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Abstract

We present a model of computation that heavily emphasizes the concept of duality and

the interaction between opposites—production interacts with consumption. The symmetry

of this framework naturally explains more complicated features of programming languages

through relatively familiar concepts. For example, binding a value to a variable is dual to

manipulating the flow of control in a program. By looking at the computational interpretation

of the sequent calculus, we find a language that lets us speak about duality, control flow, and

evaluation order in programs as first-class concepts.

We begin by reviewing Gentzen’s LK sequent calculus and show how the Curry–Howard

isomorphism still applies to give us a different basis for expressing computation. We then

illustrate how the fundamental dilemma of computation in the sequent calculus gives rise to

a duality between evaluation strategies: strict languages are dual to lazy languages. Finally,

we discuss how the concept of focusing, developed in the setting of proof search, is related to

the idea of type safety for computation expressed in the sequent calculus. In this regard, we

compare and contrast two different methods of focusing that have appeared in the literature,

static and dynamic focusing, and illustrate how they are two means to the same end.

1 Introduction

One of the advantages of functional programming languages is their strong foun-

dation in mathematics. All functional languages are, in one way or another,

extensions of Church (1932) λ-calculus—one of the original models of computation—

as a practical programming tool. And for statically typed functional languages,

the mathematical roots grow even deeper. In what’s now known as the Curry–

Howard isomorphism or proofs-as-programs paradigm (Curry et al., 1958; de Bruijn,

1968; Howard, 1980), mathematical proofs of a theorem are algorithmic programs

following a specification. This amazing harmony can be most clearly witnessed

in the one-for-one connection between the λ-calculus and (Gentzen, 1935a) natural

deduction—a system that formally lays down the rules of intuitionistic logic. The rules

for justifying proofs in intuitionistic logic correspond exactly to the rules for writing

programs in functional languages, and simplifying proofs corresponds to running

programs. This connection has led to technical advances that flow both ways: not

only we can use mathematics to help write programs in functional languages, but

we can also write programs to help develop mathematics with proof assistants.
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Natural deduction is not the only logic, however. In fact, natural deduction has

a twin sibling called the sequent calculus, born at the same time within the seminal

paper of Gentzen (1935a; 1935b). Whereas the rules of natural deduction more

closely mimic the reasoning that might occur in the minds of mathematicians, the

rules of the sequent calculus are themselves easier to reason about, for example, if we

want to show that the logic is consistent. Furthermore, unlike natural deduction’s

presentation of intuitionistic logic, Gentzen’s sequent calculus provides a native

language for classical logic that admits additional reasoning principles like proof

by contradiction: if a logical statement cannot be false, then it must be true. As a

consequence, the sequent calculus clarifies and reifies the many dualities of classical

logic—“true” is dual to “false,” “and” is dual to “or”—as pleasant symmetries baked

into the very structure of its rules. Yet, even though these two systems look very

different from each other and have their own distinct advantages and limitations,

they are closely connected and give us different perspectives into the underlying

phenomena of logic. And from our point of view, the more vantage points we have,

the better.

But since the proofs-as-programs paradigm connects a logic like natural deduction

to a language like the λ-calculus, should not there also be some programming

language that is connected to the sequent calculus in the same way? As it turns out,

there is (Herbelin 1995, 2005)! When interpreted as a programming language, the

natural symmetries of the sequent calculus reveal hidden dualities in programming—

input and output, production and consumption, construction and deconstruction,

structure and pattern—and makes them a prominent part of the computational

model. Fundamentally, the sequent calculus expresses computation as an interaction

between two opposed entities: a producer representing a program that creates

information, and a consumer representing an environment or context that observes

information. Computation then occurs as a communication protocol allowing a

producer and consumer to speak to one another. This two-party, protocol-based

style of computation gives a different view of computation than the one shown by

the λ-calculus. In particular, programs in the sequent calculus can also be seen as

configurations of an abstract machine (Ariola et al., 2009), in which the evaluation

context is reified as a syntactic object that may be directly manipulated. And due

to the connection between classical logic (Griffin, 1990) and control operators like

Scheme’s (Kelsey et al., 1998) callcc or Felleisen’s ((1992)) C , the built-in classicality

of the sequent calculus also gives an effectful language for manipulating control

flow.

The computational interpretation of the sequent calculus is not just an intellectual

curiosity. Thanks to the relationship between natural deduction and the sequent

calculus as sibling logics (Gentzen, 1935b), the sequent calculus gives us another angle

for investigating real issues that arise in the λ-calculus and functional programming,

from source languages down to the machine. For example, in a panel discussion

among leading type theorists (Singh et al., 2011), McBride points out how the poor

foundation for the computational interpretation of co-induction is a road block for

program verification and correctness, which is in contrast to the robust and powerful

treatment of induction in functional languages and proof assistants. However, the
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symmetries of the sequent calculus show us how both induction and co-induction

can be represented as equal and opposite reasoning principles under the unifying

umbrella of structural recursion (Downen et al., 2015) for both ordinary recursive

types and generalized algebraic datatypes. This computational symmetry between

induction and co-induction is based on the duality between data types in functional

languages and co-data types as objects (Downen and Ariola, 2014), and gives a

more robust way for proof assistants to handle recursion in infinite objects.

Moving down into the intermediate representation of programs that exists within

optimizing compilers, the logic of the sequent calculus (Downen et al., 2016)

shows how compilers can use continuations in a more direct way with a “strate-

gically defunctionalized” (Reynolds, 1998) continuation-passing style (CPS). This

compromise between continuation-passing and direct style makes it possible to

transfer techniques between CPS (Appel, 1992) and static single assignment (Cytron

et al., 1991) compilers like SML/NJ with direct style compilers like the Glasgow

Haskell Compiler (GHC). For example, CPS can faithfully represent join points in

control flow (Kennedy, 2007), whereas direct style can use arbitrary transformations

expressed in terms of the original program (Peyton Jones et al., 2001). Finally,

the sequent calculus can also be interpreted as an even lower-level, machine-like

language for functional programs (Ohori, 1999), which can be used to reason

about fine details like manual memory management (Ohori, 2003). Therefore, the

computational interpretation of the sequent calculus acts like a beacon illuminating

murky areas in both the design and implementation of functional languages.

1.1 Overview

The objective of this paper is to give an introduction and tutorial to the computa-

tional interpretations of the classical sequent calculus as a programming language,

with a particular focus on the dualities found in computation and their connection

to functional programming. As the broad motivation is for modeling functional

programs, we assume that the reader is already familiar with the λ-calculus,

natural deduction, and the Curry–Howard correspondence between these two formal

systems. We do not, however, assume any previous familiarity with the sequent

calculus, and will first provide a review of the sequent calculus as a system of logic

before illustrating how it can also be used as a system of computation. The goal

of this tutorial is to give a basic and broadly applicable introduction to a family

of formal programming languages based on the classical sequent calculus, for the

purpose of understanding their applications to functional programming. The reader

will then be equipped to adapt existing applications of the sequent calculus (like

those mentioned previously) to new scenarios and to use the sequent calculus to

discover and develop new solutions to problems in programming languages.

There are different possible computational interpretations that can be given to

the sequent calculus, which is partly due to two dilemmas that arise when designing

a language based on the sequent calculus. The first and most fundamental dilemma

of computation is that the evaluation of individual programs can easily have several

diverging paths to choose from that lead to different and incompatible futures. Thus,
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a language for the sequent calculus needs an evaluation strategy—corresponding

to the difference between call-by-value (like ML) and call-by-name (like Haskell)

functional languages—for deterministically deciding which path to go down. The

second dilemma of computation is that important tasks can be buried within a

program, and those tasks must be brought to the surface to complete the evaluation

of the program. The job of bringing tasks to the forefront of a program—related to

focusing (Andreoli, 1992; Laurent, 2002) in logic—can be done at one of two points

in the lifetime of the program: either up front at “compile time” before the program

is evaluated, or in the moment at “run time” during the evaluation process.

