
JFP 15 (1): 53–65, 2005. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005350 Printed in the United Kingdom

53

Web programming in Scheme with LAML

KURT NØRMARK

Department of Computer Science, Aalborg University, Denmark

(e-mail: normark@cs.auc.dk)

Abstract

Functional programming fits well with the use of descriptive markup in HTML and XML.

There is also a good fit between S-expressions in Lisp and the XML data set. These

similarities are exploited in LAML which is a software package for Scheme. LAML supports

exact mirrors of the three variants of XHTML 1.0, SVG 1.0, and a number of more specialized

XML languages. The mirrors are all synthesized from document type definitions (DTDs).

Each element in a mirror is represented by a named function in Scheme. The mirror functions

validate the XML document while it is generated. The validation is based on finite state

automata automatically derived from the DTD.

1 Introduction

In this paper we discuss the use of Scheme (Kelsey et al., 1998) in the domain of web

programming and web authoring. Our primary concern is the modeling of HTML

and XML in Scheme. The notion of web programming is limited to programmatic

contributions in static web documents and to transformations of web documents.

Server-side web programming is not directly addressed in this paper, although most

aspects of the paper are relevant for server-side programming as well.

LAML stands for Lisp Abstracted Markup Language. The key idea of LAML is

to make existing and major markup languages such as XHTML and SVG available

as a set of Scheme functions. LAML supports the generation of Scheme mirror

functions of any XML language defined by a DTD. The Scheme mirror functions

reflect the properties and constraints of elements and attributes in the markup

language.

LAML documents are written as Scheme programs. The textual content is rep-

resented as string constants. Internally, a document is represented as an abstract

syntax tree (AST) in which the textual content, subtrees of the AST, white space

markers, and character references can be distinguished by their dynamic types. A

character reference refers to a specific character in a character set. HTML and

XML document fragments are written as Scheme expressions which call the mirror

functions. In a LAML source document there are no lexical nor syntactical traces

left of HTML and XML. The validity of a LAML web document is checked at

document generation time, corresponding to type checking at run-time. LAML

uses a standard Scheme reader, in contrast to some similar Scheme-based systems

(BRL and Scribe) which use an extended Scheme syntax. LAML can be used with

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

54 K. Nørmark

any R4RS or R5RS Scheme system which implements a small collection of well-

defined, operating system related procedures and functions (such as delete-file

and file-exists?.)

The primary goal of LAML is to support the creation of complex web material

in Scheme. In many ways complex web material resemble non-trivial programs. The

need of abstraction is a primary concern. At the fine grained level, abstraction can be

supported by definition of functions that encapsulate a number of document details.

At a more coarse grained level, linguistic abstraction is supported in LAML by the

generation of exact mirrors of XML languages, as defined by DTDs. Programmatic

means of expressions, as reflected by selection and iteration, is also important when

we deal with complex web documents. As a particular aspect, LAML has been

designed to make good use of higher-order list functions. This will be illustrated in

section 4.

The source of a LAML web document is a Scheme program which uses the

LAML libraries, most importantly the set of HTML mirror functions and mirrors

of other XML languages. Working on this basis, the Scheme programming language

is available at any location in a web document, and at any time during the authoring

process. As a pragmatic consequence, many problem solving aspects can be handled

inside the document – expressed in Scheme – as opposed to handling by external

XML tools and processors. Due to this we use the term programmatic authoring for

the approach (Nørmark, 2002).

The main contribution of this work is the mirroring scheme that makes HTML

elements, and elements from other XML languages, available as Scheme functions.

The integrated validation of the documents, at document generation time, is an

important part of the approach. The fitting of the framework to support a natural

organization of document data in lists is also important.

In section 2 we discuss a couple of simple examples of complete LAML documents,

beginning at the “Hello World” level. In section 3 the XHTML mirror functions

are explained and discussed. Section 4 contains additional examples, primarily il-

lustrating the use of higher-order functions together with LAML. In section 5 the

XML framework in LAML is covered. The work on LAML is related to similar

work in section 6. Conclusions are drawn in section 7.

