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Abstract
We consider a new approach in the definition of two-dimensional heavy-tailed distributions. Specifically,
we introduce the classes of two-dimensional long-tailed, of two-dimensional dominatedly varying, and of
two-dimensional consistently varying distributions. Next, we define the closure property with respect to
two-dimensional convolution and to joint max-sum equivalence in order to study whether they are satis-
fied by these classes. Further, we examine the joint-tail behavior of two random sums, under generalized
tail asymptotic independence. Afterward, we study the closure property under scalar product and two-
dimensional product convolution, and by these results, we extended our main result in the case of jointly
randomly weighted sums. Our results contained some applications where we establish the asymptotic
expression of the ruin probability in a two-dimensional discrete-time risk model.

Keywords: Two-dimensional heavy-tailed distributions; closedness with respect to convolution; joint max-sum equivalence;
generalized tail asymptotic independence; ruin probability

1. Introduction
1.1 Preliminaries
The heavy-tailed distributions accurately describe complicated situations. One of the most
important applications is related to the risk theory in actuarial science. Although several one-
dimensional problems remain still open, the multidimensional case has gained popularity from
both theoretical and practical aspects. Especially, with respect to a practical point of view, the
modern insurance industry does not operate with a single portfolio.

On this line, there are some recent papers, as, for example, Hu and Jiang (2013), Konstantinides
and Li (2016), and Yang and Su (2023). In this direction, we introduce some two-dimensional
distribution classes, with heavy tails, that are convenient for calculations and permit direct and
consistent generalization of the one-dimensional concepts.

In Subsection 1.2, we remind some basic definitions for one-dimensional heavy-tailed distribu-
tions, for easy comparison with the two-dimensional ones. In Section 2, we introduce the closure
property with respect to the two-dimensional convolution and the two-dimensional max-sum
equivalence. Next, we present some results on these classes of distributions. In Section 3, we esti-
mate the joint-tail asymptotic behavior of two random sums, under a dependence structure that
generalizes the tail asymptotic independence, and we establish an asymptotic expression for the
ruin probabilities, in a discrete-time two-dimensional risk model without stochastic discount fac-
tors. Furthermore in Section 5, we study the closure property of some of new classes with respect
to scalar product, and in Section 6, we extended some of our results in Section 4, in the case which
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we have a common discount factor for the two portfolios. Last but not least, we limited ourselves
to the non-negative case, and we study the closure property of new classes with respect to product
convolution in two dimensions, and some previous results are extended.

Before passing to the next subsection, we give some notations that we need for the rest of the
paper. We denote by F := 1− F the distribution tail, hence F(x)= P[X> x] and holds F(x)> 0
for any x≥ 0, except it is referred to differently. For two positive functions f (x) and g(x), the
asymptotic relation f (x)= o[g(x)], as x→ ∞ means

lim
x→∞

f (x)
g(x)

= 0,

the asymptotic relation f (x)=O[g(x)], as x→ ∞ holds if

lim sup
x→∞

f (x)
g(x)

<∞.

and the asymptotic relation f (x)� g(x), as x→ ∞ if both f (x)=O[g(x)] and g(x)=O[f (x)].
Similarly, for the bivariate functions f (x, y), g(x, y), the corresponding asymptotic relations hold
with min{x, y} → ∞, as, for example, f (x, y)= o[g(x, y)], if it holds

lim
x∧y→∞

f (x, y)
g(x, y)

= 0.

For a real number x, y, we denote x+ := max{x, 0}, x∧ y := min{x, y}, x∨ y := max{x, y}. With
bold letters, we denote vectors, and further for the unit and zero vectors, we write 1 and 0,
respectively.

1.2 One-dimensional heavy-tailed distributions
The following properties are to be extended in two dimensions:

(1) For two random variables X1, X2 with distributions F1, F2, respectively, the distribution of the
sum is defined by FX1+X2 (x)= P[X1 + X2 ≤ x] with tail FX1+X2 (x)= P[X1 + X2 > x]. If X1,
X2 are independent, we write F1 ∗ F2 instead of FX1+X2 .

(2) We say that the random variables X1, X2 or their distributions F1, F2 are max-sum equivalent
if F1 ∗ F2(x)∼ F1(x)+ F2(x), as x→ ∞. (In some cases, the max-sum equivalence is extended
also to FX1+X2 (x)∼ F1(x)+ F2(x), for weakly dependent random variables X1, X2).

Now we consider some classes of heavy-tailed distributions. We say that a distribution F is
heavy-tailed, and we write F ∈K, if it holds∫ ∞

−∞
eε x F(dx)= ∞,

for any ε > 0. A large enough class of heavy-tailed distributions is the class of long tails, denoted
by L. We have F ∈L if it holds

lim
x→∞

F(x− a)
F(x)

= 1,

for any (or, equivalently, for some) a> 0. It is well-known that if F ∈L, then there exists a function
a : [0, ∞)−→ [0, ∞), such that a(x)→ ∞, F(x± a(x))∼ F(x), as x→ ∞. This kind of function
a(x) is called an insensitivity function for F; see further in Cline and Samorodnitsky (1994), Foss
et al. (2013), or Konstantinides (2018).

A little smaller class than L is the class of subexponential distributions, introduced in
Chistyakov (1964). We say that a distribution F with support on the interval [0, ∞) belongs to
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the class of subexponential distributions, symbolically F ∈ S if it holds

lim
x→∞

Fn∗(x)
F(x)

= n,

for any n ∈N, where Fn∗ represents the n-th order convolution power for F. The class S has found
several applications in the risk models, as, for example, in Li et al. (2010), Geng et al. (2023), and
Ji et al. (2023).

We say that the distribution F belongs to the class of the dominatedly varying distributions,
symbolically F ∈D, if it holds

lim sup
x→∞

F(b x)
F(x)

<∞,

for some (or equivalently, for all) b ∈ (0, 1). It is well known that D ∩L=D ∩ S ⊂K; see Goldie
(1978,Th. 1).

Further, a smaller class of heavy-tailed distributions represents the class of consistently varying
distributions, symbolically F ∈ C. We say that F ∈ C, if it holds

lim
y↑1 lim sup

x→∞
F(y x)
F(x)

= 1,

or equivalently

lim
y↓1 lim inf

x→∞
F(y x)
F(x)

= 1.

Finally, we say that a distribution F belongs to the class of regularly varying distributions, with
index α > 0, symbolically F ∈R−α if it holds

lim
x→∞

F(t x)
F(x)

= t−α ,

for any t> 0.
For these classes, we obtain the following inclusions (see Bingham et al., 1987; Leipus et al.,

2023):

R :=
⋃
α≥0

R−α � C �D ∩L� S �L�K,

whereR0 is the class of slowly varying distributions.We can find numerous classes of heavy-tailed
distributions; however, we mentioned the most popular in the literature. In this paper, we extend
into two dimensions the classes C, D, and L.

In Cai and Tang (2004), we find the following results.

Proposition 1.1. If F1 ∈D and F2 ∈D are distributions with support on the interval [0, ∞), then
FX1+X2 ∈D.

In Proposition 1.1 we find that for non-negative random variables, the class D satisfies the
closure property with respect to sum. As was mentioned in Cai and Tang (2004), the class D
does NOT satisfy the max-sum equivalence, as it follows from the fact that D �⊂ S and S �⊂D;
therefore, the relation F2∗(x)∼ 2 F(x), as x→ ∞, does NOT hold for F ∈D \ S . In opposite to
the dominated variation, the class of the consistently varying distributions satisfies both these
properties.

Proposition 1.2. If F1 ∈ C and F2 ∈ C are distributions with support on the interval [0, ∞), then it
holds F1 ∗ F2 ∈ C and F1 ∗ F2(x)∼ F1(x)+ F2(x), as x→ ∞.
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2. Two-dimensional heavy tails
The reason why the multivariate distributions have been so popular is their ability to describe
better multidimensional phenomena. This happens because of the interdependence among the
components of the random vectors, which affect significantly the final outcome.

The first heavy-tailed distributions class that was extended to a multidimensional frame is the
regular variation. We say that the random vector X= (X1, . . . , Xd) represents a multivariate
regularly varying vector with index α and non-degenerate, Radon measure ν, symbolically X ∈
MRV(α, F, ν) if it holds

lim
x→∞

1
F(x)

P
[
X
x

∈B

]
= ν(B),

for any ν-continuous Borel setB⊂ [0, ∞]d \ { 0}, with F ∈R−α . The measure ν is homogeneous;
namely, it holds ν(λB)= λ−α ν(B), for any λ> 0.

The frame of multivariate regular variation was introduced in De Haan and Resnick (1981).
Under this definition, the multivariate regular variation was used in the study of several issues in
multivariate risk models and in risk management, as, for example, in Li (2016), Tang and Yang
(2019), and Yang and Su (2023).

Although this kind of extension to multidimensional setup is well-established, it does not hap-
pen to other multidimensional distribution classes. Most of the extensions cover the multivariate
subexponential distribution class and the multivariate long-tailed distribution class.

Initially, these two distribution classes were introduced in Cline and Resnick (1992) as essen-
tial extension of the multivariate regular variation, namely, using vague convergence and point
processes. Later, in Omey (2006), three different formulations appear for the multivariate subex-
ponentiality and the multivariate long-tailedness. The formulations, which are close to our
definitions, are given in classes S(Rd) and L(Rd). We say that the multivariate distribution F
belongs to class S(Rd), if it holds

lim
x→∞

F2∗( t x)
F( t x)

= 2,

for any t> 0, with min1≤i≤d{ti}<∞, and that the multivariate distribution F belongs to class
L(Rd), if it holds

lim
x→∞

F( t x− a)
F( t x)

= 1,

for any a≥ 0 and for any t> 0, with min1≤i≤d{ti}<∞.
This approach was used to study the asymptotic behavior of the tail of a randomly stopped

sum of random vectors, namely, SN =∑N
i=1 Xi, where N is a discrete random variable with

support N0 =N∪ {0} and the Xi are independent, identically distributed random vectors with
multivariate distribution F. For applications of this class, see Omey et al. (2006).

Finally, another formulation of multivariate subexponential distributions was provided in
Samorodnitsky and Sun (2016), which represents the only approach with results for the ruin prob-
ability in a multivariate continuous-time risk model. Although the approach by Samorodnitsky
and Sun (2016) is clearly stronger than the previous two, it describes in some sense the linear
multivariate single big jump, but it cannot cover the distributions through their joint tail; see
Konstantinides and Passalidis (2024, Sec. 5) for comments about this approach, indicating the
complementary function to Samorodnitsky and Sun (2016) of our approach, found below. In the
present paper, we confine ourselves to the two dimensions, and we stay close to the formulation
in Omey (2006); however, we keep two important differences.

First, we follow a direct approach to the one-dimensional distribution classes’ definitions.
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Second, in the case of d = 2, the formulation in Omey (2006), and in the definition of multivari-
ate regular variation, the convention F(x, y)= P[X ≤ x, Y ≤ y] is adopted, and the distribution
tail 1− F(x, y), denoted F(x, y), is applied on the event {X> x} ∪ {Y > y}. We consider only
the case in which there exist excesses of both random variables {X> x} ∩ {Y > y}; namely, we
define by F1(x, y) := P[X> x, Y > y], as the distribution tail of F, with notation Fb(x, y) :=
P[X> b1 x, Y > b2 y], for all b= (b1, b2) ∈ (0, ∞)2. The choice of such a definition is due to
both the consistency with the univariate case and the ease in asymptotic calculation of the joint
tail of random sums as well. We intend that our approach becomes more consistent with the ruin
of all portfolios, which represents the worst event that can happen for an insurance company with
multiple businesses. In some sense, this is the reason why our classes lead to a nonlinear approach
of the single big jump in multidimensional setup.