To begin, we introduce and motivate the basic premise of the sequent calculus with

its contrast to natural deduction: whereas natural deduction is a logic about just

truth, the sequent calculus is a logic equally about both truth and falsehood (Section

2). With this premise in mind, we then review the original classical logic of the

sequent calculus: (Gentzen, 1935a) LK (Section 3). In order to draw a programming

language from LK, we need a little extra structure than the austere logic provides.

Thus, we introduce the core calculus (Herbelin, 2005) that lets us read proofs in

the sequent calculus as programs (Section 4). Although the core calculus is rather

basic, it is still expressive enough to exhibit the first computational dilemma of

evaluation strategy in the sequent calculus. We then populate the core calculus with

the logical connectives of LK to give the dual calculi that combine the languages

introduced by Curien and Herbelin (2000) and Wadler (2003; 2005) (Section 5).

The dual calculi solve the dilemma of evaluation strategy through the language:

the dual calculi are actually two different languages—one call-by-value and one

call-by-name—with a common syntax that are logically and computationally dual

to one another in a way that reaffirms (Filinski, 1989) observation. Additionally,

within the dual calculi, we have two approaches to address the dilemma of focusing

in the language: either through two different sub-syntaxes in the style of LKQ and

LKT (Curien and Herbelin, 2000) that are coordinated with the evaluation strategy

to only let us write well-behaved programs, or through adding the missing steps,

known as ς-rules (Wadler, 2003), to the evaluation process.

2 Truth versus falsehood

Gentzen (1935a) simultaneously developed both natural deduction and the sequent

calculus as formal systems for symbolic logic: tools for studying propositions (which

we denote by the variables A,B, C, . . . ) that might be true or false. One of the

ground-breaking insights of the sequent calculus is the use of its namesake sequents

to organize the information we have about the various propositions in question. In

its most general form, a sequent is a conditional conglomeration of propositions:

A1, A2, . . . , An � B1, B2, . . . , Bm

pronounced “A1, A2, . . ., and An entail B1, B2, . . ., or Bm,” which states that assuming

each of A1, A2, . . . , An is true then at least one of B1, B2, . . . , Bm must be true. The

turnstile (�) in the middle of the sequent separates the sequence of hypotheses on
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thgiRtfeL

Elimination

A∧B � • • � A • � B

• � •
• � A∧B

• � A

• � A∧B

• � B

Introduction

A � •
A∧B � •

B � •
A∧B � •

• � A • � B

• � A∧B

Fig. 1. The orientation of deductions for conjunction (∧).

the left, which we collectively write as Γ, from the sequence of consequences on the

right, which we collectively write as Δ.

This separation between the left and right sides of the sequent gives the essential

skeletal structure of the sequent calculus as a logic. As special cases, we can form

several basic judgments about logical propositions using our above interpretation

of the meaning of the sequents by observing that an empty collection of hypotheses

denotes “true” and an empty collection of consequences denotes “false” (both

written as •). A single consequence without hypotheses • � A means “A is true”,

a single hypothesis without consequences A � • means “A is false”, and the empty

sequent • � • is a primitive contradiction “true entails false.” So already, the basic

structure of the sequent gives us a language for speaking about truth, falsehood,

and contradiction without assuming anything else about the logic.

The propositions that we deal with in both the logic of natural deduction and the

sequent calculus are meant to represent falsifiable or verifiable claims in a particular

domain of study, such as “0 is greater than 1.” However, in their simplest form,

these logics do not account for domain-specific knowledge and leave such basic

propositions as atoms or uninterpreted variables. Instead, the primary interest of the

logic is to characterize the meaning of logical connectives that combine or modify

existing propositions such as conjunction (A∧B), disjunction (A∨B), or implication

(A ⊃ B). Logic gives us a method for describing the logical connectives by asserting

the rules for valid inferences we can make of the form:

H1 H2 . . . Hn

J

where the validity of the conclusion J necessarily follows from the validity of the

several premises H1, H2, . . . , Hn, each of which stand for particular sequents.

For example, we can sensibly assert the validity of the deductions involving

conjunction shown in Figure 1 based on the meaning of conjunction. Due to

the interaction between entailment in the sequent (separating hypotheses from

consequences) and the line of inference (separating premises from conclusions), we

have two dimensions for orienting inference rules based on the location of their

primary proposition (marked with a box in Figure 1). On the one hand, rules where

the primary proposition appears to the right or left of the turnstile are called right

and left rules, respectively. On the other hand, rules where the primary proposition

appears below or above the line of inference are called introduction and elimination
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thgiRtfeL

Elimination

A∨B � •
A � •

A∨B � •
B � •

• � A∨B A � • B � •
• � •

Introduction

A � • B � •
A∨B � •

• � A

• � A∨B

• � B

• � A∨B

Fig. 2. The orientation of deductions for disjunction (∨).

thgiRtfeL

Elimination

A ⊃ B � •
• � A

A ⊃ B � •
B � •

• � A ⊃ B • � A

• � B

Introduction

• � A B � •
A ⊃ B � •

A � B

• � A ⊃ B

Fig. 3. The orientation of deductions for implication (⊃).

rules, respectively. This gives us four quadrants where the rules of inference for

conjunction might live.

• Right introduction: if both A and B are true then we can deduce that A ∧ B

is true.

• Right elimination: if A ∧ B is true, then we can deduce that A is true and

likewise that B is true.

• Left introduction: if A is false then we can deduce that A ∧ B is false, and

likewise if B is false.

• Left elimination: if it happens that A ∧ B is false and also both A and B

are true, then we must have a contradiction somewhere, as this represents an

impossible situation.

Similar inference rules can be given for disjunction and implication under the same

right/left and introduction/elimination orientations as shown in Figure 2 and 3. It

is interesting to note that the premise to the right introduction rule for implication

does not have the same basic form of sequent as in all the other rules. It seems that

we need to use the inherent entailment built into sequents to confirm the truth of

an implication, so that from A � B (i.e., “A entails B”) we can deduce • � A ⊃ B

(i.e., “A implies B is true”).

With the dimensions of logical orientation illustrated in Figure 1–3, we can identify

one of the primary distinctions between natural deduction and the sequent calculus.

Natural deduction is exclusively made up of right rules—including both right

introduction and right elimination—and the sequent calculus is exclusively made

up of introduction rules—including both right introduction and left introduction.

But neither make use of the left eliminations. In other words, natural deduction is

concerned with verifying and using the truth of propositions, whereas the sequent

calculus is concerned with both the true and false introductions of logical connectives.
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A,B,C ∈ Proposition ::= X || � || ⊥ || A∧B || A∨B || ¬A || A ⊃ B || A−B || ∀X .A || ∃X .A

Γ ∈ Hypothesis ::= A1, . . . ,An

Δ ∈ Consequence ::= A1, . . . ,An

Sequent ::= Γ � Δ

Core rules:

A � A
Ax

Γ � A,Δ Γ′,A � Δ′

Γ′,Γ � Δ′,Δ
Cut

Structural rules:

Γ � Δ
Γ � A,Δ WR

Γ � Δ
Γ,A � Δ WL

Γ � A,A,Δ
Γ � A,Δ CR

Γ,A,A � Δ
Γ,A � Δ CL

Γ � Δ,A,B,Δ′

Γ � Δ,B,A,Δ′ XR
Γ′,B,A,Γ � Δ
Γ′,A,B,Γ � Δ

XL

Logical rules:

Γ � �,Δ �R
no �L rule no ⊥R rule Γ,⊥ � Δ ⊥L

Γ � A,Δ Γ � B,Δ
Γ � A∧B,Δ

∧R
Γ,A � Δ

Γ,A∧B � Δ
∧L1

Γ,B � Δ
Γ,A∧B � Δ

∧L2

Γ � A,Δ
Γ � A∨B,Δ

∨R1
Γ � B,Δ

Γ � A∨B,Δ
∨R2

Γ,A � Δ Γ,B � Δ
Γ,A∨B � Δ

∨L

Γ,A � Δ
Γ � ¬A,Δ

¬R
Γ � A,Δ

Γ,¬A � Δ
¬L

Γ,A � B,Δ
Γ � A ⊃ B,Δ

⊃R
Γ � A,Δ Γ′,B � Δ′

Γ′,Γ,A ⊃ B � Δ′,Δ
⊃L

Γ � A,Δ Γ′,B � Δ′

Γ′,Γ � A−B,Δ′,Δ
−R

Γ,A � B,Δ
Γ,A−B � Δ

−L

Γ � A,Δ X /∈ FV(Γ � Δ)
Γ � ∀X .A,Δ ∀R

Γ,A{B/X} � Δ
Γ,∀X .A � Δ ∀L

Γ � A{B/X} ,Δ
Γ � ∃X .A,Δ ∃R

Γ,A � Δ X /∈ FV(Γ � Δ)
Γ,∃X .A � Δ ∃L

Fig. 4. Gentzen’s LK sequent calculus.