2 Initial examples

Figure 1 shows a “Hello World” example to illustrate the composition of a complete

LAML document. The first line loads the fundamental LAML software; the second

line loads the XHTML 1.0 transitional mirror library; then follows a write-html

clause, which contains a (html ...) expression. The expression uses the XHTML

mirror functions html, head, title, body, p, and a which correspond to the similarly

named elements in XHTML. The first parameter of write-html controls the format

of the textual rendering and the document prologue. The rendering may be raw or

pretty printed, and the document prologue consists of an XML declaration and a

document type definition.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

Web programming in Scheme 55

(load (string-append laml-dir "laml.scm"))
(laml-style "simple-xhtml1.0-transitional-validating")

(write-html ’(raw prolog)
(html ’xmlns "http://www.w3.org/1999/xhtml"

(head (title "Hello World"))
(body (p "Hello" (a ’href "http://www.w3c.org/" "W3C")))))

(end-laml)

Fig. 1. A LAML “Hello World” document.

(load (string-append laml-dir "laml.scm"))
(laml-style "simple-xhtml1.0-transitional-validating")

(define html-props (list ’xmlns "http://www.w3.org/1999/xhtml"))

(define body-props
(list ’bgcolor (rgb-color-encoding white) ’text (rgb-color-encoding black)

’link (rgb-color-encoding blue) ’vlink (rgb-color-encoding blue)))

(define (w3c-url suffix) (string-append "http://www.w3c.org/" suffix))

(define (indent-pixels p indented-form)
(table ’border "0"

(tr (td ’width (as-string p))
(td ’width "*" indented-form))))

(write-html ’(raw prolog)
(let ((ttl "A simple page"))

(html html-props
(head (title ttl))
(body body-props

(h1 ttl)
(indent-pixels 50

(p "The" (a ’href (w3c-url "") "W3C")
"web site has information about"
(a ’href (w3c-url "MarkUp/") "HTML") _ ","
(a ’href (w3c-url "XML/") "XML") _ ","
"and many other web technologies."))

(author-signature)))))

(end-laml)

Fig. 2. A simple LAML web document with a number of abstractions.

Most LAML documents introduce a number of document abstractions. Even in

relative simple web documents there are many good uses of functional abstractions.

This is illustrated in Figure 2 by elaborating the example from Figure 1. Many

useful abstractions are related to attribute values, such as the function w3c-url that

abstracts the prefix part of the W3C URL. Others are related to sets of attributes,

such as html-props and body-props.

It is also useful to introduce content-related abstractions. As an example, the

document in Figure 2 implements and uses the function indent-pixels for textual

indentation. The function can be implemented with use of an HTML table. The

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

56 K. Nørmark

function author-signature, which is intended to be defined in a personal LAML

startup file, returns the author’s name, affiliation, and email address.

Based on the examples we make two observations about content-related ab-

stractions in LAML. First, ordinary positional parameters do not fit well with the

parameter conventions of the HTML mirror functions. Therefore it is attractive to

use a parameter profile of indent-pixels which is similar to the conventions of

the HTML mirror functions. We show how this can be done in section 4. Second, if

a coherent collection of content abstractions is necessary, it is useful to implement

this collection as a new XML language in LAML. We discuss this in section 5.

3 XHTML mirror functions

The XHTML mirror functions are designed with the goal that element instances in

web documents should have straightforward and easily recognizable counterparts in

Scheme. As examples, the XML clauses

<tag1 a1="v1" ... am="vm">contents</tag1>

<tag2 a1="v1" ... am="vm" />

correspond to the Scheme expressions

(tag1 ’a1 "v1" ... ’am "vm" "contents")

(tag2 ’a1 "v1" ... ’am "vm")

Expressions like these are evaluated to instances of ASTs, which in turn are

represented as tagged list structures. An AST node holds information about the

element name, the element contents, the attributes, the XML language being used,

and whether the node represents an empty XML element. An AST is typically

transformed to a lower level representation (such as an HTML AST), rendered as a

string, or rendered directly to an open output port. In both rendering situations we

avoid excessive string concatenation to reduce the amount of garbage collection of

string parts.

