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Abstract

The contact problem investigated in this paper may be more fully
described as a three dimensional elastic body with a circular hole through it;
inside this tunnel is press fitted a solid elastic plug of finite length. Shear
stresses are taken to be absent along the contact interface.

An influence coefficient technique is used to model the governing
integral equation. For the elastic region the displacement influence coeffi-
cients due to bands of constant pressure are determined using a numerical
quadrature on Fourier integrals. However, the plug, being of finite length,
requires the superposition of two separate solutions to boundary value
problems before the displacement influence coefficients can be determined.

Contact pressure distributions are presented for a sample of parameter
variations and also for a case where hydrostatic pressure is present in the
tunnel in the elastic region. Despite both components being elastic the
imposition of a constant interference displacement along the interface still
gives rise to the characteristic singularity in contact pressure at the edges of
contact due to the strain discontinuity at these points.

1. Introduction

In this paper the contact between an elastic finite length solid cylinder
press fitted inside a cylindrical tunnel through an infinite elastic region is
studied. The elastic-elastic problem is the true representation of the be-
haviour of two bodies in contact. The Hertzian solution for two curved
surfaces is one of the few closed form solutions available for such elastic-
elastic contact. Most work in the past, (see Galin [8] for a review of plane
contact problems), has concentrated on the case where one of the bodies
involved is rigid.

For the axisymmetric shrink-fit type situation a few elastic-elastic solu-
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tions exist. Some consider thin shell collars shrunk-fit onto elastic shafts [5],
[6], [22]. The thick collar case was presented by Okubo [18] wherein some
approximations had to be made to simulate stress free boundary conditiens
on axial sections at the ends of the collar. However, solutions to shrink-fit
problems of the nature presented herein have received little attention.

The technique of the solution develops as the work proceeds and it need
not be mentioned at this stage.

2. The contact problem and governing field equations

The region with the circular hole can be regarded as being sufficiently
large in the axial and radial directions for the stresses set up by the
interference fit to have decayed almost to zero. In the radial direction the
decay is as one over radius squared and in the axial direction St. Venant’s
principle applies since the stress distribution set up by the contact is self
equilibrating and at several times the contact radius away axially from this
there would be little effect. These arguments serve to indicate where infinity
lies for the region. It is also assumed that slip between the two contacting
components has taken place, thus the shear stress is zero along the contact
interface. Under these conditions the governing integral equation for a
contact length of L, can be expressed as,

w@= [ w2 w5 2z, )

where u(z) is the prescribed interference fit along interface,

u,. (z,z') radial displacement of region/cylinder at z due to unit ring
loading of pressure at z’,

p(z') loading function, defined only within interface, all other surface
tractions being zero.

This integral equation can be solved by representing it as a finite series of
linear algebraic equations as follows,

uln)= 3 {u[nml= u [ mplm] @)

The kernel or Green’s function in the original integral equation now has a
different significance. Whereas u(z, z') in (1)'is defined in terms of a unit ring
of pressure, u[n, m] is now the mean radial displacement in the nth finite
length segment of the contact region (there being 2N equal segments to the
total contact length L), due to a band of unit pressure in the mth segment.
This implies that the contact pressure distribution is no longer continuous but
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step-wise continuous. It is a simple task to solve such equations and even
more so if the interference displacement is symmetrical about the centre of
the plug as the number of linear equations is now N in N unknown values of
pressure. This influence coefficient technique has been shown to give good
results even for a small number of segments [4], [5], [24]. For the results
presented herein a value of N =10 is used throughout. It now remains to
present details as to how the displacement influence coefficients u, [n, m] and
u. [n, m] are derived for both components of the shrink-fit assembly.

The basic field equations for stress and displacement which are
required can be extracted from the Papkovich-Neuber solutions to the
displacement form of the axisymmetric equilibrium equations [24], [19], [17],
[7], and [14].

u = [C{4(1 - )T, (Bx) — xBL, (Bx)} _
+ C2{4(1 - v)K, (Bx) + BxKo (Bx)} @)
+ Cy{— BI, (Bx)} + C.{BK, (Bx)}] cos BL,

w =|[C\ {xBI, (Bx)} + Co{xBK. (Bx)} + Ca{Blo (Bx))
+ C.{BKo (Bx)}] sin BL, “

seor={c]e-mpnEn- {2+ g reen |
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+a] - Bxieo-pKa(en) | feospy
o2 ={ €[ 21 px) - (1 - 20)p106x) |
+ G [ M2k, 8x)+ (1 - 20)8Ko (61) | ©

