design matrix φit ,

for i= 1, . . . , n and t = 1, . . . qn. We also denote

�ij =
(
�

[j]
i1 ,�

[j]
i2 , . . . ,�

[j]
imn

)T
, for i= 1, . . . , n, and j= 1, . . . pn (11)

Under this framework, the response variable is related to the covariate Xij via

fj(Xij)= �T
ijβ j, i= 1, . . . , n, j= 1, . . . , q (12)
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where β j is the coefficient corresponding to the j-th explanatory variable. We may see that β j
must be a length mn vector, since the j-th spline contains mn parameters. Our methodology is
related to Chouldechova & Hastie (2015), yet we use a three-step procedure. We are looking for
the parameters for:

g
{
E[yi|Xi]

}= β0 +
pn∑
j=1

fnj(Xij)= β0 +
pn∑
j=1

�T
ijβ j = β0 + �iβ (13)

where we have used the notation �i to denote the i-th row of �, and β = (βT
1 , β

T
2 , . . . , β

T
pn )

T ,
where some of the βj’s are zero, while others are non-zero. The approach in Chouldechova &
Hastie (2015) is to minimise the penalised negative log-likelihood:

− 1
n
�(β)+ λn2

pn∑
j=1

√
β ′
jSjβ j +

1
2φ

pn∑
j=1

λn3jβ
′Djβ (14)

where �(β) is the log-likelihood for an exponential family distribution:

�(β)=
n∑
i=1

⎡
⎣yi

⎛
⎝ pn∑

j=1

mn∑
k=1

�
[j]
ik βjk

⎞
⎠− b

⎛
⎝ pn∑

j=1

mn∑
k=1

�
[j]
ik βjk

⎞
⎠
⎤
⎦

=
n∑
i=1

[
yi
(
�T

i β
)

− b
(
�T

i β
)]

(15)

The hope is that the second term in equation (14) induces zeros into groups of coefficients, while
the last term imposes smoothness into the “surviving” coefficients. Here, Sj is an identity matrix
of dimensionmn andDj is a constraint matrix to impose smoothness into the estimated functions
fj. There are several practical difficulties with this approach:

• When pn is large, or in other words when the problem dimension is large, there are too many
λn3j tuning parameters to estimate. Wood (2017) discusses algorithms for large n cases but
does not talk about cases where pn is large.

• Theory behind selecting the tuning parameters λn3j discussed in Wood (2017) is no longer
directly applicable because of the extra group lasso-type penalty term.

• Implementing the coordinate descent algorithm, which brings in sparsity into β , becomes
tricky with the smoothing penalty. Usually, fast algorithms for lasso-type estimators with
GLMs are implemented by locally approximating the likelihood with a Taylor’s approxima-
tion at each iterative step, yet the extra penalty term makes this tricky.

• Estimating the coefficients may take a very long time, especially when the number of
explanatory variables pn is large, as in the application we consider in this paper.

Hence, in order to keep the estimation procedure scalable for large pn (and hence large qn), we
propose a three-step approach to the estimation problem for the model (13). The first step of
the approach is to perform a group lasso estimation with the first and second terms of equation
(14). The second step uses the resulting coefficient estimates to perform an adaptive group lasso
estimation of the parameters. The third and final step uses the non-zero coefficients obtained from
the second step to induce smoothness into the implied spline function fnj(·), for each non-zero
function fnj. These steps are formalised in the following section.

Moreover, to provide a statistical validation, we present both the numerical results in section 4
and the theory for the estimated functions in the Appendix A, which works as another support
of our proposed three-stage approach. We aim at validating two things: the variables selected are
consistent and the estimators are consistent with respect to the unknown true functions.
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3.2 Learning framework: the three-stage approach
In this section, we explain how the parameters for the model presented in the previous section can
be estimated using a three-stage approach. The first is a group lasso step, where the weights for the
second step are determined. The second step is an adaptive group lasso step, where the weights
obtained from the first step are used to reduce the problem dimension. The reason why we need
to separate the first and second step is because the second step ensures selection consistency. The
third step is the smoothing step, where a smoothness penalty is used to obtain the correct param-
eters for the additive model. The input to the three-step method is a matrix of cosine similarities,
and the output is a set of smooth functions corresponding to the explanatory variables that have
been selected from the procedure.