A mirror function accepts AST values, character reference values (tagged lists like

the ASTs) as well as strings, symbols, booleans, and lists. At run time, the types of

the actual parameter values are used to control the interpretation of the parameters,

prior to the building of an AST. The possibility of passing an arbitrary long list

of parameters of different dynamic types is crucial for our approach. The mirror

functions obey the following LAML parameter passing rules:

• Rule 1. A symbol represents an attribute name. Symbols of the form css:a

refer to the a attribute in CSS. A symbol must be followed by a string that

plays the role of the attribute value.

• Rule 2. A string which does not succeed a symbol is an element content item.

Character reference values as well as AST values returned by mirror functions

are also element content items.

• Rule 3. Element content items are implicitly separated by white space. An

explicit boolean false value between element content items suppresses white

space. The boolean false value is bound to the underscore variable.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

Web programming in Scheme 57

• Rule 4. A list of symbols, strings, booleans, character references, and ASTs is

processed recursively, and the resulting element content items, attributes and

white space markers are spliced with the surrounding list of parameters.

LAML can also be used in a relaxed mode where numbers and characters serve

as element content items and attribute values. The following LAML expression

illustrates the parameter passing rules.

(p "The" (a ’href "www.w3c.org" "WWW") "Consortium" _ ".")

The value of the expression is the following slightly abbreviated AST:

(ast "p"

("The" #t (ast "a" ("WWW") (href "www.w3c.org") ...) #t "Consortium" ".")

() double xhtml10-transitional)

A boolean true value in the AST represents white space. The AST can be rendered

as the following HTML clause:

<p>The WWW Consortium.</p>

The mutual order of the element content items and the attributes is arbitrary as

long as Rule 1 is adhered to. Thus, (a ’href "URL" "A" "B" "C") and (a "A"

’href "URL" "B" "C") are equivalent expressions. The rationale behind Rule 3 is

to support white space in between element content items (the typical case) without

use of additional and explicit markup.

In Lisp it is often convenient to represent document fragments as nested lists.

This is the rationale behind Rule 4. As an example, the expression

(let ((attributes (list ’start "3" ’compact "compact"))

(contents (map li (list "one" "two" "three"))))

(ol ’id "demo" contents (li "final") attributes))

which can be rendered as

<ol id="demo" start="3" compact="compact">

one two three final

shows that both an attribute list and a list of element content items can be passed

to the ol mirror function.

The XHTML mirror functions validate the generated document at the time the

LAML expressions are evaluated. The validation is done relative to the underlying

DTD. Both the document composition and the attributes are checked. The document

composition must be in accord with the element content models, which taken

together represent a context free grammar of the XML language. The attributes

are checked for attribute existence, presence of required attributes, and avoidance

of attribute duplication. In case of validation problems, warnings are issued. If the

author prefers, a validation failure may alternatively lead to a fatal error. Additional

details of the document validation framework is discussed in section 5.

The validation of a document against the DTD would be in vain if the textual

content or an attribute value of a document is allowed to contain the characters ‘<’,

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

58 K. Nørmark

‘>’, or ‘&’ (or a double quote character in an attribute value). Instead of prohibiting

these characters in LAML source documents we translate them to their similar

HTML character references, such as <. The translation is carried out by means

of a systematic mapping of every character in the textual contents and in attribute

values. We also use the mapping to translate national characters, such as the Danish

‘æ’, ‘ø’, and ‘̊a’, to the corresponding HTML character references.