+C,[ —gll(ﬁx):l-*-Ca[gK.(BX)]}COSB{,
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L2 .. = (Co 2980 (Bx) + BT (B)

+ C:[ - 2vBKo (Bx) + B*xK, (Bx)] %)
+ G5 [B’I, (Bx)] + C.[B*Ko (Bx)]} cos B,

56 o = (Ci [Brlo(Bx) 201~ )1, (Bx)]

+ G- BxKo(Bx)—2(1 - v)K. (Bx)] + G [BL(Bx)]  (8)
+ Cs[ - BK. (Bx)]} B sin B¢,

where x =r/ry, { = z/r, (1, ) are cylindrical coordinates

ro is some non-dimensionalising radius,

v is Poisson’s ratio,

B is an arbitrary parameter,

C, to C, are constants of integration.
Equations (3) to (8) may now be used as a basis for the evaluation of the
required displacement influence coefficients.

3. Influence coefficients for circular hole in elastic region

Only two references are available for this class of boundary value
problem, the first by Westergaard [30] uses a very approximate method and it
is difficult to make any assessment of his results. However the other by
Tranter [27] using a Fourier transform method and evaluating the resulting
Fourier integrals by quadrature, provided a useful basis for comparison with
results obtained in the process of solving the problem herein.

In the general field equations for stress and displacement applied to this.
type of region the I type Bessel functions need be ignoted due to their
singularity at infinity. Applying the boundary conditions o, = — pocos ¢,
g.. = 0 on x = 1 yields the following expression for the radial displacement on
x=1

_ pore] 2(1 = »)K¥(B)
w85 ey e

x(B) = B*[K1(B)— K5(B)] +2(1 - v)Ki(B).

For the desired boundary condition of a band of constant pressure of length
“2b”’ the following boundary conditions prevail.

o,=—-p(), o.=0onzx=1 (10)

)
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where
for ¢(<b

Po
pi¢)= { for ¢(>0b.

The function p({) can be represented by the Fourier integral,

p@= [ p(B)cos pedp,

where p(B), the Fourier transform is given by,

p(B) =2 [ p(¢)cos Brds = 2pusin pb/p,
thus,

p({)=2$f‘” sin Qbﬁcosggdﬁ'

Applying the Fourier integral to the radial displacement gives the following
expression for the radial displacement at any point along the surface x = 1.

u, Mf[ B;(g; ]siancosB{dB. (1)

The nature of the K type Bessel functions rules out the possibility of
evaluating the desired displacement by the contour integration technique of
Lur’e [15]. This is because the presence of a logarithmic term in the series
expansion for K makes them multivalued. Thus there is no need to determine
the roots of the equation y(B8) = 0. This conclusion was reached by a different
course by Steven [25], where it is indicated that y(B) has in fact no distinct
roots but is zero along a continuous line in the complex B plane, rendering the
use of contour integration impossible.

Thus a direct quadrature technique is used to determine the displace-
ment for a series of values of b and at values of { corresponding to the mid
point of the segments into which the contact length is divided.

The limiting value of the integrand in (11) as B =0 is b/2(1 — v) and the
computer using rational polynomial approximations to the Bessel functions
was able to generate this value to an accuracy of 107’. At high values of B
(> 200 say) the asymptotic expressions for the K’s are used and it can be
shown that the integrand’s asymptotic form is (sin Bb cos B¢)/B? which can be
decomposed to a combination of sine terms and cosine integrals. Some
sample calculations of the radial displacement were made in order to compare
values with those of Tranter [27] who used a similar technique but incorpo-
rated the truncated asymptotic expansions for 8 > 12. For b = 0.5, { =0 the
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difference in values was within 0.1%. Another check was made with b = 10
which gave a value at { =0 of 0.9972 of the Lamé solutions for plane stress
solution. With these various checks carried out it was then possible to
compute a series of the displacement influence coefficients for a series of
values of b. These may then be matched to any set of coefficients for the finite
length plug provided the contact length is the same.

4. Influence coefficients for finite length solid cylinder

In order to determine the desired influence coefficients a technique has
been devised which separates the boundary value problem into two separate
boundary value problems. Firstly the cylinder is considered to be infinite in
length and by a similar technique to that used for the region with a hole
influence coeflicients can be calculated by direct quadrature from the
equation,

_ _Eo_ro 20 -n)IIB) ..
U f [ 34 (B) ]sm Bb cos BLdB,
d(B) = B’[I¥B) - Ii(B)] — 2(1 — v)I}(B).

