
Can. J. Math., Vol. XXIV, No. 5, 1972, pp. 792-798 

THE EQUALITY {A n BY = An n Bn FOR IDEALS 

ROBERT GILMER AND ANNE GRAMS 

1. In t roduc t ion . Let D be an integral domain with identity, and let R be 
a commutative ring. If n is a positive integer, R will be said to have property 
(n), in)', or in)" according as 

property (n): For any x, y G R, (x, y)n = (xn, yn). 
property in)' : For any x £ R and any ideal A of R such that xw £ ^4re, it 

follows that x £ A. 
property in)" : For any ideals A, B of R, (A H £)w = ^^ H J3W. 

J. Ohm introduced property (w) in [7] in connection with the question: If 
n ^ 2 and if 12 has property (w), must D be a Priifer domain? (The integral 
domain D with identity is a Priifer domain if each nonzero finitely generated 
ideal of D is invertible; equivalently, DP is a valuation ring for each proper 
prime ideal P of D.) Prior to Ohm's paper, it was known that if D has property 
(2) and if D is integrally closed, then D is Priifer. In [7, Theorem 1.4], Ohm 
showed that D is Priifer if D has property (2) and if 2 is a unit of D. Example 
4.6 of [7] is a domain which has property (n) for all n, but wmich is not integrally 
closed, and hence not Priifer. 

In [3], Gilmer extended Ohm's investigation of property in), and in the 
process he defined property in)''. He showed that property in)' implies pro­
perty in) and that an integrally closed domain having property in) for any 
n > 1, is Priifer. Two examples in [3] show that a domain with property in)', 
for each positive n need not be Priifer. 

In this paper, we investigate the question: 

Does property in)" imply that D is a Priifer domain^ 

We show that property in)" implies both properties in) and in)', and thus if 
D is integrally closed, it implies that D is a Priifer domain. Example 3.4 shows, 
however, that property in)", for all n, is not strong enough to imply that the 
domain is integrally closed. Finally, we show in Example 3.7 that property in)" 
is not equivalent to either property in) or in)'. Our notation and terminology 
will be that of [2]. 

2. Property in)" and Priifer domains. Throughout this section, D is an 
integral domain with identity, and n is an integer greater than 1. 
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LEMMA 2.1. Property (n),f => property (n)' => property (n). 

Proof. Theorem 5.3 in [3] shows that property (n)' implies property (n). To 
see that property (n)" implies property (n)\ suppose that A is an ideal of D, 
x £ D - {0}, and xn £ An. Then (x)n = (x)n n An = [(x) Pi A]n Ç (x^ -M. 
Hence (x) ^ 4̂ since (x)w_1 is a cancellation ideal. 

THEOREM 2.2. Le/ D &e aw integrally closed domain. The following conditions 
are equivalent in D: 

(a) D is a Prùfer domain. 
(b) Property (n)rr holds in D. 
(c) Property (n)/f for finitely generated ideals holds in D. 

Proof, (a) => (b). It is clear that any valuation ring has property (n)". 
Hence if D is Prufer, and if \M\} is the set of maximal ideals of D, then for any 
ideals A and B of D, 

{A r\B)n = n(An BTDMX = n[(Ar\ B)DMJ = n (ADM"X r\ BDMJ 
X X X A A 

= r\[{ADMjr\{BDMj] 

= [n AnDMj r\ [n BnDMx\ = Anr\ B\ 
X X 

(b) <=» (c). This is true in any commutative ring. 
(b) => (a). This follows from Lemma 2.1 above and from Theorem (20.3) 

in [2]. 

Remark 2.3. It is apparent from our proof of the implication (a) => (b) that 
[ P l t i A f]n = r\ki=iA in for any finite family {A t} *=i of ideals of a Prùfer domain. 
The analogous equality for an arbitrary family of ideals of a Prùfer domain is 
not valid. For example, if V = Q[[X]] and if M = XV, where 0 is the field of 
rational numbers, then if Z denotes the ring of integers, the domain D = Z+ikf 
is Prùfer [2, p. 561]; but if At = ptD, where pi < p*> < . . . is the sequence of 
positive prime integers, then for any positive integer n, 

[C]Ai]
n= ikTC F)Ai

n = M. 
i=\ i=i 

At this point we detect a breakdown in the duality between the operations of 
addition and intersection on the set of ideals of a Prùfer domain, for it is 
true that 

(ZxAxy = Ex^4xn 

for any family {A\} of ideals of a Prùfer domain, and for any positive integer n. 