3.2.1 Stage 1 – group lasso
Define the objective function to be

L(β ;λn1)= −1
n

n∑
i=1

[
yi
(
�T

i β
)

− b
(
�T

i β
)]

+ λn1

pn∑
i=1

‖β j‖2 (16)

Let β̂ be the optimiser for (16), or in other words,

β̂ = argmin
β∈Rpn·mn

L(β ;λn1) (17)

3.2.2 Stage 2 – adaptive group lasso
Define the objective function to be

La(β ;λn2)= −1
n

n∑
i=1

[
yi
(
�T

i β
)

− b
(
�T

i β
)]

+ λn2

pn∑
j=1

wnj‖β j‖2 (18)

where the weights depend on the screening stage group lasso estimator:

wnj =
⎧⎨
⎩

‖β̂ j‖−1
2 if ‖β̂ j‖2> 0

∞ if ‖β̂ j‖2= 0
(19)

Numerically, the weights are set to a large number, for the case when ‖β̂ j‖2= 0.
Let β̂AGL be the optimiser for (18). In other words,

β̂AGL = argmin
β∈Rpn·mn

La(β ;λn2) (20)

Let Ŝn be the subset of {1, . . . , p}, such that the jth coefficient of βAGL with j ∈ Ŝn are non-zero.
Thus, the second-stage estimates are sparse, meaning that the coefficients are zero for some j. This
reduces the coefficient size in the third stage.

3.2.3 Stage 3 – the smoothness penalty
Let �Ŝn be the matrix consisting of columns from � corresponding to the set Ŝn. Let β Ŝn be in
R
ŝn·mn , where ŝn = |Ŝn|. Define the objective function to be

Lsm(β ;λn3)= −1
n

n∑
i=1

[
yi
(
βT�

Ŝn
i

)
− b

(
βT�

Ŝn
i

)]
+ 1

2φ
∑
j∈Ŝn

λn3jβ
T
j Djβ j (21)
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where λn3 = (λn31, λn32, . . . , λn3pn ). Let β̂sm be the optimiser for (21). In other words,

β̂sm = argmin
β∈Rmnŝn

Lsm(β ;λn3) (22)

Since the problem of dimension has been reduced, the third-step estimation may be performed
using existing generalised additive models routines, using β̂AGL as the initial guess for the
penalized iteratively reweighted least squares (P-IRLS) procedure. The tuning parameters λn3
may be obtained by generalised cross-validation or restricted maximum likelihood (REML) as
described in Wood (2017).

In variable selection, the smoothness penalty term is actually not required. The intuition behind
this is that a function has to have enough signal strength to be considered significant, while the
wiggly estimations are close to the true functions in terms of signal strength, though they might be
more wiggly around the smooth functions. Therefore, the first two steps are able to provide a rea-
sonable set of variables as the final predictors. However, estimation without smoothness penalty
can lead to overfitting, thus the third step is there to remedy this issue. As the results in Huang
et al. (2010) and Yang & Maiti (2020) show, the first two steps consistently identify the signifi-
cant variables with probability tending to 1, thus the third stage can be considered to perform a
low-dimensional GAM on a reasonable set of predictors.

3.2.4 Tuning parameters
Each stage has a tuning parameter, λn1, λn2, and λn3, respectively. The selection of λn1 and λn2
can greatly influence the performance of the model and the efficiency of the algorithm. Larger
values of λn1 and λn2 will lead to an over-simplified model with faster computation time, while
smaller values will lead to an over-fitted model with slower computation time. To find the “sweet
spot,” cross-validation is used to determine λn1 and λn2. The tuning parameters λn3 is obtained
by generalised cross-validation or REML as described in Wood (2017).

3.3 Learning algorithm and its implementation
We now discuss the implementation of the method using R. For stage 1 and stage 2, we
utilise functions from the gglasso package (Yang & Zou, 2017) and for stage 3 we utilise
functions from the mgcv package (Wood, 2019). The code is provided in an R package at
github.com/scottmanski/TAGAM.