Next, we introduce the first bivariate heavy-tailed distribution class. From now on and further
by the notation a= (a1, a2)> (0, 0), we mean that (a1, a2) ∈ [0, ∞)2 \ { 0}, except it is referred
to differently.

Definition 2.1. We say that the random pair (X, Y) with marginal distributions F, G belongs to the
bivariate long-tailed distributions, symbolically (X, Y) ∈L(2), if the following conditions hold

(1) F ∈L and G ∈L.

(2) It holds

lim
x∧y→∞

F1(x− a1, y− a2)
F1(x, y)

= lim
x∧y→∞

P[X> x− a1, Y > y− a2]
P[X> x, Y > y]

= 1,

for some, or equivalently for any, a= (a1, a2)> (0, 0), with a1 not necessarily equal to a2.

Remark 2.1. From the previous definition we wonder if by the two-dimensional property of class
L(2) follows directly the inclusion F, G ∈L. The answer to this question is no because it holds for
any, or equivalently for some, (a1, a2)> (0, 0), as follows from Definition 2.1.

Let F ∈L be a distribution and G be another distribution, not necessarily from class L. We
assume that the two distributions stem from the independent random variables X and Y; thus, if
a1 > 0 and a2 = 0, we find that

lim
x∧y→∞

P[X> x− a1, Y > y]
P[X> x, Y > y]

= lim
x∧y→∞

F(x− a1)G(y)
F(x)G(y)

= 1,

however, if it holds G /∈L, then we have not this pair in the class L(2).
The reason why we require that the marginals belong to classL is to secure some two-dimensional

closure properties that could fail if the L condition is missing.

From Definition 2.1 we obtain that if (F, G) ∈L(2), then for any (A1, A2)> (0, 0), it holds

sup
|a1|<A1, |a2|<A2

∣∣P[X> x− a1, Y > y− a2]− P[X> x, Y > y]
∣∣= o

(
P[X> x, Y > y]

)
, (2.1)

as x∧ y→ ∞, which follows from the uniformity of the convergence

lim
x∧y→∞

P[X> x− a1, Y > y− a2]
P[X> x, Y > y]

= 1,

https://doi.org/10.1017/S1748499525000041 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499525000041


322 Dimitrios G. Konstantinides and Charalampos D. Passalidis

over the parallelogram [−A1, A1]× [−A2, A2]. Indeed, for −A1 ≤ a1 ≤A1 and −A2 ≤ a2 ≤A2,
we obtain x−A1 ≤ x+ a1 ≤ x+A1 and y−A2 ≤ y+ a2 ≤ y+A2. Hence,

P[X> x−A1, Y > y−A2]
P[X> x, Y > y]

≥ P[X> x+ a1, Y > y+ a2]
P[X> x, Y > y]

≥ P[X> x+A1, Y > y+A2]
P[X> x, Y > y]

,

where the first fraction tends to unity, as x∧ y→ ∞, by Definition 2.1, and the last fraction also
tends to unity, as x∧ y→ ∞, after the change of variables x′ = x+A1 and y′ = y+A2 and by
Definition 2.1.

Definition 2.2 provides the insensitivity property in joint distributions; see the univariate
analogue, for example, in Foss et al. (2013) or in Konstantinides (2018).

Definition 2.2. Let aF(x), aG(y)> 0 for any x> 0, y> 0 be two non-decreasing function. We say
that the joint distribution F= (F, G) of (X, Y), with right endpoint r F := (rF , rG)= (∞, ∞),
satisfies (aF , aG)-joint insensitivity, if

sup
|a1|≤aF(x), |a2|≤aG(y)

∣∣P[X> x− a1, Y > y− a2]− P[X> x, Y > y]
∣∣

= o
(
P[X> x, Y > y]

)
,

as x∧ y→ ∞.

Now we show that class L(2) satisfies the (aF , aG)-joint insensitive property.

Lemma 2.1. Let assume that (X, Y) ∈L(2). Then there exist some functions aF(x), aG(y) such
that aF(x)→ ∞ and aG(y)→ ∞, as x∧ y→ ∞, and (F, G) satisfies the (aF , aG)-joint insensitive
property.

Proof. For any integer n ∈N, from relation (2.1), we can choose an increasing to infinity
sequence {un}, such that the inequality

sup
|a1|≤n, |a2|≤n

∣∣P[X> x− a1, Y > y− a2]− P[X> x, Y > y]
∣∣≤ P[X> x, Y > y]

n
,

holds for any x≥ un and any y≥ un. Without loss of generality, we consider that the sequence
{un} increases to infinity. We put aF(x)= aG(y)= n, for any (x, y) ∈ (un, un+1]2. From the fact
that un → ∞, as n→ ∞, we obtain that aF(x)→ ∞, as x→ ∞, and aG(y)→ ∞, as y→ ∞.

So, from the construction of a( · ), we conclude that
sup

|a1|≤aF(x), |a2|≤aG(y)

∣∣P[X> x− a1, Y > y− a2]− P[X> x, Y > y]
∣∣≤ P[X> x, Y > y]

n
,

for any x> un and any y> un, which is the required result.

Remark 2.2. From the (aF , aG)-joint insensitivity, it does not follow necessarily that aF and aG are
insensitivity functions for the marginal distributions F, G, respectively. Furthermore, Lemma 2.1
asserts that

lim
x∧y→∞

P[X> x± aF(x), Y > y± aG(y)]
P[X> x, Y > y]

= 1.

Let us see now two examples that help either to understanding or to constructing of such
bivariate distributions. The first case is the simplest, as we construct (X, Y) ∈L(2) through the
independence between X and Y .
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Example 2.1. Let X and Y be random variables with distributions F ∈L and G ∈L, respectively.
We assume that X and Y are independent, to obtain

lim
x∧y→∞

F1(x− a1, y− a2)
F1(x, y)

= lim
x∧y→∞

P[X> x− a1, Y > y− a2]
P[X> x, Y > y]

= lim
x∧y→∞

P[X> x− a1]
P[X> x]

P[Y > y− a2]
P[Y > y]

= 1.

Therefore (X, Y) ∈L(2).

The next example makes sense, as it cannot be reduced into univariate distributions. The fol-
lowing dependence structure can be found in Li (2018). We say that the random variables X
and Y are strongly asymptotic independent (SAI) if P[X− > x, Y > y]=O[F(− x)G(y)], P[X>
x, Y− > y]=O[F(x)G(− y)] hold as x∧ y→ ∞, and there exists a constant C> 0 such that if it
holds

P[X> x, Y > y]∼ C F(x)G(y), (2.2)

as x∧ y→ ∞.
If the X and Y are bounded from below, then (2.2) is enough to be SAI.

Example 2.2. Let X and Y be random variables with strongly asymptotic independence, with some
constant C> 0 and distributions F ∈L and G ∈L, respectively. Then

lim
x∧y→∞

F1(x− a1, y− a2)
F1(x, y)

= lim
x∧y→∞

P[X> x− a1, Y > y− a2]
P[X> x, Y > y]

= lim
x∧y→∞

C F(x− a1)G(y− a2)
C F(x)G(y)

= 1.

Therefore (X, Y) ∈L(2).

The first two examples restrict themselves either in the independent case or in some kind of
asymptotic independence. Notice that in the next example as class L(2), we understand the class
from Definition 2.1, but with a restriction with respect to convergence, instead of x∧ y to x= y
only. In Li and Yang (2015), the dependence structure from relation (2.3) was used, through the
survival copula Ĉ, to depict the dependence relation among claims in a bivariate, continuous-time
risk model. We assume that for two random variables X, Y following a survival copula Ĉ, there
exists some constant γ ≥ 1 and a positive measurable function h(·, ·), such that the asymptotic
relation holds

Ĉ(t1 x, t2 x)∼ xγ h(t1, t2), (2.3)

as x ↓ 0 holds, for any (t1, t2) ∈ (0, ∞).

Example 2.3. Let the random variables X, Y follow a survival copula from relation (2.3) and F, G
be their marginal distributions. Furthermore, we assume that it holds

lim
x→∞

G(x)
F(x)

= c, (2.4)

for some positive constant c> 0 and either F ∈L or G ∈L is true. Finally, we suppose that relation
(2.3) holds with γ = 1. Then we obtain F, G ∈L, which follows from the closure property of class
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L with respect to strong equivalence of (2.4); see Leipus et al. (2023). From Li and Yang (2015,
Prop. 3.1), we have the random variables X, Y to be asymptotic dependent, and further, they satisfy

lim
x→∞

P[X> x, Y > x]
P[X> x]

= h(1, c)> 0,

hence by the last formulas, for any (a1, a2)> (0, 0), it holds

lim
x→∞

P[X> x− a1, Y > x− a2]
P[X> x, Y > x]

= lim
x→∞

h(1, c) P[X> x− a1]
h(1, c) P[X> x]

= 1,

so we find (X, Y) ∈L(2), in the sense that in Definition 2.1, the convergence is valid with x= y.

We can find several dependence structures that satisfy the L(2) condition. However, we choose
to pursue theoretical results.

Now we pass to the bivariate subexponential distribution class S(2).

Definition 2.3. We say that the random pair (X, Y), with marginal distributions F and G, respec-
tively, belongs to the class of bivariate subexponential distributions, symbolically (X, Y) ∈ S(2),
if

(1) F ∈ S and G ∈ S .
(2) (X, Y) ∈L(2).
(3) It holds

lim
x∧y→∞

P[X1 + X2 > x, Y1 + Y2 > y]
P[X> x, Y > y]

= 22, (2.5)

where (X1, Y1) and (X2, Y2) are independent and identically distributed copies of (X, Y).

Remark 2.3. In case of d-variate distribution, relation (2.5) becomes

lim
x1∧...∧xn to∞

P[X1,1 + X1,2 > x1, . . . , Xd,1 + Xd,2 > xd]
P[X1,1 > x1, . . . , Xd,1 > xd]

= 2d.

Conjecture 2.1. In Definition 2.3, we suppose that the (1), (3) do NOT imply directly the property
(2) and the membership in L(2). Although it is not proved, we consider that this conjecture could
be established through a special counterexample, in which the (1), (3) are satisfied, and the (X, Y)
satisfy properties of some special kind of copulas that belong to SAI in (2.2), but now with C = 0; see
Li (2018b), Ji et al. (2023), and Li (2024) for examples of such dependence through copulas.

Now we come to the bivariate dominatedly varying distribution class D(2).

Definition 2.4. We say that the random pair (X, Y), with marginal distributions F and G, respec-
tively, belongs to the class of bivariate dominatedly varying distributions, symbolically (X, Y) ∈D(2),
if

(1) F ∈D and G ∈D.
(2) It holds

lim sup
x∧y→∞

Fb(x, y)
F1(x, y)

= lim sup
x∧y→∞

P[X> b1 x, Y > b2 y]
P[X> x, Y > y]

<∞, (2.6)

for some, or equivalently for all b= (b1, b2) ∈ (0, 1)2, with b1 not necessarily equal to b2.

It is obvious that 2.6 is equivalently with:

lim inf
x∧y→∞

Fb(x, y)
F1(x, y)

> 0
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for some, or equivalently for all b= (b1, b2) ∈ (1, ∞)2, with b1 not necessarily equal to b2.