At the same time as the displacements are being evaluated, the stresses o,.
and o,, can be calculated using the expressions

_ﬂor [ZBII(B)In(BX) + B2 x1(B)1(B) = B*1«(B)1(Bx) ]

(12)

O-ZZ = -

B (B)
X sin Bb cos BLdB, (13)
__2p 7 [ BrLB)LBX) ~ BLB)L(BX) | i v
[ - f [ b(B) ]sm Bb sin BLdp. (14)

These stresses are evaluated at a series of values of x and at values of /
corresponding to the desired locations of the end faces of the finite length
cylinder. Since the lack-of-fit is taken to be symmetrical, then by superposi-
tion the end face stresses due to two unit pressure bands symmetrically
disposed can be obtained, these will give a self equilibrating stress system.
The second boundary value problem now arises in that, having estab-
lished the stress distribution on surfaces corresponding to the location of the
ends of the finite length cylinder, these surfaces have to be made stress free by
applying equal and opposite stress distributions. This is now what is called the
end load problem with no tractions on the radial surfaces of the cylinder and
thus the homogeneous solution to the governing field equations is required.
Many references are available for non-homogeneous boundary value
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problems for solid circular cylinders. For the homogeneous or end load case
several works are available, see for instance, Horvay and Mirabal [10],
Mendelson and Roberts [16], Kaehler [11], Warren and Roark [28], Blair and
Veeder [2], Hodgkins [9], Warren, Roark and Bickford [29], Little and Childs
[13]), Widera and Wu [31], Swan [26], Shibahara and Oda [23], Chan-
drashekhara [3], Klemm and Little [12], Power and Childs [20], Benthem and
Minderhoud [1].

The technique adopted herein is similar to that of Little and Childs [13]
whereby the end stresses o, and o,. are expressed in terms of a series of eigen
functions associated with the eigen values produced by the homogeneous
boundary conditions on the radial surfaces. The eigen values are in fact
extracted from the equation ¢(B) =0, see equation (12), and are tabulated in
many references cf. [24], [15], [11], [28] and [13]. The series for the radial
displacements axial stress and shear stress are as follows.

-3 (B no (52 o] o
36 2 Ly | (2 sy s ssaen Jee] a0
202 5 {7 [ Boctoton) - BB 1) | e a7

Using a least squares technique the coefficients D, can be evaluated from the
stress boundary conditions on the ends of the finite length cylinder. Thus the
radial displacement may be evaluated using equation (15) and together with
that from the pressure band solution on the infinite length cylinder make up
the desired influence coefficients for this part of the contact assembly.

5. Numerical results

The two lots of displacement influence coefficients can be brought
together and assembled into equation (2) for solution. Due to the many
parameters involved only a sample selection of the results are presented.
However for all cases investigated the same general characteristics, which are
observed from the results given herein, are present. In order to make the
pressure and displacement values non-dimensional the Lamé plane stress
solution is used, this is those values which would have resulted had the contact
region been infinite in length. These are expressed as follows where G is the
shear modulus, v Poisson’s ratio, the subscripts r, ¢ and /s denote the region,
cylinder and Lamé solution respectively, the contact radius is unity, and 8 is
the lack-of-fit, (6 = u[n] in equation (2)),
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Pu =28G.G.(1+ v.)[G.(1+ v)+ G,(1- v.)),
Ueis = P 1= v )2G: (1 + vc), Uy = pi/2G..

Figure 1 shows the variation of p/p, against {/L with v, =, =0.3,
G. = G, and L varying between 0.4 and 8. These curves all illustrate the
common characteristic of an edge singularity. This is to be expected since the
use of a constant lack-of-fit along the interface gives rise to a discontinuity in
strain at the edge of the region and consequently the stress singularity. Such
singularities are absent only when there is zero interference at the edge of the
region.

T T r 3.0

—

Figure 1. p/p., finite length solid cylinder shrunk-fit into elastic region,
forv, = v, =0.3, G, = G, and various L.

For laige contact lengths the contact pressure is very close to the Lamé
solution for most of the contact region. At the otker limit for small L the
values of pressure are significantly different from the Lamé solution, indeed
with such a short length the effect of the axisymmetric terms in the governing
differential equations is reduced and in the limit as L — 0 is removed. This
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situation is more appropriate to the plane strain indentation of a half space
and it has been shown in other work, Steven [24], that in the case of shrink-fit
problems with collars on shafts, with L =0.02, the pressure distribu-
tion is almost identical to such a half space indentation solution given by
Sadowsky [21] as p = P/m(a®— {?)'? where P is the total load, a is the 1/2
width of indentation and p is the contact pressure.