4 Examples with higher-order functions

There are many good uses of higher-order functions in relation to the XHTML

mirror functions. As the first application, we will see how an HTML table can be

made by combining the table, tr, and td mirror functions. In many contexts we

find it natural to represent tables as list of rows, where each row is a list of elements:

(define sample-table ’(("Row" "no." "1") ("Row" "no." "2")))

The following expression generates an XHTML table of sample-table

(table (map (compose tr (map td)) sample-table) ’border "1")

The table is rendered as

<table border="1"> <tr><td>Row</td> <td>no.</td> <td>1</td></tr>

<tr><td>Row</td> <td>no.</td> <td>2</td></tr>

</table>

Above, it is assumed that map is curried (done by the LAML function curry-

generalized). The function compose composes two or more functions to a single

function.

The LAML higher-order function xml-modify-element can bind attributes and

content items to fixed values in a mirror function. As an example, the following

expression returns a specialized a (anchor) function in which the target and the

title attributes have fixed values:

(xml-modify-element a ’target "main" ’title "Goes to the main window")

As pointed out in section 2, it is very useful to abstract commonly used patterns of

content items and attributes in XML documents. In many situations it is convenient

and natural to use the LAML parameter passing rules from section 3 for these

abstractions. We will now show how to adapt the existing function indent-pixels

from Figure 2 to make use of LAML parameter passing. Instead of the expression

(indent-pixels 50 (div (p "First par.") (p "Second par.")))

we introduce attributes and content items, such as in

(new-indent-pixels ’indentation "50" (p "First par.") (p "Second par."))

With the new parameter profile we can pass an arbitrary number of content

items to new-indent-pixels without aggregating them with div. The function

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

Web programming in Scheme 59

xml-in-laml-parametrization generates the new version of the indentation func-

tion from the existing one:

(define new-indent-pixels

(xml-in-laml-parametrization indent-pixels

(lambda (contents attributes)

(list (get-prop ’indentation attributes) (div contents)))

(required-implied-attributes ’(indentation) ’())))

The second parameter of xml-in-laml-parametrization is a function which must

return the parameter list to indent-pixels. The third parameter of xml-in-laml-

parametrization is supposed to validate the contents and the attributes. Above,

we use the function required-implied-attributes which returns a predicate that

ensures the presence of the indentation attribute, and that no other attributes are

passed. A function similar to xml-in-laml-parametrization allows us to make

ad hoc abstractions on top of existing XML mirror functions.

5 Synthesis of XML mirror functions

The mirror functions of an XML language can be synthesized from the XML

document type definition (DTD) of the language. LAML supports a DTD parser

which delivers a list representation of the DTD, in which all entity instances (textual

macro applications) are unfolded. The list representation of the DTD is used as

input to the LAML mirror generation tool, which creates a Scheme source file

with the mirror functions of the XML elements. The XHTML mirrors described in

section 3, as well as a mirror of SVG, have been produced by these tools.

As an important aspect, the mirror functions validate XML documents at docu-

ment generation time. The validation of the attributes has already been explained

in section 3. LAML defines a validation procedure for each XML element. The

validation procedure checks the context free correctness of a construct relative to

the content specifications in the XML DTD. In case of validation problems, an error

message is issued. We have emphasized the production of straightforward and easily

understandable error messages. The content specifications are regular expressions.

As examples of content specifications, the table and the body elements in XHTML

1.0 are constrained by the following (slightly abbreviated) regular expressions:

(caption?, (col*|colgroup*), thead?, tfoot?, (tbody+|tr+))

(#PCDATA | a | abbr | acronym | address | applet | b | basefont | ...)*

The LAML mirror synthesizer generates deterministic finite state automata for the

elements that have element content (such as table) whereas the elements with

mixed content (such as body) are validated by simpler means. The automata are

implemented by use of Algorithm 3.5 of Aho et al. (1986). The automata are

represented as lists and vectors in Scheme, and they are embedded directly and

compactly in the validation procedures. Automaton compactness is important to

keep down the size of the Scheme source files and thereby the software loading

times. The automaton validation functions are fast due to use of binary search for

the transitions.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

60 K. Nørmark

In the XHTML 1.0 strict mirror the average number of transitions per automaton

is 189, the maximum number is 1039, and the median is 14. In the SVG 1.0 mirror

the average number of transitions is 290, the maximum number is 1600, and the

median is 31. The largest SVG automaton occupies approximately 16 Kbytes in the

Scheme mirror source file. The largest automata occur for element-contents models

of the shape (e1 | e2 | ... | en)*. The size of the Scheme source file of the

XHTML 1.0 strict mirror is 236 Kbytes, and that of the SVG mirror is 527 Kbytes.

