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1. Introduction

One of the elementary applications of the Rankine-Hugoniot shock
relations which relate conditions on the two sides of a plane shock wave
is that of determining the flow when a piston is pushed with constant
velocity 4 into a tube containing gas at rest. A shock wave races into the
undisturbed gas at a constant speed U whose value can easily be found
in terms of # and the constants which specify the uniform condition of
the gas at rest. If, however, the piston is suddenly brought to rest after
a finite time the subsequent behaviour of the shock wave is very difficult
to determine. A rarefaction wave is generated at the piston, and, as the
velocity of the shock is subsonic relative to the gas behind it, this eventually
overtakes the shock wave causing it to weaken. Since the energy supplied
is finite the ultimate speed of the shock will tend to that of a sound wave.
The analytical treatment of the flow behind the shock is made difficult
by the entropy gradients which arise because of the variation in shock
strength. It is further complicated by the disturbances which are reflected
off the piston and give rise to a secondary interaction with the shock.
Indeed, it seems safe to say that a complete description of the motion
would certainly depend on some form of numerical integration.

For moderately weak shock strengths, the complete history of the shock
can be determined approximately by means of a method due to Friedrichs
[1]. This requires that we neglect the entropy variations behind the shock
which are of the third order in the shock strength. To this degree of ap-
proximation the Riemann invariant

" ¢
also remains constant through the shock. Here » is the particle velocity,
¢ the local velocity of sound and y the adiabatic index of the gas. It follows
that we may neglect the disturbances which are reflected back from the
shock and that on this theory the path of the shock is determined from the
Rankine-Hugoniot equations where the conditions in front of the shock are
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uniform and those behind are given by a point-centred simple wave. A
refinement of this procedure was later given by Lighthill [3].

The method used. in this paper does not limit in any way the strength
of the shock but is applicable, on the other hand, only to the early stages
of its decay. It consists of solving the system of first order equations ob-
tained by perturbing the simple wave which interacts with the shock.
Entropy variations are taken into account since they occur to the first
order in the variation of the shock speed from its unperturbed value U.
An equation is found for the shock speed in the early stages of decay and
in particular the initial deceleration of the shock can be determined. This
agrees with that calculated from the work of Friedrichs for moderately
weak shocks but is also applicable for strong shocks for which the results
of Friedrichs are not valid. It also supplies some assessment of the range
of shock strengths for which the approximation of Friedrichs is applicable.

2. Statement of the Problem

We shall work in the plane of x, the length coordinate along the tube
and ¢, the time (Fig. 1). If the piston starts at & == 2, ¢{ = {;, where
xy == 4t;, then initially the equation of the shock is

x—xL b ﬁ(t”‘tL).

N (xu,t)

> X

L ( xL:tL)

Fig. 1.
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If the piston is suddenly stopped at = 0, { = 0, a point-centred simple
wave NOQ is generated at O which first interacts with the shock wave at
N. NQ is the backward facing characteristic through N.

If a suffix 0 is used to denote the quantities in the simple wave and a
bar to denote the (constant) quantities in the uniform region behind the

shock, then
Ug+Co = i
0 (I t’
o, % _g_ %, ¢
-3 +y——— = fo = 2,1
Thus
2 F
1 = | — —(y—1 ,
(1) to=— [ -0-18]
y—1T=
2 = | — 42
(2) o 7+1[t+ﬁo]:
and the Riemann invariant «,, defined by
%, %
is given by
2 z 33—y
w= [Tt T

The shock path NS after the interaction has to be determined. For later
convenience we note that in Fig. 1 NT is the straight line continuation of
the undisturbed shock path LN.

The solution in the region QNS will be found on the basis of a first
order perturbation of the simple wave. This region may be partitioned
by NR, the particle path through N. Since the entropy remains constant
on the particle paths, it follows that the entropy variations in the flow are
confined to the region RNS. We have therefore four regions:

(i) LON, a region of uniform flow,

(ii) QON, a point-centred simple wave with % and ¢ given by (1) and (2),
(i) QNR, a simple wave plus an isentropic perturbation,
(iv) RNS, a simple wave plus a non-isentropic perturbation.

We now write down the governing equations and formulate the bound-
ary value problem. If in the region QNS we let
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U = Ugt+%y, €= CotCy, & = dyt+ay, = Potpy, S=S5+5,,

where S is the entropy and S, is a constant, then on substituting into the
equations of one-dimensional unsteady flow and retaining only terms of
the first order in the perturbation quantities which have suffix unity,
we can write

aocl atl Oxg a a8,
®3) +( otCo) o P +y+1)a— (B3—»)A1] P Syly—T), Gz
2B, 2B, c as,
) L lo—a) 22 B (A g = — e
351 2s,
(3) Tty 2 = 0.