With this fundamental characterization of the sequent calculus in mind, we will delve

into the original sequent-based logic: LK.

3 Gentzen’s LK

Gentzen’s LK, a simple logic based extensively on the use of the sequents to trace

local hypotheses and consequences throughout a proof, is given in Figure 4. The

sequents are built out of finite, ordered sequences of propositions denoted by the

metavariables Γ and Δ, which may be (1) empty (written •), (2) a single proposition

(written as just A), or (3) a concatenation of two sequences (written with a comma

as Γ,Γ′ and Δ,Δ′). Inference rules let us build proof trees by stacking inferences on

top of one another. In addition to the binary logical connectives for conjunction,
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disjunction, and implication, as well as constants for truth (�) and falsehood (⊥), we

also include negation (written ¬A and read “not A”) as a unary logical connective

and subtraction (written A− B and read “A but not B”) as the dual to implication.

Finally, LK also contains two quantifiers—universal (written ∀X.A and read “for all

X, A”) and existential (written ∃X.A and read “there is an X such that A”)—that

abstract over propositional variables denoted by X, Y , or Z . More specifically,

the quantifiers act as binders for propositional variables: both ∀X.A and ∃X.A

bind all occurrences of X in A (otherwise a variable is free), and propositions

are considered equal up to renaming of bound variables so ∀X.A = ∀Y .A {Y /X}
and ∃X.A = ∃Y .A {Y /X}. For simplicity, we limit the presentation to second-order

propositional logic, meaning that ∀ and ∃ only quantify over propositions, not

another domain of discourse, like numbers.

Core inference rules

The various inference rules of LK can be thought of in three groups that collectively

work toward different objectives. The first group, containing just the axiom (Ax )

and cut (Cut) rules, gives the core of LK. The Ax rule lets us draw consequences

from hypotheses with the understanding that “A entails A” for any proposition A.

The Cut rule lets us eliminate intermediate propositions from a proof. For example,

the special case of the Cut rule where the hypothesis Γ,Γ′ and consequences Δ,Δ′

are all empty is

• � A A � •
• � • Cut

In other words, if there is a proposition A that we know is both true (• � A) and false

(A � •), then we can deduce that a contradiction has taken place (• � •). We can

then use the intuitive reading of the sequents to extend this reasoning to the general

form of Cut , meaning that it is valid to allow additional hypotheses and alternate

consequences in both premises when eliminating a proposition in this fashion so

long as they are all gathered together in the resulting conclusion. Both Ax and Cut

play an important part in the overall structure of LK proof trees. The Ax serves

as the primitive leaves of the proof, signifying that there is nothing interesting to

justify because we have just what is needed. The Cut lets us use auxiliary proofs or

“lemmas” without them appearing in the final conclusion, where on the one hand

we show how to derive a proposition A as a consequence and on the other hand we

assume A as an hypothesis that may be used in another proof.

Structural inference rules

Next, we have group of inference rules aim to describe the structural properties

of the sequents themselves that arise from their meaning. The weakening rules

say that we can make any proof weaker by adding additional unused hypotheses

(WL) or considering alternative unfulfilled consequences (WR) since the presence

of irrelevant propositions does not matter. The contraction rules say that duplicate

hypotheses (CL) and duplicate consequences (CR) can just as well be merged into
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one since redundant repetitions do not matter. And finally, the exchange rules say

that hypotheses (XL) and consequences (XR) can be swapped since the order of

propositions does not matter. So even though the hypothesis Γ and consequence Δ

of a sequent are both formally represented by ordered sequences, the net effect of the

contraction and exchange structural rules is to make them behave like sets—wherein

order and amount is ignored—for the purpose of deriving proofs.

It may seem strange that the meaning of a sequent with multiple consequences is

that only one consequence must be true instead of all consequences being true. In

other words, the consequences of a sequent are disjunctive rather than conjunctive

so that, for example, A � B,C means “A entails B or C” instead of “A entails B

and C .” One reason for this interpretation is that disjunctive consequences can be

weakened but conjunctive consequences cannot. For example, if we already know

that “A entails B or C” then we can deduce “A entails B or C or D” for any D

because we already know that either B or C is a consequence of A, so the status of

D is irrelevant. However, if we already know that “A entails B and C” then we do

not know much about “A entails B and C and D” in general, since D might not

actually follow from A at all. A similar argument also explains why the hypotheses

of a sequent are conjunctive rather than disjunctive. Therefore, the meaning of

sequents, where all hypotheses must entail one consequence, is essential for enabling

weakening on both sides of entailment.

Logical inference rules

Finally, we have the group of inference rules that aims to characterize the logical

connectives. These logical rules are generalizations of the introduction rules for

the connectives from Figures 1–3: the left rules are named with an L and the

right rules are named with an R. Compared to our basic observations, each logical

rule is generalized with additional hypotheses and alternative conclusions that are

“along for the ride,” similar to Cut . For example, the two left introduction rules for

conjunction in Figure 1 are generalized to

Γ, A � Δ

Γ, A ∧ B � Δ
∧ L1

Γ, B � Δ

Γ, A ∧ B � Δ
∧ L2

which say that if Δ is a consequence of A and Γ, then Δ is just as well a consequence

of A ∧ B and Γ (and similarly for B). Likewise, the sequents Γ � �,Δ and Γ,⊥ � Δ

are true independent of Γ and Δ because � is trivially true and ⊥ is trivially false.

Since we also consider both logical negation (¬A) and logical subtraction (A−B) as

connectives, they too are equipped with left and right introduction rules in Figure 4.

The rules for negation have the following special cases when Γ and Δ are empty:

A � •
• � ¬A ¬R

• � A

¬A � • ¬L

In other words, whenever A is false we can infer that ¬A true, and whenever A

is true we know ¬A is false. Similarly, the rules for subtraction have the following
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special cases when the hypotheses and consequences are empty:

• � A B � •
• � A− B

− R
A � B

A− B � • − L

In other words, whenever both A is true and B is false we can infer that A − B

is true, and whenever A entails B we know that A − B must be false. Intuitively,

the subtraction A − B can be understood as a single connective with the same

logical meaning as the compound proposition A ∧ (¬B), in the same way that the

implication A → B can be understood as a connective with the same meaning as

(¬A) ∨ B.

Perhaps the most subtle logical connectives in LK are the quantifiers ∀ and ∃. The

special cases of the introduction rules for ∀X.A and ∃X.A when Γ and Δ are empty

are as follows:

• � A

• � ∀X.A
∀R A {B/X} � •

∀X.A � • ∀L • � A {B/X}
• � ∃X.A

∃R A � •
∃X.A � • ∃L

For universal quantification over the variable X in A, if we can prove that A is

true without knowing anything about X then we can infer that ∀X.A is true, and

if we can exhibit a specific B such that A with B for X is false then we have

a counterexample showing that ∀X.A is false. Existential quantification over the

variable X in A is reversed, so that exhibiting a specific B such that A with B

for X is true is an example showing that ∃X.A is true, whereas showing that A is

false without knowing anything about X lets us infer that ∃X.A is false. The extra

subtlety of the quantifiers lies in ensuring that we “know nothing else about X.” In

the sequent calculus, this extra constraint can be captured in the side condition that

the variable X does not appear free anywhere else in the sequent, written as the

premise X /∈ FV (Γ � Δ) in both the ∀R and ∃L rules.