In addition to the mirrors of XHTML and SVG we have defined a number of

other XML languages in LAML. The mirrors of these XML languages can be

seen as linguistic abstractions rather than sets of individual functions. As a central

aspect, a set of library functions are shared among all XML languages in LAML.

This shared library supports the internal AST document format, higher-order AST

traversal and transformation functions, textual rendering functions, and common

content and attribute validation functions.

When two different XML languages in LAML have identically named elements,

there will be a clash of mirror function names in Scheme. XML solves this problem

by means of name spaces which disambiguate the two names by means of a unique

prefix. In LAML, we have introduced the concept of a language map. A language

map for a given XML language maps an element name to the corresponding Scheme

mirror function. As an example take the following:

(xhtml10-strict ’title) ⇒ the title mirror function in XHTML 1.0 strict

If no ambiguity is present, a mirror function can be accessed via a simple name. In

case of ambiguity, a warning is issued at document generation time, and the mirror

function should be accessed via the language map. At mirror generation time, we

check that no mirror function clashes with names of R4RS Scheme functions.

6 Related work

The description of related work is structured relative to the programming language

being used. We first discuss related work in Scheme, then work related to other

functional programming languages, and finally work in other paradigms. Throughout

the discussion we focus on the representation of the web documents in relation to the

base programming language. In addition we focus on the web document validation

approaches being used.

DSSSL (ISO/IEC 10179, 1996) is a collection of languages for processing of

SGML documents. DSSSL uses a subset of Scheme as the underlying programming

language. The processing which is involved covers document querying, transforma-

tion, and formatting.

Scribe (Serrano & Gallesio, 2002) is a Scheme-based system for authoring of web

pages, in particular technical documents. Document fragments are represented as

Scheme expressions in both Scribe and LAML. Scribe is based on a non-standard

Scheme reader, which introduces a new bracketed syntax for (lists of) strings with

inspiration from Scheme quasiquotation. The string [a ,(bold "bold") text]

serves as an example. Scribe supports a particular document language (in the style

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

Web programming in Scheme 61

of LaTeX) and because of that Scribe can generate output in different formats,

such as HTML, Postscript, and PDF. In contrast, LAML is limited to produce

XML documents. Document validation seems not to be an issue in Scribe. Like

LAML, Scribe uses an internal AST document representation. Scribe relies on a

novel multi-step evaluation process which allows document introspection, such as

needed for generation of a table of contents. In LAML, the similar effect is obtained

by first establishing the full AST of an XML source document followed by two

or more traversals of the source AST (one for extraction of structural information,

for instance, and one for a detailed rendering of the document in the target XML

language).

BRL (Lewis, 2003) is a language designed for server-side, database connected

web applications. BRL represents a document in HTML, with Scheme program

fragments embedded in square bracket notation. Alternatively, a BRL document

can be seen as a non-standard Scheme program in which strings are surrounded by

“reverse square brackets,” such as]a string[. In contrast, a LAML document is

a standard Scheme program which avoids the mixing of XML markup and Scheme

fragments. Validation of the resulting HTML documents is not an issue in BRL.

Kiselyov (2002) defines an XML format in Scheme called SXML. An SXML

clause is represented as an S-expression (a list data structure), whereas a LAML

clause is a Scheme expression which refers to named XML mirror functions. Both

formats are intended for authoring purposes. Conceptually, however, the SXML

format is similar to LAML ASTs. Validation of SXML documents is intended to

be done by an SXML producing tool, such as a parser.