3.3.1 Stage 1 – Group lasso
The gglasso function is modified such that we loop through the grid of λn1 values, but once the
number of non-zero coefficients is greater than n, the algorithm is stopped. By doing so, we ensure
that we will be able to execute stage 3.

3.3.2 Stage 2 – Adaptive group lasso
The implementation of stage 2 is very similar to that of stage 1, except for the addition of the
weights. In order to incorporate the weights, let β

′
j =wnjβj for each j ∈ {1, ..., pn}. Then equation

(18) can be written as:

La(β
′
; λn2)= −1

n

n∑
i=1

⎡
⎣yi

⎛
⎝ pn∑

j=1

1
wnj

�
[j]T
i β

′
j

⎞
⎠− b

⎛
⎝ pn∑

j=1

1
wnj

�
[j]T
i β

′
j

⎞
⎠
⎤
⎦+ λn2

pn∑
j=1

‖β ′
j‖2 (23)
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Table 2 Summary statistics for the final model. The residual degree of freedom (DF) comes from the estimated
degrees of freedom from the GAM, and the mean squared prediction error (MSPE) is the out-of-sample mean
squared prediction error.

Kn l λn1 λn2 ŝn Residual DF Deviance MSPE

4 2 0.0005255074 0.0001063902 149 2167.387 70.7% 1.016
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Figure 3. Function estimates for several covariates.

3.3.3 Stage 3 – The smoothness penalty
The mgcv package is used to implement stage 3. In the mgcv package, there is a gam function and
a bam function, with the former designed for smaller datasets and the latter designed for much
larger datasets. In this analysis, we utilise bam. To increase the computational efficiency, we also
choose to have the function discretise the data following the method described in Wood et al.
(2017).

4. Data Analysis
In this section, we discuss the results of our model. Table 2 provides information for the final
model. As previously mentioned, 1,998 words appeared in the dataset and were considered as pos-
sible covariates. For the model, we chose to use the penalised regression spline. Stage 1 effectively
reduced the number of covariates to 261, and stage 2 further reduced the number of words to 149.
While the number of functions to interpret may seem cumbersome, the final model is relatively
simple compared to the number of possible covariates that could have been in the model.

Figure 3 shows the estimated functions for several covariates. All of the function estimates have
a few characteristics in common. For smaller cosine similarity values, the estimated functions
are approximately zero. We expect this because smaller cosine similarities between a word and
a phrase indicates that the word has very little meaning in common with the phrase. For large
cosine similarity values, the 95% credible interval for the functions becomes wider as compared
to cosine similarity values around 0.2. This is also expected simply due to the lack of observations
for higher cosine similarities.
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Figure 4. Words with the highest cosine similarity with house.

The function estimates help us understand the relationship between a word, its related words,
and the property loss amount. Many of these estimated functions seem to follow our intuition.
For example, house, losing, widespread, gusts, and tree are all words that would typically be associ-
ated with property loss. Words with the highest cosine similarity to house are shown in Figure 4.
Most of these related words are types of homes. The cosine similarities capture the likelihood of
a word being close to a particular concept, and the relationship is not meant to be perfect. One
may imagine the results showing up in a search engine. Typing in a keyword allows for related
documents to be searched from the internet; however, sometimes irrelevant contents may appear
in the search result as well. This problem is acknowledged in Lee et al. (2019), and the problem is
partially coped by setting a cut-off value for the cosine similarities in Lee et al. (2019). From the
function estimate, we see that an incident involving a house results in higher property loss than
that of an incident involving offices or apartments, in general.

While many function estimates obviously follow our intuition, there are some that seem harder
to interpret. Words like quarters, shutting, and orchards all seem unrelated to property loss. To
shed some light on this issue, we look at a sentence from a description that includes quarters;
two eyewitnesses in Covington reported hail greater than the size of quarters during the peak of the
storm. The use of quarters here is related to the size of hail. It is expected that larger hail will lead
to larger property loss. Words related to quarters include nickel and dime, which are also used to
describe hail size. In a similar way, we find out that shutting is referring to the closure of major
roadways. In the case of orchards, several observations involved damage to apple orchards. With
Michigan producing the third most apples of any state, it is clear why damage to apple orchards
results in large property loss.