Remark 2.4. In Konstantinides and Passalidis (2024b), the class Dn (for some n ∈N) of multi-
variate dominatedly varying random vectors was introduced. It is obvious that in case n= 2, our
approach includesthis definition. Specifically

D2 ⊂D(2)

Definition 2.5. We say that the random pair (X, Y), with marginal distributions F and G, respec-
tively, belongs to the class of bivariate consistently varying distributions, symbolically (X, Y) ∈ C(2),
if

(1) F ∈ C and G ∈ C.
(2) It holds

lim
z↑ 1

lim sup
x∧y→∞

Fz(x, y)
F1(x, y)

= 1,

or equivalently

lim
z↓ 1

lim inf
x∧y→∞

Fz(x, y)
F1(x, y)

= 1,

where z= (z1, z2), and 1= (1, 1).

Examples 2.1 and 2.2 remain intact in classes D(2) and C(2); hence, they keep functioning in
class (D ∩L)(2) := D(2) ∩L(2).

Theorem 2.1. It holds C(2) �L(2).

Proof. Let consider that (F, G) ∈ C(2). Then, for a= (a1, a2)> (0, 0) for any distributions
F, G, we obtain

1≤ lim inf
x∧y→∞

P[X> x− a1, Y > y− a2]
P[X> x, Y > y]

. (2.7)

Hence, we have to show that the upper bound of the last fraction is equal to unity. We observe
that for any small enough δ1, δ2 > 0, there exist some x0 > 0, such that x (1− δ1)≤ x− a1 and
y (1− δ2)≤ y− a2, for any x∧ y≥ x0. Therefore, we find

lim sup
x∧y→∞

P[X> x− a1, Y > y− a2]
P[X> x, Y > y]

≤ lim sup
x∧y→∞

P[X> x(1− δ1), Y > y(1− δ2)]
P[X> x, Y > y]

→ 1, (2.8)

as (δ1, δ2)→ (0, 0), where in the last step, we use the properties of class C(2) for the pair of
distributions (F, G). So, by relations (2.7) and (2.8), we conclude that (X, Y) ∈L(2).

3. Max-sum equivalence and closure properties with respect to convolution
Now, we present two definitions. In the first one, we define the closure property with respect to
convolution in bivariate distributions. In this case, we formulate the main result, showing that
the class D(2) is closed. The second definition, given at the end of the section, under concrete
dependence structures, also presented later, is fulfilled with respect to classes (D ∩L)(2) and C(2).
Definition 3.1. Let X1, X2, Y1, Y2 be random variables, with distributions F1, F2, G1 and G2,
respectively. If the following conditions are true

(1) F1 ∈ B, F2 ∈ B, G1 ∈ B, G2 ∈ B and for any k, l ∈ {1, 2}, holds (Xk, Yl) ∈ B(2),
(2) Holds (X1 + X2, Y1 + Y2) ∈ B(2),
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where B(2) is some bivariate class, defined in Section 2, then we say that the class B(2) is closed with
respect to sum. If X1, X2 are independent random variables, and Y1, Y2 are also independent, then
we say that B(2) is closed with respect to convolution, symbolically (F1 ∗ F1, G1 ∗G2) ∈ B(2).

In the last definition, although the check of FX1+X2 ∈ B, GY1+Y2 ∈ B is implied directly by
the univariate closure properties, the check of (Fk, Gl) ∈ B(2), for any k, l ∈ {1, 2}, is still NOT
implied. Also, it is NOT implied that the joint tail of (X1 + X2, Y1 + Y2) has the desired property
of B(2). Hence, we find out that the dependence structures among the components play a crucial
role in the closure properties of bivariate vectors.

Next we see that the class D(2) is closed with respect to sum (of arbitrarily dependent random
vectors with arbitrarily non-negative dependent components), under the condition that the point
(1) in Definition 3.1 is satisfied.

Theorem 3.1. Let non-negative random variables X1, X2, Y1, Y2 with distributions F1, F2, G1,
and G2, from classD, respectively. We assume that (Xk, Yl) ∈D(2) for any k, l ∈ {1, 2}, then (X1 +
X2, Y1 + Y2) ∈D(2).

Proof. At first, for the first condition of D(2), we obtain FX1+X2 ∈D and GY1+Y2 ∈D because
of Proposition 1.1.

Taking into consideration that all the distributions have support on the interval [0, ∞), by the
elementary inequalities

P[X1 + X2 > x]≤ P
[
X1 >

x
2

]
+ P

[
X2 >

x
2

]
,

P[X1 + X2 > x]≥ 1
2
(P[X1 > x]+ P[X2 > x]) ,

we find

P[X1 + X2 > x, Y1 + Y2 > y] ≤ P[X1 > x/2, Y1 + Y2 > y]+ P[X2 > x/2, Y1 + Y2 > y]

≤ P
[
X1 >

x
2
, Y1 >

y
2

]
+ P

[
X1 >

x
2
, Y2 >

y
2

]
+P
[
X2 >

x
2
, Y1 >

y
2

]
+ P

[
X2 >

x
2
, Y2 >

y
2

]
,

hence

P[X1 + X2 > x, Y1 + Y2 > y]≤
2∑

k=1

2∑
l=1

P
[
Xk >

x
2
, Yl >

y
2

]
. (3.1)

From the other side

P[X1 + X2 > x, Y1 + Y2 > y]≥ P[X1 > x, Y1 + Y2 > y]+ P[X2 > x, Y1 + Y2 > y]
2

≥ P[X1 > x, Y1 > y]+ P[X1 > x, Y2 > y]+ P[X2 > x, Y1 > y]+ P[X2 > x, Y2 > y]
4

,

from where we obtain

P[X1 + X2 > x, Y1 + Y2 > y]≥ 1
4

2∑
k=1

2∑
l=1

P[Xk > x, Yl > y]. (3.2)
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Therefore by relations (3.1) and (3.2), due to (Xk, Yl) ∈D(2) for any k, l ∈ {1, 2}, and b=
(b1, b2) ∈ (0, 1)2, we find

lim sup
x∧y→∞

P[X1 + X2 > b1 x, Y1 + Y2 > b2 y]
P[X1 + X2 > x, Y1 + Y2 > y]

≤ 4 lim sup
x∧y→∞

∑2
k=1
∑2

l=1 P
[
Xk >

b1
2

x, Yl >
b2
2

y
]

∑2
k=1
∑2

l=1 P[Xk > x, Yl > y]

≤ 4 max
k, l ∈{1, 2}

⎧⎪⎪⎨⎪⎪⎩lim sup
x∧y→∞

P
[
Xk >

b1
2

x, Yl >
b2
2

y
]

P[Xk > x, Yl > y]

⎫⎪⎪⎬⎪⎪⎭<∞.

So we conclude (X1 + X2, Y1 + Y2) ∈D(2) .

Remark 3.1. Let us notice here that the vectors (Xk, Yl) for k, l= 1, 2 are NOT necessarily under
the same dependence structure; for example, we can have (X1, Y1) with independent components
and (X1, Y2) to be SAI, with C> 0. A case where we see that (Xk, Yl) ∈D(2) for any k, l= 1, 2 is
the following. Let X1, X2, Y1, Y2 with distributions from classD and also the X1, X2 and the Y1, Y2
are arbitrarily dependent. If (Xk, Yl) are SAI with Ck,l > 0, not necessarily the same for each pair,
then (Xk, Yl) ∈D(2) for any k, l= 1, 2.

Now we are ready to define the max-sum equivalence in two dimensions.

Definition 3.2. Let X1, X2, Y1, Y2 be random variables. Then we say that they are joint max-sum
equivalent if

P[X1 + X2 > x, Y1 + Y2 > y]∼
2∑

k=1

2∑
l=1

P[Xk > x, Yl > y],

as x∧ y→ ∞.

This kind of asymptotic relation will be established for classes (D ∩L)(2) and C(2), under the
assumption of some specific dependence structure.

4. Joint behavior of random sums
In one dimension, the following asymptotic relation attracted attention:

P
[ n∑
i=1

Xi > x

]
∼

n∑
i=1

P[Xi > x], (4.1)

as x→ ∞. Therefore, we study the behavior of both the maximum
∨n

i=1 Xi and the maximum of
sums

n∨
i=1

Si := max
1≤k≤n

k∑
i=1

Xi,

for some distributions and correspondingly with some dependence structures to examine if it
holds

P
[ n∑
i=1

Xi > x

]
∼ P

[ n∨
i=1

Xi > x

]
∼ P

[ n∨
i=1

Si > x

]
∼

n∑
i=1

P [Xi > x] , (4.2)
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as x→ ∞. Relations (4.1) and (4.2) have been studied extensively; see, for example, in Geluk and
Ng (2006), Geluk and Tang (2009), Ng et al. (2002), and Jiang et al. (2014). A similar interest has
been appeared for weighted sums of the form

S�n :=
n∑

i=1
�i Xi,

n∨
i=1

S�i := max
1≤k≤n

k∑
i=1

�i Xi,

and for the circumstances when they satisfy relations (4.1) and (4.2), see, for example, Tang and
Yuan (2014), Tang and Tsitsiashvili (2003), Yang et al. (2012), and Zhang et al. (2009).

In this section, we study relation (4.2) in two dimensions. This can be achieved for the
class (D ∩L)(2) under generalized tail asymptotic independence (GTAI). Although the univariate
randomly weighted sums are well studied, this is not true for the multivariate case.

Let us mention some papers involved in the asymptotic behavior of the joint-tail probability

P

⎡⎣ n∑
i=1

�i Xi > x,
n∑
j=1

	i Yi > y

⎤⎦ ,

as, for example, Chen and Yang (2019), Li (2018), Shen and Du (2023), Shen et al. (2020), and
Yang et al. (2024).

We restrict ourselves at the moment in the study of non-weighted random sums of the
following form:

P

⎡⎣ n∑
i=1

Xi > x,
n∑
j=1

Yj > y

⎤⎦ .

Let us remind that, as before, the Xi, Yj follow distributions with infinite right endpoint.
We note that, in almost all existing papers, the dependence structure for the main vari-

ables Xi, Yj is either of the form: {(Xi, Yi), i ∈N} independent random vectors, and there
exists some dependence structure in each random pair, or there exists dependence among
X1, . . . , Xn and Y1, . . . , Yn, but the Xi and Yj are independent for any i, j. Using GTAI,
introduced in Konstantinides and Passalidis (2024), both dependence structures are simultane-
ously permitted. GTAI is defined as follows. Let us consider two sequences of random variables
{Xn, n ∈N}, {Ym, m ∈N}. We say that the random variables X1, . . . , Xn, Y1, . . . , Ym follow
the GTAI, if

(1) It holds
lim

min{xi, xk, yj}→∞ P[|Xi|> xi | Xk > xk, Yj > yj]= 0,

for any 1≤ i �= k≤ n, j= 1, . . . , m.
(2) It holds

lim
min{xi, yk, yj}→∞ P[|Yj|> yj | Xi > xi, Yk > yk]= 0,

for any 1≤ j �= k≤m, i= 1, . . . , n.

The aim of this dependence structure is to model the dependence both within each sequence of
random variables and the interdependence between the sequences. We have to notice that if the Xi
and Yj are independent for any i, j, then each sequence of random variables follows tail asymptotic
dependence (TAI) (see definition below); however, in any other case, the GTAI does not restrict
each sequence to TAI, but in a more general form of dependence.

It is easy to find that GTAI contains the case when X1, . . . , Xn are independent or when
Y1, . . . , Yn are independent or both. Even more, this dependence structure indicates that the
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probability to happen three extreme events is negligible with respect to the probability to happen
two extreme events, one in each sequence, and in some sense, GTAI belongs to the dependencies
of second-order asymptotic independence.