Remark 2.4. A careful analysis of the proof of Lemma 2.1 and of Theorem 4.3 
of [3] shows that the following generalization of the implication (c) => (a) in 
Theorem 2.2 is valid. 
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(*) If D is n-integrally closed and if (A C\ B)n = An P\ Bn for each pair A, B 
of ideals of D with a basis of two elements, then D is a Prilfer domain. (If n is a 
positive integer and if / is an integral domain with ident i ty with quot ient field 
K, then / is said to be n-integrally closed [3] if J contains each element 6 in K 
such t h a t 6 is a root of a monic p o l y n o m i a l / ( X ) G J[X] of degree n.) 

Result (*) is of some interest because of its connection with one of the more 
impor tan t open questions concerning Prûfer domains, namely: Does every 
finitely generated ideal of a Prûfer domain have a basis of two elements? [5]. 

Remark 2.5. T h e concept of a Prûfer domain has been extended to commu­
ta t ive rings with zero divisors, thereby obtaining Prûfer rings. M. Griffin's 
paper [6] contains much of wha t is known abou t Prûfer rings. Using the results 
of [6], it is straightforward to prove the following generalization of Theorem 2.2: 

Let R be an integrally closed ring with few zero divisors, and let n be an integer 
greater than one. The following conditions are equivalent in R: 

(a) R is a Prûfer ring. 
(b) If A and B are regular ideals of R, then (A Pi B)n = An C\ Bn. 
(c) If A and B are finitely generated regular ideals of R, then (A C\ B)n = 

An n B\ 

T h e question arises as to the relationship between conditions (a), (b) , and 
(c) if the hypothesis "R has few zero divisors" is dropped. In part ial answer to 
this question, we can prove (a) => (b) <=4> (c). An examinat ion of our proof of 
Lemma 2.1, together with results of [3], show t h a t (c) implies the following 
condition (c) ' : 

(c) ' : If {r^^i is a finite set of regular elements of R, then (fi, . . . , rn) is 
invertible. 

An example in [4] shows t h a t an integrally closed ring in which (c) ' holds 
need not be a Prûfer ring, bu t we have no example to show t h a t (c) does not 
imply (a) . 

3 . E x a m p l e s . In this section, we present a class of domains with proper ty 
in)" for every positive n, bu t which are not integrally closed. 

Le t V be a valuat ion ring of the form K + M, where K is a field and M is the 
maximal ideal of V, and let v be a valuat ion associated with V. Le t k be a 
proper subfield of K, and set D = k + M. In order to present Example 3.4, 
we shall need a characterizat ion of the finitely generated ideals of D and of the 
powers of such ideals. 

L E M M A 3.1 (Gilmer [3]). If x Ç D — {0}, xD contains each element y of V 
such that v(y) > v(x). If A is a finitely generated ideal of D, say A = (ai, . . . , an), 
and if t = min {^(a2)|l ^ i ^ n}, then for any element a of A such that v (a) = t, 
A has a basis {a, k2a, . . . , kma] for some k2, . . . , km £ K — k. Moreover, 
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A = Wa + C, where W is the k-subspace of K spanned by {1, k2, . . . , km} and 
C = {y e V\v(y) > t}. 

LEMMA 3.2. Let A = Wa + C be a finitely generated ideal of D as given in 
Lemma 3.1. Then An = Wnan + G , where G = {3/ Ç F|^(^) > w ( a ) } . 7/ 13 
w a finitely generated ideal of D of the form W±b + C, where v(b) = v(a) and W\ 
is a finite-dimensional k-subspace of K, then 

(A C\ B)n = {Wa C\ Wxb)n + G . 

Proof. Any element x Ç 4̂W is a finite sum of elements a±a2 . . . an, ai Ç ^4. 
Wri t ing A^ = se^a + cu wt G If, ct G C, we obtain aia2 . . . an = W\ . . . 
wna

n + Wi . . . wn-\a
n~xcn + . . . + Cic2 . . . cn. Since each term in this expres­

sion except the first has y-value greater than nv(a), a± . . . an G Wnan + G . 
Hence s G T F V + G . 

Conversely, Wa ÇL A implies Wnan C ^4W. Also if y G Ci, then 2 (y) > 

Wï,(a) = v(an) implies t ha t y £ anD ç: An. I t then follows t h a t Wnan + 
G C ^4W, and so equali ty holds. 

T h e proof t h a t (A H B)n = (TFa H I f !&)» + G follows similarly. 