Notice that this extra side condition really is necessary, since without it both

quantifiers collapse into one, which is clearly not what we want. For example, we

should expect that a ∀ entails the corresponding ∃, that is ∀X.A � ∃X.A, which is

proved as follows by choosing any arbitrary proposition B to substitute for X:

A {B/X} � A {B/X} Ax

∀X.A � A {B/X} ∀L

∀X.A � ∃X.A
∃R

So every ∀ entails the corresponding ∃. Intuitively, the converse should not hold; it

should not be that an ∃ always entails the corresponding ∀. However, consider the

following attempted proof of ∃X.A � ∀X.A:

A � A
Ax

X /∈ FV (• � A)

∃X.A � A
∃L

X /∈ FV (∃X.A � •)
∃X.A � ∀X.A

∀R

The this proof is only valid when the side conditions X are met: X /∈ FV (∃X.A � •)
is always true for any A but X /∈ FV (• � A) only holds when X does not appear free

in A. In other words, the ∀ and ∃ quantifiers are only logically equivalent when their

quantified variable is never referenced. When instantiating A as just X for example,
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the sequent ∃X.X � ∀X.X is not provable only because of the side conditions since

X is indeed free in X. Therefore, the side conditions on ∀R and ∃L are essential for

keeping the intended distinct meanings of the quantifiers.

Collapsing ∀ and ∃ is not just troublesome for the quantifiers themselves, but

catastrophically collapses truth and falsehood in the logic as a whole. More

specifically, removing the side conditions from ∀R and ∃L makes LK inconsistent

by making the contradictory sequent • � • derivable. One such derivation of

contradiction is built in three parts. First, we can prove that ∃X.X is true because

there is some provably true proposition in LK, for example �. Second, we can

prove that ∀X.X is false because there is some provably false proposition in LK,

for example ⊥. Third, without the side conditions on free propositional variables,

we would be able to derive a proof of ∃X.X � ∀X.X as seen above, which is the

glue that connects the first two parts together via cuts. In total, we would be able

to derive the following contradiction in LK:

• � � �L
• � ∃X.X

∃R
X � X

Ax

∃X.X � X
∃L

∃X.X � ∀X.X
∀R

• � ∀X.X
Cut

⊥ � • ⊥L
∀X.X � • ∀L

• � • Cut

which is only ruled out by the side conditions on ∀R and ∃L that prevent a proof

of the sequent ∃X.X � ∀X.X.

3.1 Goal-directed proof search

LK enables a “bottom up” style of building proofs by starting with a final sequent

as a goal that we would like to prove and building the rest of the proof up from

there. When read in reverse, each logical rule identifies a connective in the goal

below the line of inference and breaks it down into simpler sub-goals above the

line. For example, let us consider how to build an LK proof that the proposition

((A∧B)∧C) ⊃ (B ∧A) is true. First, we begin with the sequent • � ((A∧B)∧C) ⊃
(B ∧ A) as the goal and notice that the primary connective exposed in the only

proposition available is implication, so we can apply the right implication rule:

....
(A ∧ B) ∧ C � B ∧ A

• � ((A ∧ B) ∧ C) ⊃ (B ∧ A)
⊃ R

Next, we may break down the conjunction in the consequence B ∧ A with the right

conjunction rule, splitting the proof into two parts:

....
(A ∧ B) ∧ C � B

....
(A ∧ B) ∧ C � A

(A ∧ B) ∧ C � B ∧ A
∧R

• � ((A ∧ B) ∧ C) ⊃ (B ∧ A)
⊃ R

At this point, the consequences of both our goals are generic, lacking any specific

connectives to work with. Therefore, we must shift our attention to the left and
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begin breaking down the hypotheses. Since the hypothesis (A ∧ B) ∧ C contains a

superfluous C , we use the first left conjunction rule in both branches of the proof

to discard it:
....

A ∧ B � B
(A ∧ B) ∧ C � B

∧L1

....
A ∧ B � A

(A ∧ B) ∧ C � A
∧L1

(A ∧ B) ∧ C � B ∧ A
∧R

• � ((A ∧ B) ∧ C) ⊃ (B ∧ A)
⊃ R

Now, we may apply another left conjunction rule to select the appropriate hypothesis

needed for both sub-proofs:

....
B � B

A ∧ B � B
∧L1

(A ∧ B) ∧ C � B
∧L1

....
A � A

A ∧ B � A
∧L1

(A ∧ B) ∧ C � A
∧L1

(A ∧ B) ∧ C � B ∧ A
∧R

� ((A ∧ B) ∧ C) ⊃ (B ∧ A)
⊃ R

And finally, we can now close off both sub-proofs with the Ax rule, finishing the

proof:

B � B
Ax

A ∧ B � B
∧L1

(A ∧ B) ∧ C � B
∧L1

A � A
Ax

A ∧ B � A
∧L1

(A ∧ B) ∧ C � A
∧L1

(A ∧ B) ∧ C � B ∧ A
∧R

• � ((A ∧ B) ∧ C) ⊃ (B ∧ A)
⊃ R

3.2 Consistency and cut elimination

One of Gentzen’s motivations for developing the LK sequent calculus was to

study the consistency of natural deduction. A consistent logic does not prove a

contradiction, so that no proposition is proven both true and false. More specifically,

we can say that a sequent calculus is consistent whenever there is no proof of the

empty sequent • � •. For a logic like LK, these two conditions are the same: from a

contradiction weakening gives us • � A and A � • for any A, and from any A that’s

proven both true and false, Cut gives us • � •. Consistency is important because

without it provability is meaningless: it is not particularly interesting to exhibit a

proof that some proposition A is true when we already know of a single proof that

shows every proposition is true (and false)!

So in the interest of showing LK’s consistency, how might we possibly begin to

build a proof of the empty sequent from the bottom up? Let us consider which of

LK’s inference rules (from Figure 4) could possibly deduce • � •. It cannot be any

of the structural rules because they all force at least one hypothesis or consequence

in the conclusion below the line. Likewise, it cannot be any of the logical rules:

since they are introduction rules, they all include at least one proposition built from

a connective on either side of the deduced sequent. It also cannot be the axiom
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rule, which only deduces simple non-empty sequents of the form A � A. Indeed, the

only inference rule that might ever deduce an empty sequent—and therefore lead to

inconsistency—is Cut as shown previously.

This observation that only cuts can lead to contradictions is Gentzen (1935b) great

insight to logical consistency. If we want to know that a sequent calculus like LK

is consistent, it is enough to ask if the Cut rule is important for provability. If Cut

is not essential in any proof, so any provable sequent can be deduced without the

help of Cut , then • � • is unprovable since it cannot be deduced without Cut . This

application highlights the importance of (Gentzen, 1935a) cut elimination (originally

called Hauptsatz ), which says that every LK proof can be reduced to a cut-free one.

Theorem 1 (Cut elimination)

For all LK proofs of Γ � Δ, there exists an alternate LK proof of Γ � Δ that does

not contain any use of the Cut rule.

Corollary 1 (Consistency)

There is no LK proof of • � •.

The simplest cases of cut eliminations case are when an Ax axiom is cut with

a proof D of Γ � A,Δ or E of Γ, A � Δ. This particular maneuver does not add

anything interesting to the nature of the underlying proof, and so correspondingly

eliminating the cut should just give the same proof back unchanged, as we can see

in both cases:

D....
Γ � A,Δ A � A

Ax

Γ � A,Δ
Cut

=⇒

D....
Γ � A,Δ

A � A
Ax

E....
Γ, A � Δ

Γ, A � Δ
Cut

=⇒

E....
Γ, A � Δ

Notice here that cutting an axiom with both D and E does not change the sequent

in either conclusion, which comes from the precise way that Cut merges the side

propositions in the two premises. For D, the extra consequence A coming from the

axiom A � A replaces the cut A in exactly the right position, and likewise for E. If

Cut put the propositions of its conclusion in any other order, then we would need

to exchange the result of one or both of the above steps with XL and XR to put

them back into the right order.

The rest of the proof of cut elimination can be divided into two main parts: the

logical steps and the structural steps. The logical steps of cut elimination consider

the cases when we have a cut between two proof trees ending in the left and right

rules for the same connective occurring in the same proposition, and show how to

rewrite the proof into a new one that does not mention that particular connective.