The model also performed well with out-of-sample prediction. Figure 5 shows the predicted
property loss amounts against the true loss amounts for the validation sample. The Spearman
correlation for the validation set is 76.06%, while the Spearman correlation for the training dataset
is 80.30%.

Tomeasure the stability of the method, for a selected year, the model was trained using the pre-
vious years and tested on data from the selected year. This was completed for each year from 2001
to 2018. This resulted in an average mean squared prediction error of 1.34 with a standard error
of 0.123. Using a lasso model increases each of these values by about 8%, respectively. The three-
stage method selected a more parsimonious model as compared to the single-step lasso model,
resulting in greater model stability.
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Table 3. Comparison of models.

Model Spearman correlation (%) MSPE Gini index

Three-stage model 76.06 0.996 0.076
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random forest 73.64 1.016 0.064
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lasso 73.38 1.074 0.058
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indicator model 72.59 1.180 0.049
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Figure 5. Predicted property loss amounts against the true property loss amounts for the training and validation samples.
The Spearman correlations are 80.61% and 76.06%, respectively.

Several additional models were fit to the data, and the out-of-sample results are compared. The
candidate models are random forest, lasso, and the indicator model. First, a random forest model
has been fit to the cosine similarities. Second, a Lasso model has been fit to the cosine similarities,
with no basis expansion. This model can be seen as a baseline model, fixing the cosine similarities.
Third, the lasso model has been fit to indicator variables of whether each word is present in the
description. Each word in the dataset has it’s own indicator variable, and if the word appears in
the event description, then that variable is 1. According to the results shown in Table 3, we see that
the three-stage model performs best in terms of Spearman correlation, MSPE, and Gini index.

5. Discussion
We have presented an analytical method for analyzing losses due to storm events in relation to
their textual descriptions. The fact that losses may be predictedmore accurately with textual infor-
mation implies that the case reserving procedure may be improved significantly. The traditional
approach to case reserving is to take the average amount of the reported losses, yet this does not
take advantage of the heterogeneity of information contained within the initial report of a loss to
an insurance company. The newmethod allows for a more accurate prediction of the ultimate loss
to be indemnified for a specific reported loss.

Being able to explain the factors that contribute to higher or lower severity of losses by select-
ing the relevant keywords from a set of words allows the actuarial analyst to avoid manually
selecting the keywords needed for the textual risk analysis. This technique may be useful, espe-
cially when the number of words describing the loss is large, or statistically the problem is high
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dimensional. The analyst may also be able to understand the factors that relate to high losses using
the selected covariates, and this may help mitigate future losses.

In addition, these factors that contribute to higher severity of property loss can indicate areas
needing improvement in the way they protect against various weather events. For example, events
involving orchards resulted in high property loss, illustrating the need for additional preventative
measures to protect the apple trees during a thunderstorm.

The fact that a simple three-step approach allows for the regression selection problem to be
solved easily using existing routines in the R programming language.

The two-step approach is proven to have selection consistency in the high-dimensional set-up,
for example, see Huang et al. (2010). In section 3 of Huang et al. (2010), the screening consistency
and estimation convergence rate of the first-step estimator are established, but no selection con-
sistency is guaranteed. Similar results are in Yang & Maiti (2020). The second step improves the
selection result of the first step with a better convergence rate and is proven to have selection con-
sistency. The predictors selected by the two-step approach is more reliable and stable. (see Lemma
1 in the Appendix.) Thus using the law of total probability and the fact that probabilities are less
than or equal to one, we are able to show that the difference between performing the third-step
estimation on the true variables and on the selected variables tends to 0 as n→ ∞.

In Theorem 1, the estimation consistency of the third step is shown. An important property of
predictive modelling, the prediction error, is a direct result of the estimation error. In our model,
we have the expected prediction error:

EX‖ŷ− y‖22 ≤
s∑

j=1
‖f̂j − fj‖22 + ε2 + ε2embed

where three components are here: the estimation error, the random error, and the word embed-
ding error. Since random error is not under control and embedding error depends on the word
embedding algorithm, bounding the estimation error is equivalent to bounding the prediction
error, under mild conditions on the design matrix.

