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1. Introduction

On the basis of physical principles having a very general nature,
A. Lande" [1] has demonstrated that the mathematical structure of quantum
mechanics can be derived without having recourse to the introduction of
special assumptions of an ad hoc type (such as commutation rules governing
canonical observables) which are not immediately suggested by our knowl-
edge of the physical world, but which have simply originated as rules which
mathematical physicists have discovered by past experience to yield con-
clusions in conformity with experiment.

In particular, he establishes that the relationship between two represen-
tations of the state of a physical system must necessarily be of unitary type,
i.e. if the sets of observables being employed as bases for the representations
have discrete spectra, so that the system state is specified by vectors
having components a,, a.'t (i = 1, 2, • • •) in the two representations, then

where uit are the elements of a unitary matrix and (2) is the transformation
inverse to (1), (asterisks indicate that the conjugate complex quantity is
to be taken).

Lande also indicates that the well-known fundamental relationship
between the coordinate and momentum representations of a particle's
state, from which all other representations of the states of physical systems
(ignoring spin observables) may be considered to be derived, follows by
application of the special principle of relativity when this is supplemented
by the assumption that the relationship between these two representations
is unitary in character. The purpose of this note is to perform this derivation
of the form of this relationship in a comparatively rigorous manner.
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2. Derivation of the relationship

Let x{ (i = 1, 2, 3) be the coordinates of the particle relative to an
inertial frame S and let p{ (i = 1, 2, 3) be the corresponding components
of its linear momentum. Then, if ip(x1, x2, x3) = y>{xi) is the wave function
describing a particular state A of the particle when the coordinate represen-
tation is being employed and if </>(plt p%, p3) = <f>(Pf) is the wave function
describing the same state in the momentum representation, we shall assume
that

(3)

(4)

determine the form of the unitary transformation (1), (2), appropriate to
the case when the observables of the basis possess continuous spectra.
In equations (3) and (4), dx = dx1dx2dx3, dp = dpxdp%dpz and the inte-
grations extend over the full range (—oo, GO).

In conformity with the special principle of relativity, we shall assume
that the form of this relationship is independent of the inertial frame being
employed, i.e. the form of the kernel u does not alter if we transform from
one inertial frame to another. Consider, therefore, a second inertial frame
S' relative to which the particles coordinates are x\ and its momentum
components are p\. Then, we have the orthogonal transformation equations

3

(5) x\ = ^,aiixi+bi,
3 = 1

(6) P't = 2*tiP,+Ci,
3 = 1

where the coefficients ati are determined by the inclinations of the axes of
S' to the axes of S and satisfy the well-known conditions on the elements
of an orthogonal matrix. It should here be noted that, although we are
appealing to the special principle of relativity, our object is to develop,
not Dirac's relativistic theory, but the classical theory of quantum mechanics.
In the same way that the fundamental equations of classical Newtonian
mechanics are covariant with respect to a Galilean transformation and,
as a consequence, are consistent with the special principle of relativity,
we are assuming that the classical theory of quantum mechanics exhibits
a similar covariance with respect to this type of transformation. The equa-
tions (5) and (6) accordingly represent, not a Lorentz transformation, but
a Galilean transformation referring to the particular time instant under
consideration.

In the ^'-representation, let the state A be determined by a wave
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function y'ixj and, in the ^'-representation, by a wave function ^'(p',).
Then, the probability of finding the particle in the neighbourhood of a given
point must be the same whether calculated in the 5-frame or the S'-frame
and hence

( 7 ) |y>| = |y, ' | .

Similarly,

(8) \<f,\ = | f |.

Hence we can write

(9) ? ' = ¥*'". V = 4*tf,

where

B = Bfa,aik,bltCn).

According to our initial hypothesis,

(11) <f>'(p'i)

Substituting from the transformation equations (5), (6) and from (9),
we get

(12) fa" = f « ( 2 auPi+Cf, 2 aijxj+bi)y>e"'dx,
J i i

where
d{x'x,x'%,x'z)

The negative sign must be taken if the orthogonal transformation is in-
direct; in this case, it is necessary to replace B by B-\-n before arriving at
equation (12).