In these equations the constant ¢, is the specific heat at constant volume.

The above system of linear equations has three families of characteristics
which are fixed curves in the (z, #) plane, namely the «, 8 characteristics
and the particle paths in the unperturbed simple wave. In particular,
equation (5) expresses the fact that the entropy S, is constant along the
particle paths of the unperturbed motion, given by

dx

— = .
dt °

We may write the solution of equation (5) as
Sy = Si(y),
where y is some function of z and £ which is constant on these particle paths.
We shall define y by
y = cit2y—1/(r+),
following Gundersen [2] who first obtained many of the results quoted in
this section. In the same way, we shall later require another function

z(z, t), which is constant on the g-characteristics of the unperturbed flow.
It is readily verified that

2 = pgteyl?

satisfies this requirement, py(z, t) being the density of the fluid in the
simple wave. The values of y on NR and z on NQ will be denoted respectively
by y. and z,.

The system (8) - (5) now reduces to
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ooy 0y 1) tASiy) oy

t—a_t e ox T ( b= 2y(y—1)c, 0z’
t?_ﬂ} 4 [(3*—7’) . 4By (y—1)t :| B _ tc5S1() _31/
y+1 (y+1) 1 o= 2y(y—1)c, 0’

The solution in the isentropic region QNR will correspond to the com-
plementary function of the above system while for the non-isentropic
region RNS a particular integral will have to be added.

In terms of arbitrary functions the solutions are:

3—y H(2) n 1 G (x) ,

(6) (i) Region QNR, o, =

R AV’
(7) By = 222H'(2).
o C3yK@ |1 (2)  ytle
(8) () Region RNS, o = 1 =2 4 F (t) iy @),
©) b= 2K+ G L)

The function w,(y) is related to S;(y) through the equation

1 ¥
(10 —f %S, (w)du-+constant.
) on9) = 5 iy, |, #Si)
It is easily shown that
%0 _ ptr-ro4n
y

and hence that the constant of integration in (10) may be absorbed in
the function K(z), thus giving w,(y,) = 0.

The boundary conditions to be satisfied by the general solution quoted
above will now be formulated. If the equation of the shock locus is written

(11) r—z, = U(t—t,)+e(t),

then ¢(¢) represents the deviation from the straight line path. At the point
N we have

(12) e(t,) =¢&(t,) =0

In what follows we shall neglect squares and higher powers of £(f) thus
limiting attention to the initial stages of decay of the shock.
If we consider the values of # and ¢ just behind the perturbed shock
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locus, then it is clear that they may be expressed in terms of %, ¢ and &' (z).
In fact

u, = 4+T,¢'(t),

¢, = E+Tye' (B),

where the suffix s denotes conditions on the back of the shock and T,
T, are known constants determined by the shock jump relations. Details
are given in the Appendix. In addition, # and ¢ are themselves related to
the shock speed U and C, the velocity of sound in the region at rest ahead
of the shock.

The values of «; and §, at the shock, whose locus is given by (11), are

2 &¢
(13) oy, = T4’ (1) + m '"(t—) +4(2),
(14) ﬁls = T48’ (t)’
where
_ T, T, _ T, T,
- i v e ™ U
15

2 £,
Finally the entropy variations on the shock are given by
(16) Sye = T5e'(2),

where Ty is a known constant (see Appendix).

This completes the boundary conditions on the shock locus NS. Those
remaining are specified by continuity requirements along the characteristic
NQ which carries the front of the disturbance reflected back from the
shock. They are

(17) o =pf, =0 when z=z2,.

Conditions (13), (14), (16) and (17) overspecify the boundary value problem.
We therefore expect to obtain a relation between «,,, £,, and S;, which
will determine &(¢).

3. Solution of the Problem

When the boundary condition (17) is used in the solution given by

(6), then
3—y H(z,) 1 x .
yF1 4 +[7G(7)L,—°'
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Hence G(z/t) =0 and H{z,) = 0. Further H'(z,) = 0 from (7). Thus,
throughout the region N R o, and f; are functions of z only and are related
by means of the equation

da. 3—y
(18) 2z —‘ tay = . Bs.
It is clear that the solutions for «, and f$, in the non-isentropic region
RNS must satisfy the relationship (18) along the curve NR where da,/dz
is now interpreted as differentiation with respect to z along NR. Thus
from (8) and (9), we have on NR

d y+1 24 x (y+1)2 ¢yt
ALCE F(‘)'*(r—uw—v>27““@q

, +1c¢
=K@+ ko)

Since w,{y,) = 0, it follows that F(z/t) = 0.