The structural steps of cut elimination handle all the other cases where we do not

have a left and right introduction for the same proposition facing one another in

a cut. These steps involve rewriting the structure of the proof and propagating the

rules until the relevant logical steps can take over. The final ingredient is to ensure

that this procedure for eliminating cuts always gives a definite result, and does not

spin off into an infinite regress.
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Logical cut elimination steps

Notice how different inference rules of LK treat the division of extraneous hypotheses

and consequences among multiple premises differently. On the one hand, rules like

∧R and ∨L duplicate the side propositions Γ and Δ from the conclusion to both

premises. On the other hand, rules like Cut and ⊃ L merge different side propositions

from the two premises into the common conclusion, creating an ordering between

them during the merge. Why are these particular rules given in such different styles,

and why is the particular merge order chosen? One way to understand the impact

of these details is to look at the interaction between the logical and structural rules

during cut elimination, so let us examine a few exemplary steps of the cut elimination

procedure when logical rules meet each other.

First, consider what happens when compatible ∧R and ∧L1 introductions, with

premises D1, D2, and E, respectively, meet in a Cut:

D1....
Γ � A,Δ

D2....
Γ � B,Δ

Γ � A ∧ B,Δ
∧R

E....
Γ′, A � Δ′

Γ′, A ∧ B � Δ′
∧L1

Γ′,Γ � Δ′,Δ
Cut

=⇒

D1....
Γ � A,Δ

E....
Γ′, A � Δ′

Γ′,Γ � Δ′,Δ
Cut

Reducing this cut involves selecting the appropriate premise D1 of the ∧R introduc-

tion so that it can meet with the single premise of ∧L1. The number of cuts are not

reduced by this step, but instead the active proposition A ∧ B of the cut has been

reduced to A, which (non-trivially) justifies why this step is making progress in the

cut elimination procedure.

Not every cut-elimination step winds up so neatly organized, unfortunately, and

sometimes the result is necessarily out of order and must be corrected. For example,

consider the following reduction step of a Cut between compatible ¬R and ¬L
inferences with premises D and E, respectively:

D....
Γ, A � Δ

Γ � ¬A,Δ ¬R

E....
Γ′ � A,Δ′

Γ′,¬A � Δ′
¬L

Γ′,Γ � Δ′,Δ
Cut

=⇒

E....
Γ′ � A,Δ′

D....
Γ, A � Δ

Γ,Γ′ � Δ,Δ′
Cut

Γ′,Γ � Δ′,Δ
XL,XR

Here, the Cut we get from reducing the proposition ¬A to A results in a sequent

that is out of order compared to the conclusion we started with. Thus, we need

to re-order the sequent with some number of XL and XR exchanges to restore

the original conclusion. The fact that reducing a negation introduction cut inverts

the order of propositions comes from the inherent inversion of negation: there’s no

obvious way to prevent this scenario by modifying Cut .

A similar re-ordering occurs with implication, where a Cut between compatible

⊃ R and ⊃ L inferences, with premises D, E1, and E2, can be reduced as

https://doi.org/10.1017/S0956796818000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000023


A tutorial on computational classical logic 15

follows:

D....
Γ, A � B,Δ

Γ � A ⊃ B,Δ
⊃ R

E1....
Γ′ � A,Δ′

E2....
Γ′′, B � Δ′′

Γ′′,Γ′, A ⊃ B � Δ′′,Δ′
⊃ L

Γ′′,Γ′,Γ � Δ′′,Δ′,Δ
Cut

=⇒

E1....
Γ′ � A,Δ′

D....
Γ, A � B,Δ

E2....
Γ′′, B � Δ′′

Γ′′,Γ, A � Δ′′,Δ
Cut

Γ′′,Γ,Γ′ � Δ′′,Δ,Δ′
Cut

Γ′′,Γ′,Γ � Δ′′,Δ′,Δ
XL,XR

Here, we start with the side-propositions of E1 and E2 merged together with ⊃ L,

but after reducing the Cut , D lies in between the two of them, so the conclusion

must be re-ordered to match the original. The need to place D in the middle comes

from the fact that its concluding sequent has A on the left and B on the right, so our

only available cuts must correspondingly place E1 to the left and E2 to the right, no

matter how they are nested.

Finally, we can see how the free variable side conditions on the ∀R and ∃L rules

play a key role in cut elimination. For example, consider the following reduction

step of a cut between compatible ∀R and ∀L inferences with D and E, respectively:

D....
Γ � A,Δ

Γ � ∀X.A,Δ
∀R

E....
Γ′, A {B/X} � Δ

Γ′, ∀X.A � Δ′
∀L

Γ′,Γ � Δ′,Δ
Cut

=⇒

D{B/X}
....

Γ � A {B/X} ,Δ

E....
Γ′, A {B/X} � Δ

Γ′,Γ � Δ′,Δ
Cut

Notice that in order to make a direct cut between D and E, we need to substitute

B for X in D to make the two sides match up properly. The fact that X does not

occur free in Γ � Δ means that after substitution, both Γ and Δ remain unchanged

in the conclusion of the proof. If instead X appeared free somewhere in Γ or Δ,

then the logical cut elimination step for ∀ would change the conclusion that ruins

the result of the procedure. As we saw previously, without the side conditions the

∀ and ∃ quantifiers are equivalent, which lets us derive a proof of the contradictory

sequent • � • that is ruled out by cut elimination. So the side conditions on the ∀R
and ∃L rules are not just a useful aid to cut elimination, but are crucial to the entire

endeavor.

Structural cut elimination steps

The logical steps may be the primary focus of cut elimination, but there are still more

cases they do not cover. In particular, what happens when one of the weakening,

contraction, or exchange rules immediately precedes a cut? The full cut elimination

procedure must also account for the structural steps in which a cut is forced to

interact with a structural rule.

The most straightforward structural step of cut elimination handles the case of

weakening adding an unused proposition right before its cut. Such a cut is eliminated

by deleting the partner premise of the cut. For example, for the WL rule which adds

https://doi.org/10.1017/S0956796818000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000023


16 P. Downen and Z. M. Ariola

the unused hypothesis A in the cut, we can discard the proof of A as follows:

D....
Γ � A,Δ

E....
Γ′ � Δ′

Γ′, A � Δ′
WL

Γ′,Γ � Δ′,Δ
Cut

=⇒

E....
Γ′ � Δ′

Γ′,Γ � Δ′,Δ
WL,WR,XR

Dually, a cut of an unused consequence A introduced by WR can be eliminated

by discarding the other premise that uses A as a hypothesis. Note that in the case

where both premises to the cut end in a weakening, both of these dual steps can

sensibly apply, leading to a potential non-deterministic choice in the cut elimination

procedure.

The structural step for contraction is similar, but one premise is duplicated rather

than discarded. For example, for the CL rule which merges two duplicate hypotheses

in the cut, we can duplicate the proof of A as follows:

D....
Γ � A,Δ

E....
Γ′, A, A � Δ′

Γ′, A � Δ′
CL

Γ′,Γ � Δ′,Δ
Cut

=⇒

D....
Γ � A,Δ

D....
Γ � A,Δ

E....
Γ′, A, A � Δ′

Γ′, A,Γ � Δ′,Δ
Cut

Γ′,Γ, A � Δ′,Δ
XL

Γ′,Γ,Γ � Δ′,Δ,Δ
Cut

Γ′,Γ � Δ′,Δ
CL,CR,XR

And the dual structural step involving CR is symmetric to the above. As before with

weakening, in the case where the cut proposition is contracted on both the left and

right, there is a non-deterministic choice of which structural step to apply.