Latte (Glickstein, 1999) is a mixture of the LaTeX text formatting system and

Scheme, at least at the conceptual level. In Latte, the author uses a LaTeX-like

markup style. Most interesting, however, Latte supports a Scheme-like language in

TEX syntax. Like Scribe, Latte can produce output in several formats, such as

HTML, TEX, and plain text.

XEXPR (Nicol, 2000) is a scripting language, inspired by Lisp and Scheme, that

uses XML syntax. XEXPR can be seen as a mirror of some Lisp dialect in XML.

LAML goes in the opposite direction, by creating a mirror of XML languages in

Scheme.

XQuery (Boag et al., 2003) and XSLT (Clark, 1999) are both based on the concepts

of functional programming languages, and they are both developed by the World

Wide Web Consortium. XQuery is a proposal for an XML query language, and XSLT

is an XML transformation language based on pattern matching and replacement.

As an alternative to XSLT, the PLT Scheme group has developed XT3D for XML

transformation by example (Krishnamurthi et al., 2000) with inspiration from the

R5RS Scheme macro facility. As part of this work it is possible to generate Scheme

builder functions from XML Schemas. In LAML the similar mirror functions are

generated from XML DTDs. Internally, the PLT tools represent XML documents as

list structures, which are called x-expressions. These are similar to the AST structures

used in LAML.

In a recent paper, Kiselyov & Krishnamurthi (2003) describe a Scheme counterpart

to the W3C XSLT transformation framework, which they call SXSLT. SXSLT

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

62 K. Nørmark

works on SXML structures, which have been described above. It is argued that

SXSLT is superior to XSLT, and that it is more adequate for power users than

XT3D. Transformation of XML documents in LAML relies on a few AST traversal

functions, and it relies on the precondition that every source document of the

transformation is valid. In addition, the LAML transformation framework is backed

up by statically derived information about the possible presence of certain elements

in documents rooted by other elements. The details can be found in (Nørmark,

2003b).

Wallace & Runciman (1999) discuss two different representations of XML docu-

ments in Haskell. One is based on a generic tree representation of XML documents;

the other is based on typed document fragments, where the DTD gives rise to

a number of algebraic type definitions in Haskell. The driving force behind the

second approach is full validation of XML documents via static type checking of

the Haskell XML programs. The ideas in this work are embodied in the system

called HaXml (HaXml, 2003).

Meijer and colleagues have in a number of papers dealt with aspects of web

programming using Haskell. In the first of these a Haskell framework for CGI

programming is presented (Meijer, 2000). In a second paper, Meijer & Shields

(2000) define a new language called XMλ which is intended for generation of

dynamic XML documents. The main focus of this work is to ensure creation of

valid XML documents by use of static type checking of XMλ programs. Like in

ASP, PHP, and JSP, an XMλ expression e is escaped as <%= e %> in an XML

document. In LAML, there is no need for escaping of Scheme expressions, but the

textual contents can be seen as escaped in string quotes.

Thiemann describes a modeling of XML and HTML in Haskell (Thiemann, 2002).

The ideas are implemented in the system called WASH/HTML (WASH, 2003).

Thiemann can synthesize Haskell combinator libraries from XML and HTML

DTDs. The synthesized libraries validate Haskell XML and HTML expressions

statically by means of Haskell type checking. Several levels of validations are

provided. Thiemann argues that full validation is not practical for real life web

programs and that weak validity is sufficient for practical purposes. In the work

with LAML we have found that a comprehensive validation of XML documents is

both important and worthwhile.

XDuce (Hosoya & Pierce, 2003) is a special purpose, statically typed functional

programming language for XML processing. XDuce uses regular expression types,

which are comparable to the element content model of XML DTDs. XDuce relies

on regular expression pattern matching for decomposition of XML documents. As a

practical incompleteness, XDuce does not support the handling of XML attributes.

Hanus (2001) describes a functional/logical web programming framework for the

language called Curry. This work is based on a straightforward modeling of HTML

as Curry data structures.