In most of our results, we use the TAI dependence structure as an extra assumption, which
characterizes the dependence of the terms of each sequence. This dependence structure was
introduced by Geluk and Tang (2009). We say that X1, . . . , Xn are tail asymptotic independent,
symbolically TAI (and sometimes named strong quasi-asymptotically independent), if for any pair
i, j= 1, . . . , n, with i �= j, it holds the limit

lim
xi∧xj→∞ P[|Xi|> xi | Xj > xj]= 0.

The next result provides an asymptotic relation for the maximum of two sequences of ran-
dom variables under the GTAI, WITHOUT imposing any assumption on the distributions of
X1, . . . , Xn, Y1, . . . , Ym (except the infinite right point).

Theorem 4.1. If X1, . . . , Xn are random variables with distributions F1, . . . , Fn, respectively, and
Y1, . . . , Ym are random variables with distributions G1, . . . , Gm and X1, . . . , Xn, Y1, . . . , Ym
are GTAI, it holds

P

⎡⎣ n∨
i=1

Xi > x,
m∨
j=1

Yj > y

⎤⎦∼
n∑

i=1

m∑
j=1

P
[
Xi > x, Yj > y

]
,

as x∧ y→ ∞.

Proof. For x> 0, y> 0 holds

P

⎡⎣ n∨
i=1

Xi > x,
m∨
j=1

Yj > y

⎤⎦≤
n∑
i=1

m∑
j=1

P
[
Xi > x, Yj > y

]
. (4.3)

Further for the lower bound, we use Bonferroni’s inequality

P

⎡⎣ n∨
i=1

Xi > x,
m∨
j=1

Yj > y

⎤⎦

≥
n∑
i=1

P

⎡⎣Xi > x,
m∨
j=1

Yj > y

⎤⎦−
∑∑n

i<l=1
P

⎡⎣Xi > x, Xl > x,
m∨
j=1

Yj > y

⎤⎦
≥

n∑
i=1

m∑
j=1

P
[
Xi > x, Yj > y

]− n∑
i=1

∑∑m

j<k=1
P
[
Xi > x, Yj > y, Yk > y

]

−
∑∑n

l<i=1

m∑
j=1

P
[
Xi > x, Xl > x, Yj > y

] =: I1(x, y)− I2(x, y)− I3(x, y).
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For I2(x, y), we obtain

I2(x, y) =
n∑
i=1

∑∑m

j<k=1
P
[
Xi > x, Yj > y, Yk > y

]

=
n∑
i=1

∑∑m

j<k=1
P
[
Yk > y | Xi > x, Yj > y

]
P
[
Xi > x, Yj > y

]

= o

⎛⎝ n∑
i=1

m∑
j=1

P
[
Xi > x, Yj > y

]⎞⎠= o[I1(x, y)],

as x∧ y→ ∞, where in the last step, we use the GTAI property. In a similar way, we can find
I3(x, y)= o[I1(x, y)],

as x∧ y→ ∞. Hence we conclude

P

⎡⎣ n∨
i=1

Xi > x,
m∨
j=1

Yj > y

⎤⎦�
n∑
i=1

m∑
j=1

P
[
Xi > x, Yj > y

]
, (4.4)

as x∧ y→ ∞. Now, from relations (4.3) and (4.4), we have the result.
Before next theorem, we need some preliminary lemmas. The next lemma provides an

important property of the GTAI structure, presenting itself as closure property with respect to
sum.

Lemma 4.1. If X1, . . . , Xn, Y1, . . . , Ym follow the GTAI, then holds

lim
min{xI , xk, yj}→∞ P

[∣∣∣∣∣∑
i∈I

Xi

∣∣∣∣∣> xI
∣∣∣ Xk > xk, Yj > yj

]
= 0, (4.5)

for I � {1, . . . , n} and k ∈ {1, . . . , n} \ I, j= 1, . . . , m. Similarly holds

lim
min{xi, yk, yJ}→∞ P

⎡⎣∣∣∣∣∣∣
∑
j∈J

Yj

∣∣∣∣∣∣> yJ
∣∣∣ Yk > yk, Xi > xi

⎤⎦= 0, (4.6)

for J � {1, . . . , m} and k ∈ {1, . . . , m} \ J, i= 1, . . . , n.

Proof. It is enough to show relation (4.5) as relation (4.6) follows by similar way. Indeed, we
observe that

lim
min{xI , xk, yj}→∞ P

[∣∣∣∣∣∑
i∈I

Xi

∣∣∣∣∣> xI
∣∣∣ Xk > xk, Yj > yj

]

≤ lim
min{xI , xk, yj}→∞

∑
i∈I

P
[
|Xi|> xI

n

∣∣∣ Xk > xk, Yj > yj
]
= 0,

where the last step follows from GTAI property.
In most of the following results, we assume that the random variables X1, . . . , Xn, Y1, . . . , Yn

are GTAI and follow distributions from some class B ∈ {C, D ∩L, L}, and at the same time, it
holds (Xk, Yl) ∈ B(2), for any k, l ∈ {1, . . . , n}. Following a referee’s advice, we provide some
examples to show that GTAI and (Xk, Yl) ∈ B(2) are possible simultaneously. For the sake of
simplicity, we consider only the case n= 2 with non-negative random variables.
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Example 4.1. Let X1, X2, Y1, Y2 be non-negative random variables with distributions from class
B ∈ {C, D ∩L, L}. Further, we suppose that the X1, X2 are TAI, the Y1, Y2 are also TAI, while the
(X1, X2) and (Y1, Y2) are independent random pairs. Then, we directly find that (Xk, Yl) ∈ B(2),
and additionally by TAI, we obtain that for any ε > 0, there exists some x0 > 0, such that for any
1≤ i �= k≤ 2, it holds P[Xi > xi | Xk > xk]< ε, for any xi ∧ xk ≥ x0. Hence for any 1≤ i �= k≤ 2,
j= 1, 2, we conclude

P
[
Xi > xi, Xk > xk, Yj > yj

] = P [Xi > xi, Xk > xk] P
[
Yj > yj

]
< ε P [Xk > xk] P

[
Yj > yj

]= ε P
[
Xk > xk, Yj > yj

]
,

for any xi ∧ xk ≥ x0. From the last relation, because of the arbitrary choice of ε, we get
P
[
Xi > xi | Xk > xk, Yj > yj

]→ 0, as xi ∧ xk ∧ yj → ∞.
Similarly, by symmetry, we obtain for any 1≤ j �= k≤ 2, i= 1, 2 the convergence

P
[
Yj > yj | Xi > xi, Yk > yk

]→ 0, as xi ∧ yk ∧ yj → ∞. Hence, the X1, X2, Y1, Y2 satisfy the
GTAI.

Example 4.2. Let X1, X2, Y1, Y2 be non-negative random variables with distributions from
class B ∈ {C, D ∩L, L}. We suppose that Zi, Zj, Zk ∈ {X1, X2, Y1, Y2} with Zi �= Zj �= Zk and
zi, zj, zk ∈ {x1, x2, y1, y2}, where the zi, zj, zk are allowed to be equal. Let us assume the SAI
property for any duo or trio of them, namely

P[Zi > zi, Zj > zj]∼ Cij P[Zi > zi] P[Zj > zj],
as zi ∧ zj → ∞, with Cij > 0 and

P[Zi > zi, Zj > zj, Zk > zk]∼ Cijk P[Zi > zi] P[Zj > zj] P[Zk > zk],

as zi ∧ zj ∧ zk → ∞, with Cijk > 0. Then, by SAI in duo mode, we obtain (Xk, Yl) ∈ B(2), for k, l ∈
{1, 2} (see Example 2.2, for the case of class L). Next, by SAI in trio mode, we obtain directly the
GTAI.

From here on, we study only the case n=m. In the next lemma, we find the lower asymptotic
bound of the joint tail of the random sums

Sn :=
n∑

k=1

Xk, Tn :=
n∑
l=1

Yl,

when the summands follow distributions with long tails and the L(2) property is true for any pair
of the summands distribution. A similar result, for the unidimensional case, can be found in Geluk
and Tang (2009), where the dependence structure is TAI. In the next result, we find generalization
to two dimensions and furthermore the GTAI assumption. Next, we introduce the notations

Sn,k := Sn − Xk, Tn,l := Tn − Yl,
for some k ∈ {1, . . . , n} and some l ∈ {1, . . . , n}. In what follows, we can choose

a= (aF , aG) :=
(
min
1≤k≤n

aFk , min
1≤l≤n

aGl

)
, (4.7)

namely, the minimum of all the joint insensitivity functions, which means that the function a( · )
is insensitive for all the distribution pairs (Fk, Gl), for k, l ∈ {1, . . . , n}. In what follows, for the
sake of simplicity, the function a( · ) is understood either as aF for the Xk or as aG for the Yl.

Lemma 4.2. Let X1, . . . , Xn, Y1, . . . , Yn be random variables with distributions F1, . . . , Fn,
G1, . . . , Gn from class L, respectively. We also assume that X1, . . . , Xn, Y1, . . . , Yn satisfy the
GTAI property and it holds

(Xk, Yl) ∈L(2),
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for any k, l ∈ {1, . . . , n}. Then it holds

P
[
Sn > x, Tn > y

]
�

n∑
k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
,

as x∧ y→ ∞.

Proof. We choose as a( · ) a function with joint insensitivity property for any random pair
(Xk, Yl) for any k, l ∈ {1, . . . , n}. A possible choice of this function is by (4.7). Next, we apply
twice Bonferroni’s inequality to obtain

P
[
Sn > x, Tn > y

]≥ P
[
Sn > x, Tn > y,

n∨
k=1

Xk > x+ a(x),
n∨
l=1

Yl > y+ a(y)

]

≥
n∑

k=1

n∑
l=1

P
[
Sn > x, Tn > y, Xk > x+ a(x), Yl > y+ a(y)

]
−
∑ ∑

1≤k<i≤n

n∑
l=1

P
[
Xi > x+ a(x), Xk > x+ a(x), Yl > y+ a(y)

]
−

n∑
k=1

∑ ∑
1≤l<i≤n

P
[
Xk > x+ a(x), Yl > y+ a(y), Yi > y+ a(y)

]
=:

3∑
i=1

Ji(x, y). (4.8)

Now for each term of J2(x, y), we find

P
[
Xi > x+ a(x), Xk > x+ a(x), Yl > y+ a(y)

]
= P

[
Xi > x+ a(x) | Xk > x+ a(x), Yl > y+ a(y)

]
P
[
Xk > x+ a(x), Yl > y+ a(y)

]
= o(P

[
Xk > x, Yl > y

]
),

as x∧ y→ ∞, which follows fromGTAI property,L(2) membership and the definition of function
a( · ). So

J2(x, y)= o(P
[
Xk > x, Yl > y

]
), (4.9)

as x∧ y→ ∞. Similarly, due to symmetry, we have

J3(x, y)= o(P
[
Xk > x, Yl > y

]
), (4.10)

as x∧ y→ ∞.
Finally, for the first term, we obtain

J1(x, y) ≥
n∑

k=1

n∑
l=1

P[Xk > x+ a(x), Yl > y+ a(y)]

−
n∑

1≤k<i≤n

∑ n∑
l=1

P
[
Xk > x+ a(x), Yl > y+ a(y), Xi <−a(x)

n

]

−
n∑

k=1

n∑
1≤l<i≤n

∑
P
[
Xk > x+ a(x), Yl > y+ a(y), Yi <−a(y)

n

]
, (4.11)
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hence, the last two terms in (4.11), from the GTAI structure and the definition of the function a,
in combination with properties of class L(2), become negligible with respect to the first term in
(4.11). Therefore, it holds

J1(x, y) �
n∑

k=1

n∑
l=1

P[Xk > x+ a(x), Yl > y+ a(y)], (4.12)

as x∧ y→ ∞. Thus, relations (4.9), (4.10), and (4.12), together with relation (4.8), render the
desired lower bound.