If R is a su bring of the commutat ive ring S, then i^ is said to have property 
(n) with respect to S if for each £ G «S, there exist au bi G R such t h a t £z = 
a£n + bi, i = 1, . . . , n — 1. W e are interested in the case where R and 5 are 
fields. 

T H E O R E M 3.3. Let V be a valuation ring of the form K + M, K a field, M the 
maximal ideal of V, and let v be a valuation associated with V. Suppose that k is a 
proper subfield of K such that k has property (n) with respect to Kfor some positive 
integer n. Then D = k + M has property (n)'f. 

Proof. We remark tha t Ohm [7] observed tha t A has proper ty (n), and 
Gilmer [3] showed tha t A has property in)'. 

Let A = (#i, . . . , an) and B = (bi, . . . , bm) be finitely generated ideals of 
D, let h = min {v(ai)\l ^ i ^ n) and t2 = min {z/(6*)|l ^ i ^ m\. If h > 
t2 = v(bj), then by Lemma 3.1, each at G bjD, so t ha t A Ç B, and the result 
is clear. T h u s we may assume tha t h = t2j A = W±a + C and B = W2b + C, 
Û U , b G B, v(a) = v(b) = tu C = {y G V\v(y) > h}, and Wu W2 are 
finite-dimensional &-subspaces of K. 

In [1], J. W. Brewer showed tha t for k to have proper ty (n) with respect to 
K, it is necessary tha t [K : k] = 2. I t follows t ha t we have the following three 
cases to consider: 

1. A = Ka + C, B = Kb + C. 

2. A = ka + C, B = Kb + C. 

3. A = ka + C, B = kb + C. 

Since v{a) = v(b), there exists 7 G K — {0} and m £ M such t h a t 6/a = 
7 + m. Since aw G C, there is no loss of generality in assuming t h a t m = 0 
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( tha t is, y a is in B and is an element of B of minimal va lue) . Using this rela­
tionship and Lemma 3.2, the three cases become 

1. A = Ka + C = Kya + C = Kb + C = B. 

2. A = ka + C C Ka + C = Kya + C = B. 

3. (A r\B)n = (ka P kya)n + d = (k P ky)nan + d. 

An C\Bn = [knan P kn(ya)n] + d = (k P kyn)an + G . 

Now the conta inment (k P ky)n Ç & P kyn a lways holds, and since k, ky and 
kyn are one-dimensional &-subspaces of K, i t follows tha t , for 1 ^ i ^ n, 
k P kyi is either & or (0), depending upon whether yl is, or is not, in k. Since k 
has proper ty (n) with respect to K, it follows from Lemma 5.5 of [3] t h a t y £ k 
if and only if yn 6 ife. T h u s (k P £7)» = (ife P £7"), and hence (4 P £ ) w = 
^tn p Bn. 

Example 3.4. In [7], Ohm constructed fields k, K, with k a proper subfield 
of K, such t h a t & has proper ty (n) with respect to K for each positive integer n. 
If ikf is the maximal ideal of the valuat ion ring i£[[X]], then the domain 
D = k + M has proper ty in)" for each n. Since i£[[X]] in the integral closure 
of D, D is not Priifer. 

Our next example shows t h a t proper ty in)" is indeed stronger than propert ies 
(n) and (n)r. Suppose t h a t V\ and V2 are rank one discrete valuat ion rings 
having a common quot ient field L, t h a t K is a common subfield of Vi and V2l 

and t h a t V* = K + il/f *, where ¥ j is the maximal ideal of Vt. W e are interested 
in the domain D = K + (ikfi Pi Af2). If fl* is a valuat ion associated with Vt, 
then by the approximation theorem for independent valuat ions, there exist 
a, b £ L such t h a t Vi(a) = v2(b) = 1, Vi(b) = v2(a) = 0. Using this nota t ion , 
we have 

LEMMA 3.5. The domain D is local. In particular, if A is a nonprincipal ideal of 
D, then there exist positive integers n, m such that A = (anbm, an+lbm). Moreover, 

(anbm, an+1bm) = {d G D\vx(d) ^ n, v2(d) ^ m). 

Proof. W e show first t h a t if t ^ n, s ^ m, and if Vi(x) = v2(x) = 0, then 
there exist £1, £2 £ K and z £ -Mi Pi M2 such t h a t 

(#) a ^ 5 x = (£1 + z)anbm + £2a
n+1bm. 