Similarly, in the confidence interval of the third step, the difference between conditioning on
correct selection and not conditioning on correct selection is bounded by a negligible term, which
is the probability of not selecting the correct variables and disappears as n→ ∞. Although, the
theory of confidence band has not been established in this high-dimensional set-up, following a
referee’s comment, a small simulation study has been performed to support this argument. The
simulation verifies the 95% confidence intervals for the function estimates. Samples of size 400
were used with 50 covariates each with a randomly selected function. The breakdown of true
functions is: Exponential (12), Linear (7), Logarithmic (5), Polynomial (5), Sinusoidal (8), and
Zero (13).

After fitting the three-stage model, for the confidence interval of each estimated function, we
calculate the empirical coverage rate, that is, we determine the proportion of the time that the
confidence interval contains the true function. To do this, we choose a point x0 and determine
if the confidence interval for the estimated function contains the true function at point x0. This
is repeated for 1,000 choices of x0. We average this value across all estimated functions to find
empirical coverage rate for themodel. This process was repeated for 100 iterations and the average
proportion (with standard error) is 0.9612 (0.00172). These results empirically verify the validity
of point-wise confidence intervals obtained from the three-step approach.

6. Concluding Remarks
In this paper, we consider a general high-dimensional text analysis problem and propose a three-
stage approach by adopting modern statistical methods. Stage 1 and 2 effectively reduced the
high-dimensional problem to one that mgcv can handle. The use of stage 1 and 2 to reduce the
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problem instead of utilising a subject matter expert allows for simple replicability of the process.
We showed how the use of cosine similarities from textual descriptions can provide interpretable
results when predicting property loss. While there are many other possible applications in risk
analysis, our framework could also be applied in the classification of users on a social networking
site based on their posts, prediction of a company’s change in stock price from related articles, and
caller scam classification based on call transcripts.

The approach may also be applied in general to problems where non-linear effects of a large
number of continuous explanatory variables must be understood in relation to the response. We
have focused on the log-normal case of the response, yet the method is general enough to be
applied to non-normal responses, including responses following a gamma distribution or Poisson
distribution. Future work may focus on these specific cases.

Acknowledgements. We thank the editor and two anonymous reviewers, who reviewed our manuscript and provided
constructive comments to improve this paper.
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A. Appendix: Theory of the Third-Stage Estimator
In this section, we will provide statistical foundation for the proposed approach. For this reason,
we derive the convergence rate for our third-stage estimator. This will establish statistical consis-
tency of our procedure. In Yang &Maiti (2020), the following result for the second-stage estimator
has been established.
Lemma A.1 (Yang & Maiti, 2018) The adaptive group lasso consistently selects the true active
predictors in probability, that is, the estimator β̂AGL satisfies

P

(
‖f̂AGLj(x)‖2 > 0, j ∈ T and ‖f̂AGLj(x)‖2 = 0, j ∈ Tc

)
→ 1 (A.1)

The results states that with proper choices of λn1 and λn2, the adaptive group lasso consis-
tently selects the true non-zero predictors. This theorem guarantees the selection consistency of
the three-stage algorithm, since the variable selection is done in the second stage and the third
stage does not do variable selection. It is important for an algorithm to select the correct subset of
variables for the model built on them to work.

With similar assumptions, assume we have
Assumption 1. The true functions f1, ..., fsn has smoothness order on, that is,∫ b

a
fj′′(x)2dx � on

where an � bn means there exist constants c and d such that

c≤ an
bn

≤ d

Then, we have
Theorem 1.Under assumptions 1 and assumptions in Yang & Maiti (2020), for tuning parameters
λn31, ...λn3sn , we have

‖f̂sm − f 0sm‖22 =Op

(
snγ −2sn

2 mn
log (snmn)

n

)
+OP(s2nγ

−2sn
2 m−2d

n )+OP

⎛
⎝∑

j∈Ŝn
λn3jon

⎞
⎠ (A.2)

where γ0 and γ2 are assumed bounds parameters in eigenvalues of X, see Yang & Maiti (2020).

Theorem 1 shows the rate of convergence of the third-stage estimator. There are three terms in
the convergence rate: the estimation error, the spline approximation error, and the regularisation
error. The greater the on, the less the λn3 is, thus the product will not change. This theorem guar-
antees that with proper choice of parameters, the estimated functions are consistent estimators of
the true functions that describe the relationship between the variables and the response.