The trickiest structural rules to accommodate during cut elimination are the

exchange rules. By reordering the sequent, these can have the effect of moving the

active proposition of interest in rules like Cut or the logical rules, so it is held on the

inside of the sequent (next to �). To get around this issue, we can handle exchange

by generalizing the Cut rule to allow for the cut proposition to appear anywhere in

the sequent as follows:
Γ � Δ1, A,Δ2 Γ′2, A,Γ

′
1 � Δ′

Γ′2,Γ
′
1,Γ � Δ′,Δ1,Δ2

CutX

Note that this generalization from Cut to CutX does not change that sequents can

be proved: Cut is an instance of CutX and CutX is derivable as a combination of a

Cut and potentially many XLs and XRs. However, the more general form of CutX

lets us express a cut elimination step where the exchange rules are folded into the

cut. In the case, where the cut proposition is exchanged with XL we have the step

D....
Γ � Δ1, A,Δ2

E....
Γ′2, A, B,Γ

′
1 � Δ′

Γ′2, B, A,Γ
′
1 � Δ′

XL

Γ′2,Γ
′
1,Γ � Δ′,Δ1,Δ2

CutX
=⇒

D....
Γ � Δ1, A,Δ2

E....
Γ′2, A, B,Γ

′
1 � Δ′

Γ′2,Γ
′
1,Γ � Δ′,Δ1,Δ2

CutX

and the step for XR is symmetric to the above.
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So the CutX rule makes the structural steps for exchange trivial. However, this

generalization of cut means that there are many more cases to consider. Because

the cut proposition may not be the active proposition on the inside of the sequent,

it may happen that the rules immediately proceeding the CutX have nothing to

do with the cut. In these cases, we need yet more structural rules that commute a

cut with other rules when they do not interact with one another. As an example

of structural commutation, we could have the following weakening on the left of A

followed by a cut of C , which is reduced as follows:

D....
Γ � Δ1, C,Δ2

E....
Γ′2, C,Γ′1 � Δ′

Γ′2, C,Γ′1, A � Δ′
WL

Γ′2,Γ
′
1, A,Γ � Δ′,Δ1,Δ2

CutX
=⇒

D....
Γ � Δ1, C,Δ2

E....
Γ′2, C,Γ′1 � Δ′

Γ′2,Γ
′
1,Γ � Δ′,Δ1,Δ2

CutX

Γ′2,Γ
′
1, A,Γ � Δ′,Δ1,Δ2

WL,XL

As an example of logical commutation, we could have a conjunction introduction

of A ∧ B on the left followed by a cut of C , which is reduced like so

D....
Γ � Δ1, C,Δ2

E....
Γ′2, C,Γ′1, A � Δ′

Γ′2, C,Γ′1, A ∧ B � Δ′
∧L1

Γ′2,Γ
′
1, A ∧ B,Γ � Δ′,Δ1,Δ2

CutX
=⇒

D....
Γ � Δ1, C,Δ2

E....
Γ′2, C,Γ′1, A � Δ′

Γ′2,Γ
′
1, A,Γ � Δ′,Δ1,Δ2

CutX

Γ′2,Γ
′
1,Γ, A � Δ′,Δ1,Δ2

XL

Γ′2,Γ
′
1,Γ, A ∧ B � Δ′,Δ1,Δ2

∧L1

Γ′2,Γ
′
1, A ∧ B,Γ � Δ′,Δ1,Δ2

XL

There are many more such commuting steps for all the cases where the cut

proposition is not the active one next to the turnstile, each of which push the

cut up into the premis(es) of the proceeding rule similar to the above examples.

3.3 Logical duality

Another application of sequent calculi is to study the dualities of logic through the

deep symmetries of the system (Gentzen, 1935b). The turnstile of entailment (�)
provides the pivot of duality separating left from right and true from false. Logical

duality in the LK sequent calculus expresses a relationship between the connectives

that follows De Morgan’s laws about the way negation distributes over conjunction

and disjunction:

¬(A ∧ B) �� (¬A) ∨ (¬B)

¬(A ∨ B) �� (¬A) ∧ (¬B)

Here, we interpret the equivalence relation A �� B as the mutual provability of

A and B: that both A � B and B � A are provable. Focusing on the opposite

roles of the left and right sides of a sequent, we can immediately observe that the

introduction rules of conjunction and disjunction from Figure 4 are mirror images
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Fig. 5. Duality in the LK sequent calculus.

of one another by flipping the sequents across their turnstile. Similarly, ⊃ and − are

dual to one another as well as both the ∀ and ∃ quantifiers, and negation is its own

dual, with both ¬R and ¬L reflecting the same inference flipped about entailment.

Since each connective has a dual counterpart, we can express the duality of

sequent calculus proofs—for every LK proof D of a sequent:

D....
An, . . . , A2, A1 � B1, B2, . . . , Bm

there is a dual proof D⊥ of the dual sequent:

D⊥....
B⊥m , . . . , B

⊥
2 , B

⊥
1 � A⊥1 , A

⊥
2 , . . . , A

⊥
n

The duality relation on judgments and propositions, is given in Figure 5. Note

that the duality operation A⊥ may be understood as taking the negation of the

proposition, ¬A, and pushing the negation inward all the way using the De Morgan

laws, until a proposition variable X is reached (Gentzen, 1935b).

Theorem 2 (Logical duality)

For any LK proof D of the sequent Γ � Δ, there exists a dual proof D⊥ of the dual

sequent Δ⊥ � Γ⊥.

Note that Gentzen did not consider the dual counterpart to implication as a

connective, as we do, but rather eliminated implication from the system by encoding

it in terms of disjunction and negation given above for the purposes of establishing

duality.

Due to the natural syntactic symmetry of the LK sequent calculus, logical duality

comes from an exchange between left and right: left rules mirror right rules

and hypotheses to the left of entailment mirror consequences to the right. Thus,

establishing logical duality in the sequent calculus follows from a straightforward

induction on the structure of proofs, working from the bottom conclusion up to the

axioms.
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Non-contradiction and excluded middle

To illustrate how the left and right sides of proofs get swapped, consider the case

when the bottom conclusion is inferred from a use of the ∧R rule:

D....
Γ � A,Δ

E....
Γ � B,Δ

Γ � A ∧ B,Δ
∧R

Then by the inductive hypothesis, we get a proof D⊥ of (Γ � A,Δ)⊥ � Δ⊥, A⊥ � Γ⊥

and a proof E⊥ of (Γ � B,Δ)⊥ � Δ⊥, B⊥ � Γ⊥, from which we can deduce

(Γ � A ∧ B,Δ)⊥ � Δ⊥, (A⊥) ∨ (B⊥) � Γ⊥ by ∨L:

D⊥....
Δ⊥, A⊥ � Γ⊥

E⊥....
Δ⊥, B⊥ � Γ⊥

Δ⊥, A⊥ ∨ B⊥ � Γ⊥
∨L

The duality of proofs in the LK sequent calculus means that if a proposition A is

true, so that we have a proof of • � A, then its dual must be false, so that we have a

proof of A⊥ � •. Analogously, if a proposition A is false, then its dual must be true.

For example, consider the following general proof of the law of non-contradiction,

stating that A ∧ (¬A) is false:

A � A
Ax

A ∧ (¬A) � A
∧L1

A ∧ (¬A),¬A � • ¬L

A ∧ (¬A), A ∧ (¬A) � • ∧L1

A ∧ (¬A) � • CL

Duality gives a general proof of the law of excluded middle, stating that A ∨ (¬A)

is true:

A � A
Ax

A � A ∨ (¬A)
∨R1

• � ¬A,A ∨ (¬A)
¬R

• � A ∨ (¬A), A ∨ (¬A)
∨R1

• � A ∨ (¬A)
CR

The existence of a general proof for the law of excluded middle (• � A ∨ (¬A))

is forced by Theorem 2 because we have a general proof for the law of non-

contradiction (A ∧ (¬A) � •).

4 A core calculus

The logics of natural deduction and the sequent calculus are rather different from

one another. As previously discussed in Section 2, one major point of distinction

between the two styles of logic is that natural deduction is right-handed, favoring

truth to the exclusion of falsehood, whereas the sequent calculus is ambidextrous,
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directly handing truth and falsehood on both the left and right sides of entailment.

That means that the sequent calculus does not correspond to the λ-calculus the same

way that natural deduction does. So what might a programming language based on

a sequent calculus like LK look like?