When the solutions for «, and 8, in the isentropic and non-isentropic
regions are considered it is clear that the functions H(z) and K (z) must be
identical. Physically this ensures that the flow is continuous across NR.

Thus

. . 3—y K(z)

(i) Region QNR, & = ; | el
(19) B, = 222 K'(2).

. : 3—yK(z) y+lea

(i) Region RNS, oy = i -+ 1y wy{y),
(20) f= 20+ T 2 ),

It follows from the above that the perturbation of the particle velocity %,
is unaffected by the variations in entropy.

The solution in the region RNS must satisfy the boundary conditions
(13) and (14) on the shock locus NS. Moreover, the entropy S,, which
is connected to w,(y) by means of (10), must satisfy (16) on NS. We first
of all eliminate K (z) from (19) and (20) by differentiating along the shock
locus and obtain, after substituting for w,(y) in terms of S,, the relation

(21) doy, Cos  8S; ldlogz,[ 3_‘2’,5 ] -0
it yly—1L)c, at 2 at L e T

If in this equation we substitute for «,,, §;, and S,, in terms of £(¢) and
retain only terms of the first order, then
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os L ) [2 y+1dlog cOs] [: 3—y :] '
s 4L | 2o Ty— —= ¢
|7 m@~4nje‘)+2 et ] | S £ A PO
+ [ 2 +A(t):l a {a(t)} +J§[ 4 1 2 dlog cy,

(22) y+1 ' 2, dt | ¢ y+l ¢  y—1 dt
A(t) dlog co,] e(t)
T e, dt t
— ’ }'(t) 2 7+1 d log Co;]
——“W"?[t s T

The terms involving the quantity £(¢)/¢ arise from applying the boundary
conditions to the shock locus NS, rather than to the straight line path NT.
In equation (22) we note that

=¢ llt
Cao = C— —— .
0s ¢ 9 ()

Thus we have a second order linear differential equation for £(f) with
rational functions of ¢ as coefficients. The equation is to be solved for
values of ¢ = ¢, with (12) as boundary conditions.

Since only linear terms in &(¢) are retained in (22), this equation can
be regarded as valid only in the initial stages of decay. Rather than give
its full solution, we merely calculate the successive derivatives of &(¢) at
the point N. In this manner a Taylor series expansion of &(f) for ¢ = ¢,
is constructed. In view of (12) the initial term of this series is 3¢ (¢,) (¢—¢,)?
and ¢'’(¢,), obtained from (22}, is given by

ET5 " '
23) [ o= gty | /) = =70
We note that terms of (22) involving &(¢)/¢ will contribute to &”'(¢,) and
all higher derivatives.

If we regard the initial stages of the shock locus as now known, then the
functions K(z) and o,(y) may be determined. The complete solution is
valid within the band-like region bounded by the relevant portion of the
shock locus, the B-characteristic on which z = z,,, the continuation of the
a-characteristic which bounds the left hand end of the simple wave and a
f-characteristic whose position is dependent on the order of the Taylor
series expansion which is used for &(z).

4, Discussion of the Solution

One would expect some association between the present theory and
that of Friedrichs [1]. The Friedrichs theory is recovered by assuming
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the Riemann invariant § and the entropy S to be constant with their values
specified by the uniform conditions ahead of the shock wave. This means
that we take S; = 0 and B, = 0 and equation (21) then reduces to
doy, | 4 dlogz,
2 %15
dat dat
with «;, = 0 when ¢ =1¢,.
The appropriate solution of this equation is «;, = 0 and so
(24) o, = g, When ¢=¢,.

¢

=0,

From this relation, the results of the “simple wave’ approximation of
Friedrichs may be derived. Thus the first order perturbation theory reduces
to the well-known theory of Friedrichs when the appropriate assumptions
are made.

One interesting physical quantity coming out of the present work is
the initial deceleration of the shock wave £'’(¢,,). It is of interest to compare
the values of this quantity as predicted by the present method and that of
Friedrichs.