Figure 2 has the same data as Figure 1 except that ». is now 0.5 and it is
observed that little difference exists between the pressure distributions with
the change in Poisson’s ratio of the cylinder. This is a general characteristic of
contact problems that Poisson’s ratio has little or no effect on interference
pressure distributions.

Figure 2.  p/p., finite length solid cylinder shrunk-fit into elastic

region, for v. = 0.5, v, = 0.3, G. = G, and various L.

In Figure 3 the displacement distribution along the contact interface is
plotted for various values of the modular ratio G,/G. showing how the
proportions of the lack-of-fit are taken up as this ratio varies. The situation
where a greater proportion is taken up by one component as its modulus
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reduces in relation to that of the other component is to be expected. The
common aspect of all the curves is the increase of the u./8 values at the edge
of the region; this is due simply to the reduction in stiffness at the ends of the
cylinder whereas the region continues on beyond this point thus supplying a
greater reinforcement to the region.

| | | | | 1 ].u

0704 zg/ofs 100
1

Figure 3. u./8 and /8, finite length solid cylinder shrunk-fit into elastic region,

for v. = v, =0.3, L = 1.0 and various modular ratio G,/G..

An interesting extension of the work previously detailed is to apply a
hydrostatic pressure f on all surfaces except the contact interface, see Figure
4. Its effect on the cylindrical plug is to give a Poisson’s ratio radial expansion
of v.f2G.(1+ v.), for a unit non-dimensionalised radius. On the region the
effect of the hydrostatic pressure can be obtained using an extension of the
work detailed in Section 3 of this paper. By considering bands of constant
normal pressure, where the bandwidth is very large (i.e. > 10) on either side
of the plug, the resulting radial displacement due to unit hydrostatic pressure
(f = 1) at the mid-point of each segment along the contact interface can be
calculated. The amended form of the simultaneous linear equations (2), to
allow for these effects, is,
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N
uln)+ | s ol | = 3 Patulnm]+ wlnml  (19)

where u,¢[n] is the radial displacement in the nth segment due to unit
hydrostatic pressure on either side of the contact region.

i ; il

= E= MHydrostatic
-—-'—%_—_-I—-—‘g-g-- -Prg—ss-l-‘r.e-—

= | =
1 m 1 ﬂ 1 Elastic Cylinder llllllll

T

Figure 4. Finite length solid cylinder shrunk-fit into infinite

elastic region with hydrostatic pressure acting.

In Figure 5 plots of p/p, with v, = ». =0.3, G, = G, L =1 and various
values of h = f/p, are presented. From this it is seen that with increasing h
the pressure in the edge portion of the contact region increases while in the
centre portion it decreases. To explain this it is necessary to consider the left
hand side of equation (19) wherein it can be said that the term u,[n] is small
at the edge of the contact region and larger in the centre. This means that the
lack-of-fit is greater at the edge and smaller in the centre and with increasing h
the difference between these two increases, thus the contact pressure will
follow these trends. Eventually the reduction of lack-of-fit at the centre of the
region is such that the lack-of-fit becomes zero, that is the surfaces separate
and this is indicated by the zero pressure portion at h = 15.38.
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Figure 5. p/p,, hydrostatic pressure effect on finite length solid cylinder shrunk-fit into elastic

region, forv, = v, = 0.3, G, = G, L = 1.0 and various h.

6. Conclusion

The solution of contact problems by the displacement influence coeffi-
cient technique has been shown to be a method of great generality in so much
as having calculated influence coeflicients for one set of parameters for either
body in contact, these can be matched to any other set for the other body
provided the contact lengths are the same. This avoids the necessity of solving
the whole problem each time for every set of parameters. Also it enables the
total boundary value problem to be considered as a series of separate simpler
boundary value problems especially the case of the finite length cylinder.

Results obtained herein all conform to the classical pattern for rigid
indentation, however by considering both components to be elastic more
appropriate practical conclusions may be taken from such results. Clearly the
singularities present in all cases presented in this paper are easily removed by
ensuring that the relative displacement between the two bodies is zero at the
edge of the contact region.

Further work in this area could consist of the inclusion of non slipped or
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partially slipped cases, more appropriate stress-strain relationships in the high
stress regions and non symmetric or non uniform lack-of-fit distributions.
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