Lemma 4.3. Let X1, X2, Y1, Y2 be non-negative random variables, with GTAI property, such that
the pair (Xk, Yl) ∈ (D ∩L)(2), for any k, l ∈ {1, 2}. If by a we denote the insensitivity function from
(4.7), then it holds

P
[
X1 > x− a(x), Y1 > a(y), Y2 ≤ y

2

]
∼ P

[
X1 > x, Y1 > a(y), Y2 ≤ y

2

]
∼ P[X1 > x, Y1 > a(y)], (4.13)

as x∧ y→ ∞, and further, it holds

P
[
Y1 > y− a(y), X1 > a(x), X2 ≤ x

2

]
∼ P

[
Y1 > y, X1 > a(x), X2 ≤ x

2

]
∼ P[Y1 > y, X1 > a(x)],

as x∧ y→ ∞.

Proof. We show only the first relation (4.13), since the second follows along similar steps,
due to symmetry. At first, by definition of insensitivity function a( · ) from (4.7), and if the pair
(X, Y) ∈ (D ∩L)(2), we obtain

1≤ lim
x∧y→∞

P
[
X> x− a(x), Y > y

]
P
[
X> x, Y > y

] ≤ lim
x∧y→∞

P
[
X> x− a(x), Y > y− a(y)

]
P
[
X> x, Y > y

] = 1, (4.14)

Hence, because of (X1, Y1) ∈ (D ∩L)(2) �L(2), we have through (4.14) that it holds

P
[
X1 > x− a(x), Y1 > a(y)

]∼ P
[
X1 > x, Y1 > a(y)

]
,

or equivalently

P
[
X1 > x− a(x), Y1 > a(y), Y2 ≤ y

2

]
+ P

[
X1 > x− a(x), Y1 > a(y), Y2 >

y
2

]
∼ P

[
X1 > x, Y1 > a(y), Y2 ≤ y

2

]
+ P

[
X1 > x, Y1 > a(y), Y2 >

y
2

]
, (4.15)

as x∧ y→ ∞. We compare the first terms of each side of (4.15), to find

P
[
X1 > x− a(x), Y1 > a(y), Y2 ≤ y

2

]
= P

[
X1 > x− a(x), Y1 > a(y)

]
−P
[
X1 > x− a(x), Y1 > a(y), Y2 >

y
2

]
= P

[
X1 > x− a(x), Y1 > a(y)

]
−P
[
Y2 >

y
2

∣∣∣ X1 > x− a(x), Y1 > a(y)
]
P
[
X1 > x− a(x), Y1 > a(y)

]
∼ P

[
X1 > x, Y1 > a(y)

]− o
(
P
[
X1 > x, Y1 > a(y)

])
,
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as x∧ y→ ∞, where in the pre-last step, we used the class (D ∩L)(2) property, relation (4.14),
and the GTAI property. Similarly, we get

P
[
X1 > x, Y1 > a(y), Y2 ≤ y

2

]
= P

[
X1 > x, Y1 > a(y)

]− P
[
X1 > x, Y1 > a(y), Y2 >

y
2

]
= P

[
X1 > x, Y1 > a(y)

]− P
[
Y2 >

y
2

∣∣∣ X1 > x, Y1 > a(y)
]
P
[
X1 > x, Y1 > a(y)

]
∼ P

[
X1 > x, Y1 > a(y)

]− o
(
P
[
X1 > x, Y1 > a(y)

])
, (4.16)

as x∧ y→ ∞. Therefore, considering all together relations (4.15)–(4.16), we conclude relation
(4.13) .

Remark 4.1. Taking into account relations (4.15)–(4.16), together with the fact that the
X1, X2, Y1, Y2 are non-negative random variables, which are GTAI, it follows that

P
[
X1 > x− a(x), Y1 > a(y), Y2 >

y
2

]
= o(P

[
X1 > x, Y1 > a(y)

]
),

P
[
Y1 > y− a(y), X1 > a(x), X2 >

x
2

]
= o(P

[
X1 > a(x), Y1 > y

]
),

as x∧ y→ ∞.

The next result shows that in the non-negative part of class (D ∩L)(2), the property of joint
max-sum equivalence as also under an extra assumption the closure property with respect to
convolution are satisfied, as soon as the GTAI holds.

Lemma 4.4. Let X1, X2, Y1, Y2 be non-negative random variables, with the following distribu-
tions F1, F2, G1, G2 from class D ∩L, respectively. Further, we assume that the random variables
X1, X2, Y1, Y2 satisfy the GTAI and

(Xk, Yl) ∈ (D ∩L)(2),

for any k, l ∈ {1, 2} properties. Then it holds

P
[
X1 + X2 > x, Y1 + Y2 > y

]∼ 2∑
k=1

2∑
l=1

P
[
Xk > x, Yl > y

]
, (4.17)

as x∧ y→ ∞. If further X1, X2 are TAI and Y1, Y2 are TAI, then

(X1 + X2, Y1 + Y2) ∈ (D ∩L)(2),

Proof. From Lemma 4.2 and the fact that (D ∩L)(2) �L(2), we find

P[X1 + X2 > x, Y1 + Y2 > y]�
2∑

k=1

2∑
l=1

P
[
Xk > x, Yl > y

]
, (4.18)

as x∧ y→ ∞, which provides the lower asymptotic bound.
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Let us examine now the upper asymptotic bound

P[X1 + X2 > x, Y1 + Y2 > y]≤ P
[
X1 > x− a(x), Y1 + Y2 > y

]
+P
[
X2 > x− a(x), Y1 + Y2 > y

]+ P
[
X1 > a(x), X2 >

x
2
, Y1 + Y2 > y

]
+P
[
X1 >

x
2
, X2 > a(x), Y1 + Y2 > y

]
≤ P

[
X1 > x− a(x), Y1 > y− a(y)

]
+P
[
X1 > x− a(x), Y2 > y− a(y)

]+ P
[
X1 > x− a(x), Y1 > a(y), Y2 >

y
2

]
+P
[
X1 > x− a(x), Y1 >

y
2
, Y2 > a(y)

]
+ P

[
X2 > x− a(x), Y1 > y− a(y)

]
+P
[
X2 > x− a(x), Y2 > y− a(y)

]+ P
[
X2 > x− a(x), Y1 > a(y), Y2 >

y
2

]
+P
[
X2 > x− a(x), Y1 >

y
2
, Y2 > a(y)

]
+ P

[
X1 > a(x), X2 >

x
2
, Y1 > y− a(y)

]
+P
[
X1 > a(x), X2 >

x
2
, Y2 > y− a(y)

]
+P
[
X1 > a(x), X2 >

x
2
, Y1 > a(y), Y2 >

y
2

]
+P
[
X1 > a(x), X2 >

x
2
, Y1 >

y
2
, Y2 > a(y)

]
+P
[
X1 >

x
2
, X2 > a(x), Y1 > y− a(y)

]
+ P

[
X1 >

x
2
, X2 > a(x), Y2 > y− a(y)

]
+P
[
X1 >

x
2
, X2 > a(x), Y1 > a(y), Y2 >

y
2

]
+P
[
X1 >

x
2
, X2 > a(x), Y1 >

y
2
, Y2 > a(y)

]
=:

16∑
i=1

Ii(x, y). (4.19)

Taking into account the property L(2) and the definition of function a(x), we find the
asymptotic expressions for I1(x, y)∼ P

[
X1 > x, Y1 > y

]
, I2(x, y)∼ P

[
X1 > x, Y2 > y

]
, I5(x, y)∼

P
[
X2 > x, Y1 > y

]
, I6(x, y)∼ P

[
X2 > x, Y2 > y

]
, as x∧ y→ ∞. Hence

I1(x, y)+ I2(x, y)+ I5(x, y)+ I6(x, y)∼
2∑

k=1

2∑
l=1

P
[
Xk > x, Yl > y

]
, (4.20)

as x∧ y→ ∞.
Next, we follow a similar approach for I3(x, y), I4(x, y), I7(x, y), I8(x, y), I9(x, y), I10(x, y),

I13(x, y) and I14(x, y). Now, we obtain by Lemma 4.3

I3(x, y)∼ P
[
X1 > x, Y1 > a(y), Y2 >

y
2

]
= P

[
Y1 > a(y)

∣∣∣ X1 > x, Y2 >
y
2

]
P
[
X1 > x, Y2 >

y
2

]
= o

(
P
[
X2 > x, Y2 > y

])
,

as x∧ y→ ∞, which follows because of properties (D ∩L)(2) and GTAI.
In similar way, we find I4(x, y)= o(P

[
X1 > x, Y2 > y

]
), I7(x, y)= o(P

[
X2 > x, Y2 > y

]
),

I8(x, y)= o(P
[
X2 > x, Y2 > y

]
), I9(x, y)= o(P

[
X2 > x, Y1 > y

]
) and finally I10(x, y)=

o(P
[
X1 > x, Y2 > y

]
), as x∧ y→ ∞. Hence

4∑
j=3

Ij(x, y)+
10∑
i=7

Ii(x, y)+ I13(x, y)+ I14(x, y)= o

( 2∑
k=1

2∑
l=1

P
[
Xk > x, Yl > y

])
, (4.21)
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as x∧ y→ ∞.
The I11(x, y), I12(x, y), I15(x, y), I16(x, y) can be handled also similarly

I11(x, y) ≤ P
[
X2 >

x
2
, Y1 > a(y), Y2 >

y
2

]
= P

[
Y1 > a(y)

∣∣∣ X2 >
x
2
, Y2 >

y
2

]
P
[
X2 >

x
2
, Y2 >

y
2

]
,

or equivalently I11(x, y)= o(P
[
X2 > x, Y2 > y

]
), as x∧ y→ ∞, which follows because of prop-

erties (D ∩L)(2) and GTAI. Similarly, we find I1j(x, y)= o(P
[
Xk > x, Yl > y

]
), for some k, l ∈

{1, 2} and for any j ∈ {1, 2, 5, 6}. Therefore, we obtain

I1j(x, y)= o

( 2∑
k=1

2∑
l=1

P
[
Xk > x, Yl > y

])
, (4.22)

as x∧ y→ ∞, for any j ∈ {1, 2, 5, 6}.
From (4.20), (4.21), and (4.22), in combination with (4.19), we find that

P[X1 + X2 > x, Y1 + Y2 > y]�
2∑

k=1

2∑
l=1

P
[
Xk > x, Yl > y

]
as x∧ y→ ∞, which in combination with (4.18) leads to (4.17).

Now we check the validity of relation (X1 + X2, Y1 + Y2) ∈ (D ∩L)(2). At first, by (4.17), we
obtain

lim sup
x∧y→∞

P
[
X1 + X2 > b1 x, Y1 + Y2 > b2 y

]
P
[
X1 + X2 > x, Y1 + Y2 > y

] = lim sup
x∧y→∞∑2

k=1
∑2

l=1 P
[
Xk > b1 x, Yl > b2 y

]∑2
k=1
∑2

l=1 P
[
Xk > x, Yl > y

] ≤ max
k, l∈{1,2}

{
lim sup
x∧y→∞

P
[
Xk > b1x, Yl > b2y

]
P
[
Xk > x, Yl > y

] }
<∞,

for any b= (b1, b2) ∈ (0, 1)2, this means that we have one of two conditions of the closure
property with respect to D(2).