From (15), it follows that

2(a+c—U)
(r+1)t,

The Rankine-Hugoniot shock relations enable all quantities of (23) involving
# and ¢ to be expressed in terms of a Mach number M defined by

U
M=% (sSM<o)

Xt =

The following expression for £ (¢,,) is then found, the details of the derivation
being indicated in the Appendix.

(25) &"(t,)

B 2 C ’\/2yM2-~(y—l)——~\/(y—1)M3+2l

=T oI0Ln [(y—1)M24-2]F 1 M2 2N —1)M2+2
2yM*—(y—1)

We observe that for very weaks shock ¢'(¢,) = 0 as M — 1 as would be
expected, whilst for very strong shocks

2 C V) ——-1)V(%)
y+1t, vV (2y)+24/(y—1)
The initial deceleration of the shock wave as calculated * from the Friedrichs

&'(t,) —> as M — 0.

* The authors accept the responsibility for the accuracy of (26) which is not quoted
by Friedrichs [1].
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theory is derived in the Appendix and is

di Cc
(26) et)=(5) = — 3 S1+00Y),

where dz = kdi represents the shock path and 8 = M —1. The corresponding
expansion of (25) to a higher order in 4§ is

27) "(¢,) = ¢ ) [l & +0(8?)

( £ =T, g 7O ]

In Table 1 some numerical values of the initial deceleration of the shock
wave as predicted by (25), (26) and (27) are shown for a range of 6 < 0.7
with the adiabatic index y = 1.4.

TABLE 1

d a4, a4, Vil

0.1 0.050 0.050 0.050
0.2 0.100 0.100 0.100
0.3 0.150 0.146 0.147
0.4 0.200 0.192 0.194
0.5 0.250 0.234 0.239
0.6 0.300 0.273 0.280
0.7 0.350 0.307 0.320

4,, 4,, 4, respectively represent the values of —¢,¢"'(¢,)/C as cal-
culated from the “simple wave” approximation (28), equation {27) and
the exact solution (25).

On the “simple wave’ approximation, the initial deceleration of the
shock wave is a linear function of ¢ and we observe that this theory overesti-
mates the rate at which the velocity of the shock wave diminishes at the
initial point of decay. However, even when & has as large a value as 0.7,
corresponding to a pressure ratio of 2.675, the solution from the ‘‘simple
wave” approximation differs from (25) by less than 10 9. The corresponding
difference in the solutions as given by (25) and (27) is 4 9,. Equation (27)
includes terms which are of the order of the cube of the shock strength
and it is interesting to note that the difference between (27) and (26) is
independent of the adiabatic index of the gas.

We conclude by quoting expressions for a,, and f;, valid in the neigh-
bourhood of the initial point of decay of the shock. The derivation of those
results is indicated in the Appendix.

(28) %, = (1740 (%) ]+ {7 +0(w%)},
(29) Brs = [t +0(*)]+{l3r+0(%) },

https://doi.org/10.1017/51446788700026823 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700026823

268 R. R. Burnside and A. G. Mackie [11]

where v = ¢/¢,—1, with ¢ denoting time measured on the shock path, and
the equations have been written in this particular way to facilitate later
discussion and analysis. The quantities Iy, I, and I; are given by

3=y I7+é—-a]2

I,= 5o 1) 2K (2,) [—5 ,
_ T,

2 27”(7’_1)60 ’
I= 2K ) [F
with
étﬂ ’ 1
223K" (z,) = — T1i—a [A'(2a) +(Ta—To)e" (2,)].

The terms within the square brackets in (28) and (29) are derived from
those of (19) and (20) which involve K(z,) and its derivative, whilst the
terms in the curly brackets are derived from those involving w,(y,).

No approximations have been used in (28) and (29) other than those
inherent in the Taylor series expansion. To this approximation (28) and
(29) are valid when 7 is sufficiently small for a shock wave of any initial
strength. In (28), we note that the leading term in the square bracket is
of a higher order of magnitude in v than that given by the curly bracket.
This suggests that the contribution to a,, carried along the particle paths
is more important (at least for points sufficiently close to N) than that
which is carried by the f-characteristics. On the other hand, (29) indicates
that the contributions carried by the particle paths and the -characteristics
are of the same order in 7.

For weak shock waves we may expand the coefficients Iy, Iy, I in
terms of d = M —1 to terms of order the cube of the shock strength. We

then obtain
r—— %53+...
r2~_——c@%)—263+-~-
1‘3=—C—2(—?;’+;f))253+---.