Proof. Consider the third step, where we have the smoothness penalty. Define the event:

Sn = {Ŝn = S}
The previous lemma showed that

P(Sn)→ 1 as n→ ∞
From now on, let us condition on the event Sn. For convenience, we suppress the notations β̂sm,
β0
sm, and �Ŝn and denote them with β̂, β0, and �.
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To study the characteristics of the smoothness term Sj, where∫ b

a
fj′′(x)2dx =

∫ b

a
φ′′(x)φ′ ′(x)Tdx= βT

j Sjβ

without loss of generality, consider the case that the knots are evenly distributed on the interval
[a,b], since changing the length of the intervals does not change the shape of the B-splines but
the span and height (Schumaker, 1981). In the following calculations, we normalise the interval
[a,b] to [0,Kln], where each interval has length ln. According to Huang et al. (2010), assume the
constant length of the interval satisfies ln =O(n−ν ) with 0< ν < 0.5. The kth cubic B-spline basis
can be derived from definition:

Bk,4(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3

6l3n
− kx2

2l2n
+ k2x

2ln
− k3

6
, lnk≤ x≤ ln(k+ 1),

−3x3

6l3n
+ (9k+ 10)x2

6l2n
− 7k2 + 16k+ 6

6ln
+ k3 + 2k2 − 2k− 2

6
,

ln(k+ 1)≤ x ≤ ln(k+ 2),

3x3

6l3n
− (9k+ 20)x2

6l2n
+ 9k2 + 42k+ 34)x

6ln
− k3 + 8k2 + 14k+ 10

6
,

ln(k+ 2)≤ x ≤ ln(k+ 3),

−x3

6l3n
+ (k+ 2)x2

6l2n
− 3k2 + 20k+ 32

6ln
+ k3 + 10k2 + 32k+ 32

6
,

ln(k+ 3)≤ x ≤ ln(k+ 4),

0, o.w

and we have φ(x)= {Bk,4(x), k= 1, ...,mn}. Taking derivative, we have the second derivative of the
basis function satisfies

B′′
k,4(x)=O

(
l−2
n
)=O

(
n2ν
)

Therefore, the elements:

sj,ik =O
(
n3ν
)

for j= 1, ..., p and i, k= 1, ...,mn where sj,ik ∈ Sj

and equals exactly zero if |i− k| > 3. As a direct result, the eigenvalue of the matrix Sj is bounded
from above by O(n3ν) and from below by some constant. Similarly, if we use a quadratic B-spline,
the elements sj,ik are bounded from above by O(n4ν ) and from below by some constant.

Then, we begin the convergence rate part. For a converging sequenceNn such that ‖β̂ − β0‖2 ≤
Nn, define t =Nn/(Nn + ‖β̂ − β0‖2), then consider the convex combination β∗ = tβ̂ + (1− t)β0.
We have β∗ − β0 = t(β̂ − β0), which implies

‖β∗ − β0‖2 = t‖β̂ − β0‖2 = Nn‖β̂ − β0‖2
Nn + ‖β̂ − β0‖2

≤Nn (A.3)

This means β∗ is within a small distance from β0 and we are safe to use Taylor expansion.
Moreover, if we have

‖β∗ − β0‖2 ≤ Rn
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then
Nn

Nn + ‖β̂ − β0‖2
‖β̂ − β0‖2 ≤ Rn

Choosing Nn to be greater than Rn, we have

‖β̂ − β0‖2 ≤ 2Rn
Therefore, it is sufficient to derive the convergence rate for β∗.

Consider the Taylor expansion:

− 1
n

n∑
i=1

[
yi
(
β∗T�i

)
− b

(
β∗T�i

)]

= − 1
n

n∑
i=1

[
yi
(
β0T�i

)
− b

(
β0T�i

)]
−
(
1
n

n∑
i=1

[
yi�i − b′

(
β0T�i

)
�i
])T (

β∗ − β0)

+ 1
2n

n∑
i=1

(
β∗ − β0)T �T

i b′′ (β∗∗�i
)
�i
(
β∗ − β0)

=:− 1
n

n∑
i=1

[
yi
(
β0T�i

)
− b

(
β0T�i

)]
− 1

n
(
y− μ0)T �

(
β∗ − β0)

+ 1
2n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)

where μ0 is the expectation of y at β0 and �(β∗∗) is the covariance matrix of y evaluated as β∗∗
which is located on the line segment joining β0 and β∗.