Curl (Hostetter et al., 1997) is an object-oriented programming language specific-

ally designed for web authoring and web programming purposes. Curl represents

documents as plain text with escaped program fragments in curly brackets. In its

foundation Curl is statically typed, but it is also possible to use dynamic types.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

Web programming in Scheme 63

Table 1. A summary of related systems in terms of the programming languages being used,

the web document representations, and the validation approaches

System Language Representation Validation approach

LAML Scheme Scheme expressions Dynamic type check

Scribe Scheme Scheme expressionsa None

BRL Scheme HTML with escape to

Scheme expressions

None

SXML Scheme S-expression data

structures

By external tools

Latte Scheme-inspired LaTeX-like with

Scheme-inspired

expressions

None

XEXPR Lisp-inspired XML By external tools

HaXmlb Haskell Haskell expressions Static type check

XMλ Haskell-like XML with escape to the

programming language

Static type check

WASH/HTML Haskell Haskell expressions Static type check

XDuce Xduce languagec Expressions in Xduce Static type check

Curry web

scripting

Curry Curry data structures None

Curl Curl language Plain text with escape to

Curl fragments

Static/dynamic

Bigwig Bigwig language Bigwig fragments with

escape to HTML

templates

Static type check

Jwig Java-like Java program with escape

to XML templates

Static type check

a with special string syntax.
b type based.
c special purpose functional language.
d special purpose object-oriented language.
e special purpose C-like language.

<bigwig> (Brabrand et al., 2002) is a C-like web programming language. <bigwig>

checks the validity of the involved HTML documents at compile time. In addition,

<bigwig> supports a session concept and a client-side form validation framework.

More recently, the work on <bigwig> has been generalized and adopted to Java in

the JWIG system (Christensen et al., 2003).

Table 1 summarizes the description of the related work. For each related sys-

tem, which we have discussed above, the table shows the programming language

being used, the representation of the web document, and the document validation

approach.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

64 K. Nørmark

7 Conclusions

LAML is designed for authoring of complex web pages and web sites. LAML

provides mirror libraries of existing XML markup languages, such as XHTML and

SVG, as well as a number of more specialized XML languages. A LAML document

is a Scheme program which uses a normal Scheme reader. LAML documents can be

processed by use of most Scheme systems. The parameter passing rules of the XML

mirror functions have been developed through a number of LAML generations.

We have found that programmatic authoring using LAML is convenient and

powerful for Scheme programmers. The possibility of introducing abstractions in

web documents is of great importance. Linguistic abstraction, in terms of mirrors

of new XML languages, deals with the overall needs. It is, however, our experience

that there will always be a need for special, ad hoc abstractions, implemented as

functions. This is especially the case when we create documents and programs in

XML languages not controlled by the author, such as HTML and SVG. In this

context it is important to support parameter passing rules of ad hoc abstractions

that are similar to the LAML parameter passing rules.

We have used LAML extensively over the last five years, both for processing

of LAML documents and for server-side CGI programming. The comprehensive

validation of static LAML documents is seen as a valuable asset, because any

deviation from the document standard is identified when the web documents are

generated. Run-time validation of server-side web programs is less attractive. The

fully automatic generation of the validation procedures is a major step forward,

compared to earlier versions of LAML which required some manual programming

efforts to produce the validation procedures.

This paper is relative to version 23 of LAML. LAML is available as free software

from the LAML homepage (Nørmark, 2003a).

Acknowledgements

Thanks to Lone Leth Thomsen for help with the final version of this paper. Thanks

are also due to the reviewers. Their extensive review reports helped improve this

paper considerably.

References

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers – Principles, techniques and tools.

Addison-Wesley.

Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J. and Siméon, J.

(2003) XQuery 1.0: An XML query language. W3C Working Draft.

http://www.w3.org/ TR/xquery.

Brabrand, C., Møller, A. and Schwartzbach, M. I. (2002) The <bigwig> project. ACM Trans.

Internet Technol. 2(2), 79–114.

Christensen, A. S., Møller, A. and Schwartzbach, M. I. (2003) Extending Java for high-level web

service construction. http://www.brics.dk/∼mis/jwig.pdf. (To appear in ACM Trans.