Next, we check the closure property with respect to L(2). From (4.17), we obtain

lim sup
x∧y→∞

P
[
X1 + X2 > x− a1, Y1 + Y2 > y− a2

]
P
[
X1 + X2 > x, Y1 + Y2 > y

]
= lim sup

x∧y→∞

∑2
k=1
∑2

l=1 P
[
Xk > x− a1, Yl > y− a2

]∑2
k=1
∑2

l=1 P
[
Xk > x, Yl > y

] ,

for any a= (a1, a2)> (0, 0), and therefore

lim sup
x∧y→∞

P
[
X1 + X2 > x− a1, Y1 + Y2 > y− a2

]
P
[
X1 + X2 > x, Y1 + Y2 > y

]
≤ max

k, l∈{1, 2}

{
lim sup
x∧y→∞

P
[
Xk > x− a1, Yl > y− a2

]
P
[
Xk > x, Yl > y

] }
= 1,

and always

lim inf
x∧y→∞

P
[
X1 + X2 > x− a1, Y1 + Y2 > y− a2

]
P
[
X1 + X2 > x, Y1 + Y2 > y

] ≥ 1,
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which means that we have one of two conditions of the closure property with respect to L(2)

true. So by the extra assumption of TAI between X1, X2 and Y1, Y2 by Lemma 4.1 of Geluk and
Tang (2009), we have that X1 + X2 ∈D ∩L and Y1 + Y2 ∈D ∩L; as a result, we conclude (X1 +
X2, Y1 + Y2) ∈ (D ∩L)(2).

An easy example, where we combine the GTAI property for the X1, . . . , Xn, Y1, . . . , Ym with
the TAI property for each sequence, is found in case of each sequence to be TAI but the two
sequences to be independent.

Next, we provide a corollary, following from Lemma 4.4, where we establish the closure
property with respect to C(2) and the joint max-sum equivalence, under condition GTAI.

Corollary 4.1. Let X1, X2, Y1, Y2 be non-negative random variables, with the distributions
F1, F2, G1, G2 from class C, respectively, and they satisfy the GTAI condition. If it holds (Xk, Yl) ∈
C(2), for any k, l ∈ {1, 2}, then

P
[
X1 + X2 > x, Y1 + Y2 > y

]∼ 2∑
k=1

2∑
l=1

P
[
Xk > x, Yl > y

]
, (4.23)

as x∧ y→ ∞. If further X1, X2 are TAI and Y1, Y2 are TAI, then it holds (X1 + X2, Y1 + Y2) ∈ C(2).
Proof. Relation (4.23) follows from the fact that C(2) � (D ∩L)(2) (see Theorem 2.1) and by

application of Lemma 4.4.
Next, we check the closure property with respect to convolution. From (4.23), we obtain

P[X1 + X2 > d1 x, Y1 + Y2 > d2 y]∼
2∑

k=1

2∑
l=1

P
[
Xk > d1 x, Yl > d2 y

]
,

as x∧ y→ ∞, for any d= (d1, d2) ∈ (0, 1)2. Hence

lim sup
x∧y→∞

P
[
X1 + X2 > d1 x, Y1 + Y2 > d2 y

]
P
[
X1 + X2 > x, Y1 + Y2 > y

]
= lim sup

x∧y→∞

∑2
k=1
∑2

l=1 P
[
Xk > d1 x, Yl > d2 y

]∑2
k=1
∑2

l=1 P
[
Xk > x, Yl > y

]
≤ lim sup

x∧y→∞
max

k, l∈{1, 2}

{
P
[
Xk > d1 x, Yl > d2 y

]
P
[
Xk > x, Yl > y

] }
,

Thus, because of the definition of C(2), we get

1 ≤ lim
d↑ 1

lim sup
x∧y→∞

P
[
X1 + X2 > d1 x, Y1 + Y2 > d2 y

]
P
[
X1 + X2 > x, Y1 + Y2 > y

]
≤ lim

d↑ 1
lim sup
x∧y→∞

max
k, l∈{1, 2}

(
P
[
Xk > d1 x, Yl > d2 y

]
P
[
Xk > x, Yl > y

] )

≤ max
k, l∈{1, 2}

(
lim
d↑ 1

lim sup
x∧y→∞

P
[
Xk > d1 x, Yl > d2 y

]
P
[
Xk > x, Yl > y

] )
= 1,

this means that one of two conditions of closedness under convolution holds. By the assumptions
of TAI in each sequence and by C �D ∩L, we use Lemma 4.1 of Geluk and Tang (2009), and we
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take

1 ≤ lim
d1↑1

lim sup
x→∞

P
[
X1 + X2 > d1 x

]
P [X1 + X2 > x]

= lim
d1↑1

lim sup
x→∞

P
[
X1 > d1 x

]+ P
[
X1 > d1 x

]
P [X1 > x]+ P [X1 > x]

≤ lim
d1↑1

lim sup
x→∞

max
k∈{1, 2}

(
P
[
Xk > d1 x

]
P [Xk > x]

)
≤ max

k∈{1, 2}

(
lim
d1↑1

lim sup
x→∞

P
[
Xk > d1 x

]
P [Xk > x]

)
= 1,

which gives that (X1 + X2) ∈ C. With the same argument, we have (Y1 + Y2) ∈ C. That means
(X1 + X2, Y1 + Y2) ∈ C(2).

Nowwe can give themain result, where we find an analogue to relation (4.2) in two dimensions.

Theorem 4.2. Let X1, . . . , Xn, Y1, . . . , Yn be random variables with the following distributions
F1, . . . , Fn, G1, . . . , Gn from class D ∩L, respectively, and they satisfy the GTAI condition, with
(Xk, Yl) ∈ (D ∩L)(2), for any k, l ∈ {1, . . . , n}. If further X1, . . . , Xn are TAI and Y1, . . . , Yn are
TAI, then

P
[ n∑
k=1

Xk > x,
n∑
l=1

Yl > y

]
∼ P

⎡⎣ n∨
i=1

Si > x,
n∨
j=1

Tj > y

⎤⎦
∼ P

[ n∨
k=1

Xk > x,
n∨
l=1

Yl > y

]
∼

n∑
k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
,

as x∧ y→ ∞.

Proof. By Lemma 4.2, we find

P
[ n∑
k=1

Xk > x,
n∑
l=1

Yl > y

]
�

n∑
k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
,

as x∧ y→ ∞. Because of closure property of (D ∩L)(2) with respect to convolution in the posi-
tive part, under GTAI condition, we can apply Lemmas 4.4 and 4.1, and employing induction, we
find

P
[ n∑
k=1

Xk > x,
n∑
l=1

Yl > y

]
≤ P

[ n∑
k=1

X+
k > x,

n∑
l=1

Y+
l > y

]
∼

n∑
k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
as x∧ y→ ∞. Now, taking into consideration Theorem 4.1, we find

P
[ n∑
k=1

Xk > x,
n∑
l=1

Yl > y

]
∼

n∑
k=1

n∑
l=1

P
[
Xk > x, Yl > y

]∼ P
[ n∨
k=1

Xk > x,
n∨
l=1

Yl > y

]
,

as x∧ y→ ∞. Finally, due to the inequality

P
[ n∑
k=1

Xk > x,
n∑
l=1

Yl > y

]
≤ P

⎡⎣ n∨
i=1

Si > x,
n∨
j=1

Tj > y

⎤⎦≤ P
[ n∑
k=1

X+
k > x,

n∑
l=1

Y+
l > y

]
we get the asymptotic relation

P

⎡⎣ n∨
i=1

Si > x,
n∨
j=1

Tj > y

⎤⎦∼
n∑

k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
,

as x∧ y→ ∞.
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Recently more and more researchers study two-dimensional risk models; we refer to the reader
Hu and Jiang (2013), Cheng and Yu (2019), and Cheng (2021), among others. For

U1(k, x) := x−
k∑

i=1
Xi, U2(k, y) := y−

k∑
j=1

Yj,

for 1≤ k≤ n, we define now two ruin times,

Tmax := inf
{
1≤ k≤ n :U1(k, x)∧U2(k, y)< 0

}
,

which denote the first moment when both portfolios are found with negative surplus, and for each
portfolio, we define

T1(x) := inf
{
1≤ k≤ n:U1(k, x)< 0|U1(0, x)= x

}
,

T2(y) := inf
{
1≤ k≤ n:U2(k, y)< 0|U2(0, y)= y

}
,

as a result, the second type of ruin type is

Tand := max
{
T1(x), T2(y)

}
,

which corresponds to the first moment, when both portfolios have been with negative surplus, but
not necessarily simultaneously. Hence we define the ruin probabilities as

ψmax(x, y, n)= P[Tmax ≤ n], ψand(x, y, n)= P[Tand ≤ n], (4.24)

for any n ∈N and x, y> 0. From (4.24), we easily find out that

ψand(x, y, n)= P
[ n∨
i=1

Si > x,
n∨

i=1
Ti > y

]
.

Therefore, by Theorem 4.2, we obtain the following result.

Corollary 4.2. Under conditions of Theorem 4.2, we obtain

ψand(x, y, n)∼
n∑

k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
, (4.25)

as x∧ y→ ∞.

Remark 4.2. From relation (4.25) and the definitions for Tmax and Tand, we can easily observe that
ψmax(x, y, n)≤ψand(x, y, n), for any x, y> 0 and any n ∈N. Thus, for ψmax(x, y, n), we find the
asymptotic upper bound

ψmax(x, y, n)�
n∑

k=1

n∑
l=1

P
[
Xk > x, Yl > y

]
,

as x∧ y→ ∞, for any n ∈N.

5. Scalar product
Now we examine the closure property of scalar product in L(2), D(2), and in their intersection.
Later, we check the same for random sums in two dimensions.

The scalar product has the following tail:

H(x, y) := P[� X> x, � Y > y]. (5.1)
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Here, we set � to be a non-negative random variable with distribution B, such that B(0− )= 0
and B(0)< 1. We assume also that � is independent of (X, Y). These products in relation (5.1)
have many applications in actuarial mathematics, in risk management, and in stochastic fields.
Next, we use an assumption from Konstantinides and Passalidis (2024b).

Assumption 5.1. Let us suppose that it holds B[c (x∧ y)]= o
(
P
[
� X> x, � Y > y

]) =
: o
[
H(x, y)

]
, as x∧ y→ ∞, for any c> 0.

Remark 5.1. From Assumption 5.1, it is implied that

B(c x)= o (P [� X> x]) , (5.2)

as x→ ∞, for any c> 0, and similarly

B(c y)= o
(
P
[
� Y > y

])
, (5.3)

as y→ ∞ for any c> 0. This condition is well-known; see, for example, Tang (2006). Further, we
can see that Assumption 5.1 holds immediately when the distribution B has support bounded from
above (because of the unbounded support of F, G).

The next lemma helps our argumentation and presents a multivariate extension of Tang (2006,
Lem. 3.2), providing the existence of an auxiliary function. For a similar paper on auxiliary
functions, we refer to Zhou et al. (2012).

Lemma 5.1. For two distributions B and H, with B(x)> 0, H(x, y)> 0 for any x, y> 0, then,
Assumption 5.1 holds if and only if there exists a function b : [0, ∞)→ (0, ∞), such that

b(x)→ ∞, as x→ ∞,
b(x)= o(x), as x→ ∞,
B[b(x∧ y)]= o[H(x, y)], as x∧ y→ ∞.