In the special case when y = 53, we note that I'; = 0 = I3 and con-
sequently «,, and B,, depend only on the variations in entropy. To this
approximation, there is no reflected wave. For air with y = 7/5 we obtain
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N:ly:ry=1:-120:12

Thus for the above values of y the major contribution to «,, and §,, comes
from the entropy variations. The reflected wave would seem to play a
secondary role. The results indicate why the Friedrichs theory is more
accurate than one would perhaps at first expect. Of some interest also is
the fact that shock-expansion theory (Pillow {5], Meyer [4]) is based on
the relative importance of the role played by the particle paths, as the
present theory emphasizes.
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Appendix

1. The constants T,, T,, T5, T,, Ts.

The path of the shock in the physical plane is given by dx = idt. If
M = g/C, then the Rankine-Hugoniot shock relations are

_ 20—
(y+1)M °
C 2 2
¢ = WEOM V{ly—1) M2 22y M2 —(y—1)},
S—s,

= log [{2VM2”(7"1)}{(_}’:—17|)_4A?;+'2-}7]'

v

If the above relations are differentiated with respect to £, then

r _ du _ 200241)
YTdE (M
_ 4 _2Ay-1) [ yMi41 ]
PTaE T oy LeyRyME—(y—1){(—1)M 2}’
_ a5 _ 4y(y—1), (1—M32)2
PTeET T C [M{zyMﬂ— (y—l)}{(y—l)M*+2}]'

The constants T, T, T, T,, T noted in § 2 are obtained from the above
with M = U/C.
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2. Expansion of Ty, T,, Ty tn terms of 6 = M—1.

From the above, we have, for 6 < 0.622,

T, = — [1—8+3840()],

y+41
2
o= 2D s psmom.
Hence
T, T,
1 - _ 952 3
T, = —1—?,__1 +1 {1—64-3624+0(8%)],
and
— _ZE T, — _3_ 2
Tio= =3 452 = o #1H00)
Also,
167'(7 1)
T 2 82[140(8)]
and

o 2
at+i—U = Cs [1—a+ ol 63+0(63):| .
y+1
3. The initial deceleration of the shock wave according to the simple wave
approximation.

On differentiating (24) with respect to time ¢, measured along the shock
locus, we obtain

dag df 2 (u—{—c—U)t
dE dat y—}—l[ £ "]'

But da,/d§ = T, and from section 2 of this Appendix
4
T, = — [1—6-+0(6%)],
* =0T [ (6%)]

the expansion being valid to the order implied by the approximation. To
the same order,

@+E—U = CO[1—86+0(8%))].

Hence, at the initial point of decay of the shock wave,

(%),. - % 8[140(32)1.
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4. Determination of K(z,) and w(y,) as functions of .

On taking (19), (20) at the shock locus and differentiating with respect
to time £ measured along the shock locus and then subtracting and using
boundary conditions (13) and (14), we obtain the following relation at the
initial point N:

d
24K (2,) = — (¥ (ta) +(To—T0)e" ()] (th) ‘

However, it is readily shown that
dz,) 2, [U —{—é——u*J
(dt o ta [ é ’

Gt A (8,)H(Ts—Tg)e" (¢,)]
U+i—a '

Hence

2AK" (z,) = —

But
K(Z,) = %K”(zﬂ) (Z,—Zn)z—I—O(Zs——Z“)s

and it is easily shown that

2,—2, = 24, [gi_:—uil t+0(r?).

Hence
(A1) K@) = 32K (z,) [_Tc_“]z A40()
and
(A2) K'(0) = 2K (@) [~ | s+0(s)
From (20),
B =T () = 2K )+ T ™ 0,
with
wl(ys) = w; (yn) (ys_yn)+0(ys—yn)2
and
vy YnS1(¥a)
01 (Y,) = m
Hence
’ _ ynTlSs"(tn)
“1ln) = 2y (r+1)c9, (4)
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Accordingly,
'}’+1 Cos Tsen(tn) CosYn
— 1(%:) =

A.3 — el 12 s Yn +0 e In 2
( ) 7'_1 Y, 27()’“1)00 ysya(tn) (y 4 ) (y Y )
But

Y y—1\ [U—a 2

o~ () [ row

Cos y—1 Ute—u .

= = (y+1) [ z 1”0(’)
and

(.- =

Hence, in (A.3) we obtain

'y_*—l 603 T5 étnEH(t")
— — (Y, = =
y—1 ¥, 2y(y—1)e,

From (A.1), (A.2) and (A.4), equations (28) and (29) are easily obtained.

(A.4) 7+4-0(?).
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