It now follows from equations (3) and (12) that

(14) f u{pt, zt)y>{zt)e"dx = f u{2 "aPi+Ci, 1 a^x^b^x^dx,
J i i

since B is independent of the xi. This last equation is to be valid for ar-
bitrary wave functions v'fo) which lead to convergent integrals. For this
to be so, it is necessary that

(15) u{pt, xt)e" = u(2 ciiiPi+Ci, 2 <»„*,

identically in the variables xt, pt and parameters a(i, ct, b(. The form of
u can now be deduced as follows:
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First, we note that

(16) \u(pt, zt)\ = |«(I aupt+ct, 2 aiiXi+bt)\.
i i

Since bt, c, are arbitrary, this identity implies that

(17) \u(pi, xt)\ = constant = u0.

Taking arguments of both sides of the identity (15), we find

(18) dip,, Xi)+p = 6(2 avPi+Ct, 2 aiM+bJ+aL,
i i

where
(19) 0 = arg u.

Differentiating equation (18) partially with respect of pt and xit since a
is independent of pt and /? is independent of xt, it follows that

d26 _ d*6
(20) prr^M-
The properties of the coefficients ati enable us to write this relationship in
the inverse form

121) 8*d - T - a m

from which it is clear that the quantities diBjdpidxi transform between two
rectangular cartesian frames like the elements of a tensor of the second rank.

Putting xt = 0, pf = 0 (» = 1, 2, 3) in the identity (21), we obtain

c>20 _(22) B^rl^
where the subscript zero indicates that the arguments pT, xs are put equal
to zero after differentiation. But the right-hand member of equation (22)
is independent of ct and b, and it follows, therefore, that the left-hand
member is also. Thus

( 2 3 ) e ^ = *«•

where the %it are constants. Equation (21) can now be written

(24) Zu = 2>*-«*Z«.
r,s

implying that Xu is a second rank tensor whose elements are the same
in every frame. It is shown by H. Jeffreys [3] that any such tensor must
be an invariant multiple of the fundamental tensor, i.e.
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(25)

We have proved

(26)

Integrating, we find

(27)

, therefore,

£

that

0 = :

D. F. ]

Xa =

that

320

)p. fa

[5]

where P is a function of the p{ alone and X is a function of the xt alone.
Hence

(28) «
i

The transformation equations (3), (4) can now be written as

(29) e-

(30) «

But the only connection between the physical world and the mathematical
symbolism is that |y>|2, \<f>\2 are interpretable as probability densities.
This connection is unaltered if we now absorb a factor elX in y> and a factor
e~lP in <f>, to yield new wave functions, which we can then again denote by
y>, <fi respectively.

y is a fundamental constant of the physical world and its value can only
be decided by comparing the physical implications of equations (29), (30),
with actual observations. It is found that the agreement between theory
and experiment can only be obtained if we take y = —1/ft (the negative
sign is purely conventional), where 2nK is the constant introduced originally
by Planck. However, the most fundamental definition of Planck's constant
is that it is the constant which arises at equation (25).

Finally, u0 is determined by the requirement that the equations (29),
(30) should be consistent; these equations are essentially those relating a
function and its Fourier transform and it follows from the theory of this
relationship that u0 = h~$. Thus

(31) 4{pt) = h-i j e-

(32) v(xt) = h-t j e'

Having established these transformation equations relating the coor-
dinate and momentum representations of the state of a particle, the develop-
ment of the theory of the quantum mechanics of a particle can proceed in a
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straightforward manner (see e.g. Tolman [2]). Thus, in the coordinate
representation, it now follows directly that the operators representing the
observables x(, p{ are xit —ih8jdxit and that, in the momentum representa-
tion, the corresponding operators are ihd/dpf, pt.
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