Before delving into the entirety of LK, let us first consider a core language shown

in Figure 6, (Herbelin, 2005) μμ̃-calculus, that corresponds to the core part of LK

and lies at the heart of several sequent-based languages (Curien and Herbelin, 2000;

Wadler, 2003; Munch-Maccagnoni, 2009; Curien and Munch-Maccagnoni, 2010),

including the one we will explore. Notice that the language of types in this core

lacks any logical connectives, so that the only types are uninterpreted variables X,

Y , Z , etc. The μμ̃-calculus is a bare language for describing only input, output,

and interactions: the types on the right side of a sequent describe the outputs of

a program and the types on the left side of a sequent describe the inputs of a

program. When the two opposite sides come together—when the opposed forces

of input and output meet—we have an interaction that sparks computation. Note

that the type system brings out an aspect of deduction that was implicit in the

sequent calculus: the role of a distinguished active proposition that is currently

under consideration. For example, in the ∧R rule from Figure 4, we are currently

trying to prove the proposition A ∧ B, so it is considered the active proposition of

the conclusion Γ � A ∧ B,Δ.

By putting attention on at most one active proposition, we get three classifications

of sequents: active on the right, active on the left, or passive (without an active

proposition on either side). These three forms of sequents likewise classify three

different forms of μμ̃ expressions that might be part of a program:

• An active sequent on the right (Γ � v : A|Δ) describes a term v that sends

information of type A as its output (that is, v is a producer of type A).

• An active sequent on the left (Γ|e : A � Δ) describes a co-term e that receives

information of type A as its input (that is, e is a consumer of type A).

• A passive sequent (c : (Γ � Δ)) describes a command c that is an executable

program capable of running on its own without any distinguished input or

output.

In each case, the environments Γ and Δ describe any additional passive (non-active)

inputs and outputs to an expression by specifying the types of free variables (x, . . . )

and free co-variables (α, . . . ) that expression might reference, respectively. Like in LK,

these environments are finite, ordered sequences which may be (1) empty (written

•), (2) a variable or co-variable paired up with its type (written x : A and α : A,

respectively), or (3) a concatenation of two sequences (written with a comma as Γ,Γ′

and Δ,Δ′). As a further constraint, we stipulate that each variable and co-variable

can appear at most once in an environment, so that the concatenation of repeated

type assignments like x : A, x : B or α : A, α : B is undefined.

The expressions of the μμ̃-calculus come from the axiom and cut rules of LK plus

an additional pair of activation rules AR and AL. The Ax rule of LK is divided

into two separate rules in μμ̃: the VR rule creates a term by just referring to a

variable available from its environment, and similarly the VL rule creates a co-term
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A,B,C ∈ Type ::= X

v ∈ Term ::= x || μα .c

e ∈ CoTerm ::= α || μ̃x.c

c ∈ Command ::= 〈v||e〉
Γ ∈ InputEnv ::= x1 : A1, . . . ,xn : An

Δ ∈ OutputEnv ::= α1 : A1, . . . ,αn : An

Sequent ::= (Γ � v : A | Δ) || (Γ | e : A � Δ) || c : (Γ � Δ)

Core rules:

x : A � x : A | VR | α : A � α : A
VL

c : (Γ � α : A,Δ)
Γ � μα .c : A | Δ AR

c : (Γ,x : A � Δ)
Γ | μ̃x.c : A � Δ AL

Γ � v : A | Δ Γ′ | e : A � Δ′

〈v||e〉 : (Γ′,Γ � Δ′,Δ)
Cut

Structural rules:

c : (Γ � Δ)
c : (Γ � α : A,Δ)

WR
c : (Γ � Δ)

c : (Γ,x : A � Δ)
WL

c : (Γ � β : A,α : A,Δ)
c{α/β } : (Γ � α : A,Δ)

CR
c : (Γ,x : A,y : A � Δ)
c{x/y} : (Γ,x : A � Δ)

CL

c : (Γ � Δ,α : A,β : B,Δ′)
c : (Γ � Δ,β : B,α : A,Δ′)

XR
c : (Γ′,y : B,x : A,Γ � Δ)

c : (Γ′,x : A,y : B,Γ � Δ)
XL

Γ � v : C | Δ
Γ � v : C | α : A,Δ WR

Γ � v : C | Δ
Γ,x : A � v : C | Δ WL

Γ � v : C | β : A,α : A,Δ
Γ � v{α/β } : C | α : A,Δ CR

Γ,x : A,y : A � v : C | Δ
Γ,x : A � v{x/y} : C | Δ CL

Γ � v : C | Δ,α : A,β : B,Δ′

Γ � v : C | Δ,β : B,α : A,Δ′ XR
Γ′,y : B,x : A,Γ � v : C | Δ
Γ′,x : A,y : B,Γ � v : C | Δ

XL

Γ | e : C � Δ
Γ | e : C � α : A,Δ WR

Γ | e : C � Δ
Γ,x : A | e : C � Δ WL

Γ | e : C � β : A,α : A,Δ
Γ | e{α/β } : C � α : A,Δ CR

Γ,x : A,y : A | e : C � Δ
Γ,x : A | e{x/y} : C � Δ CL

Γ | e : C � Δ,α : A,β : B,Δ′

Γ | e : C � Δ,β : B,α : A,Δ′ XR
Γ′,y : B,x : A,Γ | e : C � Δ
Γ′,x : A,y : B,Γ | e : C � Δ

XL

Fig. 6. μμ̃: The core language of the sequent calculus.

by referring to a co-variable. The Cut rule connects a term and co-term that are

waiting to send and receive information of the same type, so that the output of the

term is forwarded to the co-term as input (and dually, the input of the co-term is

drawn from the output of the term). Finally, the activation rules AR and AL pick a
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particular (co-)variable from the environment of a command to activate by creating

an output or input abstraction, respectively. Intuitively, if the variable x stands for

an unknown input in a command c, then the input abstraction μ̃x.c is a co-term that,

when given a place to draw information, will bind that location to the input channel

x while running c. Dually, if the co-variable α stands for an unknown output in a

command c, then the output abstraction μα.c is a term that, when given a place to

send information, will bind that location to the output channel α while running c.

Structural rules and static scope

To give a full account of the static semantics of the μμ̃-calculus, we need to address

the issue of how the structural properties of the sequent calculus are represented.

For instance, the co-term μ̃z.〈x||α〉 should have the type x : X | μ̃z.〈x||α〉 : Y � α : X,

but the core typing rules alone are not enough. Rather, the structural properties

of sequents (weakening, contraction, and exchange) define the meaning of static

variables and co-variables.

Similar to LK, the structural properties of sequents in μμ̃ can be expressed by

explicit structural rules that allow for a single (co-)variable to appear any number of

times in an expression. The full collection of these structural scoping rules are shown

in Figure 6, which corresponds one-for-one with the structural rules of Gentzen’s

LK sequent calculus over each form of μμ̃ expression. The weakening rules say that

even if a free (co-)variable is in scope in an expression, it does not have to be

referenced, as in the co-term μ̃z.〈x||α〉:

x : X � x : X | VR | α : X � α : X
VL

〈x||α〉 : (x : X � α : X)
Cut

〈x||α〉 : (x : X, z : Y � α : X)
WL

x : X | μ̃z.〈x||α〉 : Y � α : X
AL

The contraction rules say that a free (co-)variable can be referenced an addi-

tional time by renaming two distinct (co-)variables into one, as in the command

〈μδ.〈y||α〉||μ̃z.〈y||α〉〉:

y : X � y : X | VR | β : X � β : X
VL

〈y||β〉 : (y : X � β : X)
Cut

〈y||β〉 : (y : X � δ : Y , β : X)
WR

y : X � μδ.〈y||β〉 : Y | β : X
AR

x : X � x : X | VR | α : X � α : X
VL

〈x||α〉 : (x : X � α : X)
Cut

〈x||α〉 : (x : X, z : Y � α : X)
WL

x : X | μ̃z.〈x||α〉 : Y � α : X
AL

〈μδ.〈y||β〉||μ̃z.〈x||α〉〉 : (x : X, y : X � α : X, β : X)
Cut

〈μδ.〈x||β〉||μ̃z.〈x||α〉〉 : (x : X � α : X, β : X)
CL

Finally, the exchange rules say that the order of the (co-)variables in scope does not

matter. Notice that none of these rules are syntactically visible in their expression.