Program. Lang. & Syst.)

Clark, J. (1999) XSL transformations (XSLT) version 1.0. W3C Recommendation.

http://www.w3.org/TR/xslt.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

Web programming in Scheme 65

Glickstein, B. (1999) Latte the language for transforming text.

http://www.latte.org/latte.html.

Hanus, M. (2001) High-level server side web scripting in Curry. In: Ramakrishnan, I. V.,

editor, PADL 2001: Lecture Notes in Computer Science 1990, pp. 76–92. Springer-Verlag.

HaXml (2003) Haxml. http://www.cs.york.ac.uk/fp/HaXml/.

Hosoya, H. and Pierce, B. C. (2003) Xduce: A statically typed XML processing language.

ACM Trans. Internet Technol. 3(2), 117–148.

Hostetter, M., Kranz, D., Seed, C., Terman, C. and Ward, S. (1997) Curl: A gentle slope

language for the web. World Wide Web J. 2(2). http://www.w3j.com/6/s3.kranz.html.

ISO/IEC 10179 (1996) Information technology – processing languages – document style

semantics and specification language (DSSSL).

http://www.oasis-open.org/cover/dsssl.html.

Kelsey, R., Clinger, W. and Rees, J. (1998) Revised5 report on the algorithmic language

Scheme. Higher-order and Symbolic Computation, 11(1), 7–105.

Kiselyov, O. (2002) SXML. http://okmij.org/ftp/Scheme/SXML.html.

Kiselyov, O. and Krishnamurthi, S. (2003) SXSLT: Manipulation language for XML. In:

Dahl, V. and Wadler, P., editors, PADL 2003: Lecture Notes in Computer Science 2562,

pp. 256–272. Springer-Verlag.

Krishnamurthi, S., Gray, K. E. and Graunke, P. T. (2000) Transformation-by-example for

XML. In: Pontelli, E. and Costa, V. S., editors, PADL 2000: Lecture Notes in Computer

Science 1753, pp. 249–262. Springer-Verlag.

Lewis, B. R. (2003) BRL – a database-oriented language to embed in HTML and other markup.

http://brl.sourceforge.net/brl.pdf.

Meijer, E. (2000) Server side web scripting in Haskell. J. Functional Program. 10(1), 1–18.

Meijer, E. and Sheilds, M. (2000) Xmλ – a functional language for constructing and manipulating

XML documents. Submitted to USENIX Annual Technical Conference 2000.

http://www.cse.ogi.edu/∼mbs/pub/xmlambda/.

Nicol, G. T. (2000) XEXPR – a scripting language for XML. W3C Note.

http://www.w3.org/TR/xexpr/.

Nørmark, K. (2002) Programmatic WWW authoring using Scheme and LAML. Proc. 11th

International World Wide Web Conference – The web engineering track.

http://-www2002.org/CDROM/alternate/296/.

Nørmark, K. (2003a) The LAML home page. http://www.cs.auc.dk/∼normark/laml/.

Nørmark, K. (2003b) XML transformations in Scheme with LAML – a minimalistic approach.

Proc. International Lisp Conference, ILC 2003. Association of Lisp Users.

http://www.cs.auc.dk/∼normark/laml/papers/xml-transformations.pdf.

Serrano, M. and Gallesio, E. (2002) This is Scribe! Third Workshop on Scheme and Functional

Programming. http://www-sop.inria.fr/mimosa/fp/Scribe/doc/scribe.html.

Thiemann, P. (2002) A typed representation for HTML and XML documents in Haskell.

J. Functional Program. 12(5), 435–468.

Wallace, M. and Runciman, C. (1999) Haskell and XML: generic combinators or type-based

translation? Proc. 4th ACM SIGPLAN International Conference on Functional Programming,

pp. 148–159. ACM Press.

WASH. (2003) Web authoring system Haskell.

http://www.informatik.uni-freiburg.de/∼thiemann/WASH/.

https://doi.org/10.1017/S0956796804005350 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005350