Suppose t h a t a
t~nbs~m x = Hi(Mi), and t h a t a = 77 (M2), where /*;, rj £ K, 

r] 9e 0. Then £1 = MI, £2 = ^-1(M2 — Mi) is the unique solution in K of the 
system of equations 

Mi = X, 

M2 = X + ^ F . 

I t follows t h a t al-n bs~m x - £1 - a£2 = z Ç Mx P M 2 . Hence (#) follows, and 
from this we have (anbm, an+1bm) = {d £ Z>|*i(d) ^ rc, v2(d) ^ m ) . 
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Now let A be a nonprincipal ideal of D. Let n = min {vi{x)\x G A), let 
m = min {y2(x)|x G 4̂ and zJi(x) = n}, and let y be an element in A such t h a t 
v±(y) = n, v2(y) = m. Wri te y = anbmu, where Vi(u) = v2(u) = 0. We choose 
x G A — (anbmu)D. I t is clear t ha t Vi(x) ^ n. We show tha t v2(x) ^ m. If 
^i(x) = w, it is clear t ha t v2(x) ^ m\ and if ^i(x) > n, then x + anbmu G ^4, 
z>i(x + anbmu) = n, and hence v2(x + anbmu) ^ m, so t ha t fl2(x) ^ w. I t then 
follows from (#) t h a t there exist £i, £2 £ K and s G I f i Pi M 2 such t h a t xzr"1 = 
(£i + 2)an6w + £2a

n+lbm. Therefore, x = fe + z)anbmu + £2uan+1 bm = fe + 
z)anbmu + £2a

n+1bm(v + hb), where M = /z(M2) and where A G V2. I t then 
follows t ha t x = (£i + s + ^2hab)anbm + ^2a

n+1bm, where £2Aa& Ç ^ H Af2. 
Since x g anbmuD, /*£2 ^ 0 and thus aK+1 6m £ (x, an6row) C 4 . Hence (aw6m, 

a*+ij™) Ç i Ç (anbm, an+1bm), and equali ty follows. 

T H E O R E M 3.6. Let n be an integer greater than one. The domain D = K + 
(Mi P ikf2) daes not have property (n),r. D has property (n)f if and only if the 
mapping x —> xn of K into K is one-to-one. 

Proof. Let A = (ab)D and B = (a2b)D. Then (A C\ B)n = (asn b2n, a3n+1b2n) 
while An C\Bn = (a2n+1 bn+1, a2n+2bn+1), so t ha t (A P B)n C An P Bn. 

Theorem 7.1 of [3] shows tha t D has property (n) if and only if the mapping 
x —> xn oî K is one-to-one. Hence it suffices to show tha t if D has proper ty (n), 
then it also has proper ty (n)'. 

Now if / is any domain with property (n), then J has property (n)' with 
respect to principal ideals. T h a t is, if xn G (y)n, then x G (y), for since J" has 
proper ty (n), xyn~l G (xw, yn) = (yn). T h u s we need only consider the non-
principal ideals of D. 

If A is a nonprincipal ideal of D, then it follows from Lemma 3.5 t h a t 
A = anbm(Vi P V2) is an ideal of V± P F2 , and hence A is an intersection of 
valuat ion ideals. Lemma 5.1 of [3] shows tha t if the ideal A of the domain D 
is an intersection of valuation ideals of D, and if x G D is such t h a t xn G An, 
then x G ^4. T h u s the proof is complete. 

Example 3.7. The prime field -K2 with two elements has the proper ty t h a t 
x —» xw is one-to-one for any positive i n t ege r s . Let V\ = (TT2[X])(X) = w2 + Mi , 
and let V2 = (TT2[X])(X+1) = TT2 + M 2 . Then if £> = TT2 + (ikfi P M 2 ) , we 
obtain an example of a domain having property (n)f for each positive integer, 
bu t having proper ty (n)" for n o w > 1. 

Remark 3.8. For a positive integer ^ > 1, there are essentially two different 
methods of obtaining domains with property (n) which are not integrally 
closed. One is the k + M construction of our Theorem 3.3. As we have pre­
viously remarked, Gilmer in [3] showed t ha t domains constructed in this way 
have proper ty (n)''. T h e second way of obtaining non-integrally closed domains 
with proper ty (n) is the K + (Mi P M2)-construction of our Theorem 3.6. 
As we have shown in the proof of Theorem 3.6, property (n) in such a domain 
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is equivalent to property (n)'. It follows that no example has been pointed 
out in the literature to show that (n) does not imply (n)f. In fact, it is conceiv­
able that the properties (n)f, (n), and (n)* of [3] are equivalent. 
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