Proof.
(⇐). The existence of such an auxiliary function easily implies Assumption 5.1; for example,

we consider the function x∧ y/n.
(⇒). Let suppose that Assumption 5.1 is satisfied. Then we obtain

lim
x∧y→∞

B((x∧ y)/n)
H(x, y)

= 0.

Let an increasing sequence of positive numbers {λn, n ∈N}with λn+1 > (n+ 1) λn, for any n ∈N,
such that for any x∧ y≥ λn, we have

B(x∧ y/n)
H(x, y)

≤ 1
n
.

Therefore, the points (1), (2), and (3) are satisfied with

b(x∧ y) := sup
0≤k≤x∧y

z(k), z(x∧ y)=
∞∑
n=1

x∧ y
n

1{λn≤x∧y≤λn+1},

which completes the proof.

Remark 5.2. We have to mention that in case of distribution B with support bounded from above,
the existence of function b( · ) follows immediately.

Now we study the closure property of class D(2) with respect to scalar product.
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Theorem 5.1. Let (X, Y) be random vector and � be random variable, with tail distribution
F1(x, y)= P[X> x, Y > y] and B, respectively, and assume B(0− )= 0,B(0)< 1. If � and (X, Y)
are independent, Assumption 5.1 holds and (X, Y) ∈D(2), then H(x, y) ∈D(2).

Proof. Initially, we get from F, G ∈D and by Cline and Samorodnitsky (1994, Th. 3.3 (i)) or
Leipus, Šiaulys, and Konstantinides (2023, Prop. 5.4 (i)) that the products � X and � Y follow
distributions from D. From Assumption 5.1, we obtain that for any b ∈ (0, 1)n

lim sup
x∧y→∞

Hb(x, y)
H(x, y)

= lim sup
x∧y→∞

P[� X> b1 x, � Y > b2 y]
P[� X> x, � Y > y]

= lim sup
x∧y→∞(∫ b(x∧y)

0 + ∫∞
b(x∧y)

)
P
[
X>

b1 x
s

, Y >
b2 y
s

]
B(ds)

P[� X> x, � Y > y]
=: lim sup

x∧y→∞
I1 + I2

P[� X> x,� Y > y]
.

(5.4)

Further, we calculate

I2 ≤
∫ ∞

b(x∧y)
B(ds)= B[b(x∧ y)]= o

[
H(x, y)

]
,

as x∧ y→ ∞, due to Assumption 5.1. Hence, taking into account also relation (5.4), we find

lim sup
x∧y→∞

Hb(x, y)
H(x, y)

≤ lim sup
x∧y→∞

∫ b(x∧y)
0 P

[
X>

b1 x
s

, Y >
b2 y
s

]
B(ds)∫ b(x∧y)

0 P
[
X>

x
s
, Y >

y
s

]
B(ds)

≤ lim sup
x∧y→∞

sup
0<s≤b(x∧y)

P
[
X> b1

x
s
, Y > b2

y
s

]
P
[
X1 >

x
s
, Y >

y
s

]
≤ lim sup

x∧y→∞
P
[
X> b1 x, Y > b2 y

]
P
[
X> x, Y > y

] <∞,

where in the last step, we used the condition (X, Y) ∈D(2). So we get H(x, y) ∈D(2).
Let us observe, that if � has upper bounded support, the proof of Theorem 5.1 (as also of

Theorem 5.2) is implied by similar manipulations, replacing b (x∧ y) by the right endpoint of the
distribution B. Next, we provide an analogue for class L(2).

Theorem 5.2. Let (X, Y) be a random vector and� be a random variable, with distributions F, B,
respectively, under condition B(0− )= 0, B(0)< 1. If � and (X, Y) are independent, Assumption
5.1 holds, and (X, Y) ∈L(2), then H(x, y) ∈L(2).

Proof. From the fact that (X, Y) is independent of �, hold F, G ∈L and relations (5.2) and
(5.3), using Cline and Samorodnitsky (1994, Th 2.2 (iii)), we find that distributions of � X and
� Y belong to L. Let a= (a1, a2)> (0, 0). Then we easily obtain

lim inf
x∧y→∞

H(x− a1, y− a2)
H(x, y)

= lim
x∧y→∞

P[� X> x− a1, � Y > y− a2]
P[� X> x, � Y > y]

≥ 1. (5.5)
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Next, we show the opposite asymptotic inequality. Using Assumption 5.1, we obtain

lim sup
x∧y→∞

H(x− a1, y− a2)
H(x, y)

= lim
x∧y→∞

1
H(x, y)

(∫ b(x∧y)

0
+
∫ ∞

b(x∧y)

)
P
[
X>

x− a1
s

, Y >
y− a2

s

]
B(ds) (5.6)

=: lim
x∧y→∞

I1(x, y)+ I2(x, y)
H(x, y)

.

Thus, by Assumption 5.1, we find

I2(x, y)=
∫ ∞

b(x∧y)
P
[
X>

x− a1
s

, Y >
y− a2

s

]
B(ds)≤ B[b(x∧ y)]= o

[
H(x, y)

]
,

hence,

I2(x, y)
H(x, y)

= o(1),

as x∧ y→ ∞. As a consequence, taking into account also (5.6), we get

lim sup
x∧y→∞

H1(x− a1, y− a2)
H(x, y)

= lim sup
x∧y→∞

∫ b(x∧y)

0
P
[
X>

x− a1
s

, Y >
y− a2

s

]
B(ds)
H(x, y)

≤ lim sup
x∧y→∞

∫ b(x∧y)
0 P

[
X>

x− a1
s

, Y >
y− a2

s

]
B(ds)∫ b(x∧y)

0 P
[
X>

x
s
, Y >

y
s

]
B(ds)

≤ lim sup
x∧y→∞

sup
0<s≤b(x∧y)

P
[
X>

x− a1
s

, Y >
y− a2

s

]
P
[
X>

x
s
, Y >

y
s

]
= lim sup

x∧y→∞
P
[
X> x− a1, Y > y− a2

]
P
[
X> x, Y > y

] = 1.

where in the last step, we consider the fact that (X, Y) ∈L(2). So we have

lim sup
x∧y→∞

H(x− a1, y− a2)
H(x, y)

≤ 1. (5.7)

From relations (5.5) and (5.7), we conclude H(x, y) ∈L(2).
The next statement stems from a combination of previous results.

Corollary 5.1. Let (X, Y) be a random vector and � be a non-negative random variable with dis-
tributions (F,G), B, respectively, under condition B(0)< 1. If (X, Y) and � are independent, with
(X, Y) ∈ (D ∩L)(2) and satisfy the Assumption 5.1, then H(x, y) ∈ (D ∩L)(2).

Proof. This follows directly from Theorems 5.1 and 5.2.
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6. Randomly weighted sums
Finally, we extend Theorem 4.2 to weighted sums. The first kind of weighted sums takes the form

Sn(�)=
n∑

k=1

� Xk, Tn(�)=
n∑
l=1

� Yl.

These quantities have the same discount factor�; hence, the (Xk, Yl), for k, l= 1, . . . , n, are the
losses or gains of the two lines of business during the k-th period. If the (x, y) represents the two
initial capitals, respectively, then the ruin probability in this model comes in the form

ψand(x, y, n) := P

⎡⎣ n∨
i=1

Si(�)> x,
n∨
j=1

Tj(�)> y

⎤⎦ . (6.1)

The ruin probability, in models with insurance and financial risks, plays a significant role in risk
theory. For example, we refer to Li and Tang (2015), Yang and Konstantinides (2015), Cheng
(2021), and Ji et al. (2023) for discrete-time or continuous-time models, respectively.

The next result is based on Theorem 4.2 and Corollary 5.1. We have to notice that there exists
the asymptotic behavior of the ruin probability in (6.1) as well.

Corollary 6.1. Let X1, . . . , Xn, Y1, . . . , Yn be random variables with the following distributions
F1, . . . , Fn, G1, . . . , Gn, respectively, from class D ∩L, and they satisfy the GTAI dependence
structure. We assume that � represents a non-negative random variable with upper bounded sup-
port, it is independent of X1, . . . , Xn, Y1, . . . , Yn and (Xk, Yl) ∈ (D ∩L)(2), for k, l= 1, . . . , n.
If further X1, . . . , Xn are TAI and Y1, . . . , Yn are TAI, then the following asymptotic relation is
true:

P
[
Sn(�)> x, Tn(�)> y

]∼ P

⎡⎣ n∨
i=1

Si(�)> x,
n∨
j=1

Tj(�)> y

⎤⎦
∼ P

[ n∨
k=1

� Xk > x,
n∨
l=1

� Yl > y

]
∼

n∑
k=1

n∑
l=1

P
[
� Xk > x, � Yl > y

]
, (6.2)

as x∧ y→ ∞.

Proof. We start from Konstantinides and Passalidis (2024, Lem. 2.1), and because of the
upper-bound of �, we obtain that the products � X1, . . . , � Xn, � Y1, . . . , � Yn are GTAI.
Now we can apply Cline and Samorodnitsky (1994, Th. 2.2 (iii), Th.3.3 (ii)) to find � Xk ∈
D ∩L, and � Yl ∈D ∩L for any k= 1, . . . , n and l= 1, . . . , n. Because of the closedness of
class D and using Theorem 2.2 of Li (2013), we conclude that �1 X1, . . . , �n Xn are TAI and
	1 Y1, . . . , 	n Yn are TAI.

Next, since � is bounded from above, so Assumption 5.1 is fulfilled for �, (Xk, Yl),
for any k, l= 1, . . . , n, in order to obtain (� Xk, � Yl) ∈D(2) for any k= 1, . . . , n and
l= 1, . . . , n, it is enough to apply Theorem 5.1, and similarly, by Theorem 5.2, we find
(� Xk, � Yl) ∈L(2) for any k= 1, . . . , n and l= 1, . . . , n. Therefore, the (� Xk, � Yl) ∈ (D ∩
L)(2) and the � X1, . . . , � Xn, � Y1, . . . , � Yn are GTAI. Finally, applying Theorem 4.2, we
conclude (6.2).

Nowwe need some preliminary results. Several times before proving that the convolution prod-
uct satisfies H ∈ B, with B some distribution class, we need to prove that Hε(x) := P[(�∨ ε) X ≤
x] belongs to this class B for any ε > 0. Following the approach in Cline and Samorodnitsky
(1994), we show that for some constant δ > 0, if Hε ∈L(2), for any ε ∈ (0, δ), then H ∈L(2).
However, the next results deserve theoretical attention by its own merit.
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From here until the end of paper, we assume that X, Y are non-negative random variables.

Lemma 6.1. If for some constant vector δ = (δ1, δ2)> (0, 0), for any ε1 ∈ (0, δ1) and for any
ε2 ∈ (0, δ2), holds ((�∨ ε1) X, (	∨ ε2) Y) ∈L(2), with X, Y ,�,	 non-negative random variables,
then we conclude that (� X, 	 Y) ∈L(2).