By the definition of β∗ and convexity, we have

− 1
n

n∑
i=1

[
yi
(
β∗T�i

)
− b

(
β∗T�i

)]
+
∑
j∈Ŝn

λn3jβ
∗
j
TDjβ

∗
j

≤ − 1
n

n∑
i=1

[
yi
(
β0T�i

)
− b

(
β0T�i

)]
+
∑
j∈Ŝn

λn3jβ
0
j
TDjβ

0
j

Combine this with the Taylor expansion result, we have

1
2n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)

≤1
n
(
y− μ0)T �

(
β∗ − β0)+

∑
j∈Ŝn

λn3j
[
β0
j
TDjβ

0
j − β∗

j
TDjβ

∗
j

]

≤1
n
| (y− μ

)T
�
(
β∗ − β0) | + 1

n
| (μ0 − μ

)T
�
(
β∗ − β0) | +

∑
j∈Ŝn

λn3j
[
β0
j
TDjβ

0
j − β∗

j
TDjβ

∗
j

]

≤1
n
| (y− μ

)T
�
(
β∗ − β0) | + 1

4n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)+O

(
s2nm

−2d
n

)

+
∑
j∈Ŝn

λn3j
[
β0
j
TDjβ

0
j − β∗

j
TDjβ

∗
j

]
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where the second inequality comes from norm inequality, the third inequality comes from
Cauchy–Swarchz inequality, and μ is the expectation of y given f 0. Rearranging the inequality,
we have

1
4n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)

≤ 1
n
| (y− μ

)T
�
(
β∗ − β0) | +O

(
s2nm

−2d
n

)
+
∑
j∈Ŝn

λn3jβ
0
j
TDjβ

0
j

≤ 1
8n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)+ 2

n
‖�1/2 (β∗∗) (y− μ

) ‖22
+
∑
j∈Ŝn

λn3jβ
0
j
TDjβ

0
j +O

(
s2nm

−2d
n

)

where the inequality is by Cauchy–Swarchz inequality. Consider the penalty matrix Dj who
has entries dj,ik = 1 if i= k= 1, dj,ik = 2 if i= k �= 1 and dj,ik = −1 if |i− k| = 1. The matrix
is a constant matrix, thus each β0

j
TDjβ

0
j is of the order O(on). Rearranging the terms and by

Concentration inequality, see for example Yang & Maiti (2020), we have

1
8n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)=O

(
snmn

log (snmn
n

)
+O

⎛
⎝∑

j∈Ŝn
λn3jon

⎞
⎠+O

(
s2nm

−2d
n

)

By Remark 2.1 in Yang &Maiti (2020), we have

γ0c1γ 2sn
2

8mn
‖β∗ − β0‖22 ≤ 1

8n
(
β∗ − β0)T �T�

(
β∗∗)�

(
β∗ − β0)

Combine the above result with the condition event Sn, we have conditioning on Sn:

‖β∗ − β0‖22 =OP

(
snγ −2sn

2 mn
log (snmn)

n

)
+O

(
s2nγ

−2sn
2 m−2d

n

)
+O

⎛
⎝∑

j∈Ŝn
λn3jon

⎞
⎠

By the inequality that

P(A)= P(A|B)P(B) + P
(
A|BC) P (BC)≤ P(A|B)+ P

(
BC
)

consider Sn = BC , we have

‖β∗ − β0‖22 =Op

(
snγ −2sn

2 mn
log (snmn)

n

)
+OP

(
s2nγ

−2sn
2 m−2d

n

)
+OP

⎛
⎝∑

j∈Ŝn
λn3jon

⎞
⎠

Combine this with the argument at the beginning of the proof, we have

‖β̂ − β0‖22 =Op

(
snγ −2sn

2 mn
log (snmn)

n

)
+OP

(
s2nγ

−2sn
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)
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⎛
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⎠
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