Proof. Keeping in mind that ((�∨ ε1) X, (	∨ ε2) Y) ∈L(2), we start by Cline and
Samorodnitsky (1994, th. 2.2 (i)) to establish that due to (�∨ ε1) X ∈L, (	∨ ε2) Y ∈L, we get
� X ∈L and	 Y ∈L. Next, we check the second property of class L(2). Let (a1, a2)> (0, 0), then

lim inf
x∧y→∞

P
[
� X> x− a1, 	 Y > y− a2

]
P
[
� X> x, 	 Y > y

] ≥ 1, (6.3)

Next, for any (ε1, ε2)> (0, 0), we find

P[(�∨ ε1) X> x, (	∨ ε2) Y > y]≥ P[� X> x, 	 Y > y]

≥ P[� X> x, �> ε1, 	 Y > y]

= P[(�∨ ε1) X> x, 	 Y > y]− P[�≤ ε1] P[X ε1 > x, 	 Y > y]

≥ P[�> ε1] P[(�∨ ε1) X> x, 	 Y > y, 	> ε2]=
P[�> ε1]

(
P[(�∨ ε1)X> x, (	∨ ε2)Y > y]− P[(�∨ ε1)X> x, ε2Y > y]P[	≤ ε2]

)
≥ P[�> ε1] P[	> ε2] P[(�∨ ε1) X> x, (	∨ ε2) Y > y],

hence we conclude

P[(�∨ ε1) X> x, (	∨ ε2) Y > y]≥ P[� X> x, 	 Y > y]
≥ P[�> ε1] P[	> ε2] P[(�∨ ε1) X> x, (	∨ ε2) Y > y]. (6.4)

Therefore, using (6.4) and due to properties of L(2), for ((�∨ ε1) X, (	∨ ε2) Y), we obtain

lim sup
x∧y→∞

P
[
� X> x− a1, 	 Y > y− a2

]
P
[
� X> x, 	 Y > y

] ≤

lim sup
x∧y→∞

P
[
(�∨ ε1) X> x− a1, (	∨ ε2) Y > y− a2

]
P[�> ε1]P[	> ε2]P

[
(�∨ ε1)X> x, (	∨ ε2)Y > y

] = 1
P[�> ε1]P[	> ε2]

,

and leaving ε1 and ε2 to tend to zero, we get

lim sup
x∧y→∞

P
[
� X> x− a1, 	 Y > y− a2

]
P
[
� X> x, 	 Y > y

] ≤ 1,

hence, from (6.3) and from last inequality, we reach to (� X, 	 Y) ∈L(2).

Lemma 6.2. Let X and Y be non-negative random variables, with (X, Y) ∈L(2) and � and 	 be
non-negative, non-degenerated to zero random variables, independent of (X, Y). We assume that

P [�> x]= o(P
[
� X> c1 x, 	 Y > c2 y

]
)= P

[
	> y

]
, (6.5)

as x∧ y→ ∞, for any c1, c2 > 0. Then (� X, 	 Y) ∈L(2).

Proof. From (6.5), we obtain
P [�> x]

P [� X> c1 x]
≤ P [�> x]

P
[
� X> c1 x, 	 Y > c2 y

] −→ 0, (6.6)
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as x∧ y→ ∞, and similarly, we find P
[
	> y

]= o(P
[
	 Y > c2 y

]
), as x∧ y→ ∞, for any

c1, c2 > 0. Hence, by Cline and Samorodnitsky (1994,Th. 2.2), we find � X ∈L and 	 Y ∈L.
Next, we show the second property of (� X, 	 Y) ∈L(2). Indeed, from Lemma 6.1, we see that
it is enough to show this for any�≥ ε1 and	≥ ε2 almost surely for any ε1, ε2 > 0. Let consider
some a1, a2 > 0 and some k1, k2, k> 0, such that for a large enough x0 ≥ 0, it holds

P
[
X> x− a1

ε1
, Y > y− a2

ε2

]
≤ (1+ k) P

[
X> x, Y > y

]
, (6.7)

for any x∧ y≥ x0 and

P
[
X> x− a1

ε1

]
≤ (1+ k1) P [X> x] , P

[
Y > y− a2

ε2

]
≤ (1+ k2) P

[
Y > y

]
, (6.8)

for any x≥ x0 and y≥ x0, respectively. Then, for all x∧ y≥ x0, we obtain

P
[
� X> x− a1, 	 Y > y− a2

]=(∫ x/x0

ε1

+
∫ ∞

x/x0

)
(∫ y/x0

ε2

+
∫ ∞

y/x0

)
P
[
X>

x− a1
s

, Y >
y− a2

t

]
P[� ∈ ds, 	 ∈ dt] =:

4∑
m=1

Im(x, y), (6.9)

where we find

I4(x, y)=
∫ ∞

x/x0

∫ ∞

y/x0
P
[
X>

x− a1
s

, Y >
y− a2

t

]
P[� ∈ ds, 	 ∈ dt],

that gives

I4(x, y)≤ P
[
�≥ x

x0
, 	≥ y

x0

]
. (6.10)

Now we estimate I1(x, y)

I1(x, y) =
∫ x/x0

ε1

∫ y/x0

ε2

P
[
X>

x− a1
s

, Y >
y− a2

t

]
P[� ∈ ds, 	 ∈ dt] (6.11)

≤
∫ x/x0

ε1

∫ y/x0

ε2

P
[
X>

x
s

− a1
ε1

, Y >
y
t

− a2
ε2

]
P[� ∈ ds, 	 ∈ dt]

≤ (1+ k)
∫ x/x0

ε1

∫ y/x0

ε2

P
[
X>

x
s
, Y >

y
t

]
P[� ∈ ds, 	 ∈ dt]

≤ (1+ k) P
[
� X> x, 	 Y > y

]
,

thus we get I1(x, y)≤ (1+ k) P
[
� X> x, 	 Y > y

]
, which follows from (6.7).
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Next we consider I2(x, y)

I2(x, y) =
∫ x/x0

ε1

∫ ∞

y/x0
P
[
X>

x− a1
s

, Y >
y− a2

t

]
P[� ∈ ds, 	 ∈ dt] (6.12)

≤
∫ x/x0

ε1

P
[
X>

x
s

− a1
ε1

]
P
[
� ∈ ds, 	>

y
x0

]

≤ (1+ k1)
∫ x/x0

ε1

P
[
X>

x
s

]
P
[
� ∈ ds, 	>

y
x0

]
≤ (1+ k1) P

[
� X> x, 	>

y
x0

]
≤ (1+ k1) P

[
	>

y
x0

]
,

which means I2(x, y)≤ (1+ k1) P
[
	> y/x0

]
, where in the pre-last step, we use the first relation

in (6.8).
For I3(x, y), we use the second relation in (6.8), and due to symmetry with respect to (6.13), we

find

I3(x, y) =
∫ ∞

x/x0

∫ ∞

ε2

P
[
X>

x− a1
s

, Y >
y− a2

t

]
P[� ∈ ds, 	 ∈ dt]

≤ (1+ k2) P
[
�>

x
x0

]
. (6.13)

Therefore, putting the estimation from (6.10) to (6.15) into (6.9), we conclude

P
[
� X> x− a1, 	 Y > y− a2

]≤ P
[
�>

x
x0

, 	>
y
x0

]
+(1+ k) P

[
� X> x, 	 Y > y

]+ (1+ k2) P
[
�>

x
x0

]
+ (1+ k1) P

[
	>

y
x0

]
,

Now, because of (6.5) and the relation

P
[
�> x, 	> y

]
P
[
� X> c1 x, 	 Y > c2 y

] ≤ P [�> x]
P
[
� X> c1 x, 	 Y > c2 y

] −→ 0,

as x∧ y→ ∞, for any c1, c2 > 0, we find

lim
x∧y→∞

P
[
� X> x− a1, 	 Y > y− a2

]
P
[
� X> x, 	 Y > y

] ≤ 1+ k.

By these inequalities and relation (6.6), in combination of the arbitrary choice of k and relation
(6.3), we have (� X, 	 Y) ∈L(2).

Next, we consider the asymptotic joint-tail behavior of discounted aggregate claims in a two-
dimensional discrete-time risk model, where the vector (Xk, Yk) represents losses in two lines of
business at the k-th period, while the (�k, 	k) represents the discount factors of these two lines
of business, respectively. In this risk model, we study only the aggregate claims, and we accept that
the �1, . . . , �n, 	1, . . . , 	m are independent of claims X1, . . . , Xn, Y1, . . . , Ym. For further
reading on risk models with dependence among the discount factors and main claims, see Chen
(2011, 2017) and Yang et al. (2016), but only in one dimension. Specifically, we have the sums:

S�n :=
n∑

k=1

�kXk, T	n :=
n∑
l=1

	lYl.
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Assumption 6.1. There exist constants 0< ξk ≤ δk such that hold ξk ≤�k ≤ δk almost surely, for
any k= 1, . . . , n, and there exist constants 0< γl ≤ ζl such that hold γl ≤	l ≤ ζl almost surely,
for any l= 1, . . . , n.

Theorem 6.1. Let X1, . . . , Xn, Y1, . . . , Yn be non-negative, random variables with the follow-
ing distributions F1, . . . , Fn, G1, . . . , Gn, respectively, from class D ∩L, and they satisfy the
GTAI dependence structure, with (Xk, Yl) ∈ (D ∩L)(2) for any k= 1, . . . , n and l= 1, . . . , n.
We suppose that the random discount factors �1, . . . , �n, 	1, . . . , 	n satisfy Assumption
6.1 and are independent of X1, . . . , Xn, Y1, . . . , Yn. Then the products �1 X1, . . . , �n Xn,
	1 Y1, . . . , 	n Yn are GTAI with (�k Xk, 	l Yl) ∈ (D ∩L)(2). If further X1, . . . , Xn are TAI and
Y1, . . . , Yn are TAI, then the following asymptotic relations hold

P
[
S�n > x, T	n > y

]∼ P

⎡⎣ n∨
i=1

S�i > x,
n∨
j=1

T	j > y

⎤⎦
∼

n∑
k=1

n∑
l=1

P
[
� Xk > x, 	 Yl > y

]
, (6.14)

as x∧ y→ ∞.

Proof. Taking into account the upper bound for discount factors �1, . . . , �n, 	1, . . . , 	n
and their independence from X1, . . . , Xn, Y1, . . . , Yn, we apply Konstantinides and Passalidis
(2024, Lem. 2.1) to find that the products�1 X1, . . . , �n Xn, 	1 Y1, . . . , 	n Yn are GTAI. Now
by Cline and Samorodnitsky (1994, Th. 3.3 (i)), we get �k Xk ∈D ∩L and 	l Yl ∈D ∩L, for
any k= 1, . . . , n and for any l= 1, . . . , n. As a result, by class D, using Li (2013, Th. 2.2), the
�1 X1, . . . , �n Xn are TAI, and	1 Y1, . . . , 	n Yn are TAI.

Next, we check if (�k Xk, 	l Yl) ∈ (D ∩L)(2) for any k= 1, . . . , n and l= 1, . . . , n. Let b=
(b1, b2) ∈ (0, 1)2, then

lim sup
x∧y→∞

P
[
�k Xk > b1 x, 	l Yl > b2 y

]
P
[
�k Xk > x, 	l Yl > y

] ≤ lim sup
x∧y→∞

P
[
Xk > b1

x
δk
, Yl > b2

y
ζl

]
P
[
Xk >

x
ξk
, Yl >

y
γl

] <∞,

which follows from the inequalities

b1
δk
<

1
ξk
,

b2
ζl
<

1
γl
,

and the membership (Xk, Yl) ∈ (D ∩L)(2) for any k= 1, . . . , n and l= 1, . . . , n. Hence, we find
the relation (�k Xk, 	l Yl) ∈D(2) for any k= 1, . . . , n and l= 1, . . . , n.

Now, noticing that relation (6.5) is satisfied because of Assumption 6.1, we obtain directly
from Lemma 6.2 the inclusion (�k Xk, 	l Yl) ∈L(2) for any k= 1, . . . , n and l= 1, . . . , n.
Hence (�k Xk, 	l Yl) ∈ (D ∩L)(2) for any k= 1, . . . , n and l= 1, . . . , n and by application of
Theorem 4.2 for the products, we conclude relation (6.16).
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