Unlike the axiom, activation, and cut rules that only apply to expressions starting

with a very specific form like a (co-)variable, abstraction, or interaction, the structural

rules could potentially apply to expressions of any form so they are not directed by

syntax.
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The form of the structural rules in Figure 6 shows the role of the active sequents

for controlling the impact of structural rules on the principle type of interest. In

particular, the type of the term in the sequent Γ � v : A | Δ and the type of the

co-term in Γ | e : A � Δ cannot be subject to weakening, contraction, or exchange.

Instead, structural rules only apply the (co-)variables in the environment, meaning

that if we want to contract or weaken the type of a (co-)term with one of its free

(co-)variables, we must first associate its input or output with another (co-)variable

by forming a command like so

Γ � v : A | α : A | β : A � β : A
VL

〈v||β〉 : (Γ � β : A, α : A,Δ)
Cut

〈v||α〉 : (Γ � α : A,Δ)
CR

Γ � μα.〈v||α〉 : A | Δ AR

Γ � v : A | Δ | α : A � α : A
VL

〈v||α〉 : (Γ � α : A,Δ)
Cut

〈v||α〉 : (Γ � β : B, α : A,Δ)
WR

Γ � μβ.〈v||α〉 : B | α : A,Δ
AR

and symmetrically for co-terms. Likewise, if we want to exchange the current active

type of a (co-)term with another one in the environment, we need to take a similar

detour through a command that explicitly switches the primary input or output

channel as follows:

Γ � v : A | β : B,Δ | α : A � α : A
VL

〈v||α〉 : (Γ � α : A, β : B,Δ)
Cut

〈v||α〉 : (Γ � β : B, α : A,Δ)
XR

Γ � μβ.〈v||α〉 : B | α : A,Δ
AR

x : A � x : A | VR
Γ, y : B | e : A � Δ

〈x||e〉 : (Γ, y : B, x : A � Δ)
Cut

〈x||e〉 : (Γ, x : A, y : B � Δ)
XL

Γ, x : A | μ̃y.〈x||e〉 : B � Δ
AL

4.1 Two dual substitutions

Having examined the static properties of the μμ̃-calculus—its syntax and types—we

still need to consider the dynamic properties of μμ̃, to explain what it means to run

a program. To answer the question “what is computation in the sequent calculus?”

we turn to cut elimination (previously mentioned in Section 3.2) that outlines a

method of reducing commands as the main unit of computation. In other words,

computation in μμ̃ is the behavior that results from cutting together a compatible

producer and consumer in a command, so that they may meaningfully interact with

one another. In the bare μμ̃-calculus with no logical connectives, we can only have

three forms of commands: a cut between (co-)variables 〈x||α〉, a cut with an output

abstraction 〈μα.c||e〉, and a cut with an input abstraction 〈v||μ̃x.c〉. In the first case,

a command 〈x||α〉 represents a basic final state that can reduce no further, and even

though its typing derivation contains a Cut , it is a trivial sort of cut that corresponds

more closely to a passive version of LK’s Ax :

x : A � x : A | VR | α : A � α : A
VL

〈x||α〉 : (x : A � α : A)
Cut

In the second two cases, we can capture the meaning of input and output

abstractions via substitution —written as {v/x} and {e/α}—in the style of β reduction
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in the λ-calculus as illustrated by the following μ and μ̃ operational rules:

(μ) 〈μα.c||e〉 �→ c {e/α} (μ̃) 〈v||μ̃x.c〉 �→ c {v/x}

The μ̃ reduction step substitutes the term v for the variable x introduced by an

input abstraction, distributing it into the command c to the points where it is

referenced. The μ reduction step is the mirror image, which substitutes a co-term e

for a co-variable α introduced by an output abstraction. Both of these substitution

operations must take care to avoid capturing the free variables of the substituted

(co-)terms as in the λ-calculus. Definitions of capture-avoiding substitution and the

free variables found in (co-)terms and commands (denoted by FV (c), FV (V ), FV (e))

can be found in Section 6.

The μ and μ̃ substitution steps eliminate a cut, but how do they correspond to cut

elimination in LK? The procedure described in Section 3.2 does not appear to use

a substitution operation, only a collection of small, local manipulations of cuts. As

it turns out, the substitutions used by the μ and μ̃ rules correspond to the structural

steps of LK cut elimination, except performed all at once instead of incrementally.

Cuts of a passive proposition can be viewed as a substitution for a (co-)variable and

the substitution operation itself exhaustively applies the steps that commute logical

and structural rules with passive cuts. For example, the commutation of an active

cut with a passive cut corresponds to the equation

〈v||e〉 {v′/x} = 〈v {v′/x}||e {v′/x}〉

that defines one case of substitution. In effect, this transports a passive cut to all

of its active positions within a proof as one step, and the activation rules for μ-

and μ̃-abstractions explicitly signal that a cut is passive. And as additional logical

rules are added later in Section 5, similar commutations are uniformly characterized

by the standard rules of substitution. The cut elimination steps for weakening and

contraction on the active proposition of a cut then correspond to properties that

the substitution operation satisfies

c {e/α} = c (α /∈ FV (c)) (c {α/β}) {e/α} = c {e/β} {e/α} (α /∈ FV (e))

c {v/x} = c (x /∈ FV (c)) (c {x/y}) {v/x} = c {v/y} {v/x} (x /∈ FV (v))

or in other words, substituting for a (co-)variable that is never referenced does

nothing, and substituting for a merged pair of (co-)variables is the same as

substituting for both individually.

We can now give two different formalizations of the dynamic semantics of the μμ̃-

calculus, each of which have their own distinct purpose. The first is the operational

semantics of μμ̃ that explains exactly step-by-step how to execute a command by

performing repetitions of the μ and μ̃ operational rules (i.e., the reflexive, transitive

closure of the �→ relation written �→→). Note that, unlike in the λ-calculus, the next

step of the operational semantics is immediately obvious in the μμ̃-calculus and

needs no search to identify: the next step of a command is always found at the

top-level if there is one.

The second is the rewriting theory of μμ̃ that provides more opportunities for

reductions, including performing a step before it would normally occur during
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the execution of a command (as in a pre-processing pass or optimization) or

additional reductions that do not occur during execution (i.e., are not one of the

operational rules defining �→) but preserve its behavior nonetheless. Single-step

rewriting is denoted by → and allows the reductions to apply in any context (i.e.,

→ is compatibly closed), and the multi-step rewriting is denoted by →→ (i.e., →→ is the

reflexive, transitive closure of →). For the μμ̃-calculus, single-step rewriting includes

the μ and μ̃ operational rules given above, as well as some additional rules. In

particular, the following ημ and ημ̃ reductions that eliminate trivial output and input

abstractions are allowed, because they do not change the extensional behavior of

the (co-)terms:(
ημ
)

μα.〈v||α〉 → v (α /∈ FV (v))
(
ημ̃
)

μ̃x.〈x||e〉 → e (x /∈ FV (e))

In other words, the term that sends the output of v to α only to forward that

information along as its own output is the same as v itself. Dually, the co-term that

binds its input to x only to forward that information along to another co-term e

can be written more simply as just e. In all, the rewriting theory of μμ̃ is formed

by repetitions of μμ̃ημημ̃ reductions in any context, and is defined in more detail in

Section C3.

4.2 The fundamental dilemma of computation

Unfortunately, the aforementioned operational semantics for μμ̃ is non-deterministic,

to the point where program execution may take completely divergent and unrelated

paths. The non-determinism of the μμ̃-calculus corresponds to the fact that the cut

elimination for LK included critically non-deterministic choices between structural

rules. The phenomenon is embodied by the fundamental conflict between input and

output abstractions, as shown by the two dual μ and μ̃ reductions for performing

substitution:

c1 {(μ̃x.c2)/α} ←�μ 〈μα.c1||μ̃x.c2〉 �→μ̃ c2 {(μα.c1)/x}
Both the term μα.c1 and co-term μ̃x.c2 are fighting for control in the above command,

and either one may win. The non-deterministic outcome of this conflict is exemplified

in the case where neither α nor x are referenced in their respective commands by

weakening

c1 ←�μ 〈μ .c1||μ̃ .c2〉 �→μ̃ c2

showing that programs may produce different results each time they are run, since the

same starting point may step to two different and completely arbitrary commands.

This form of divergent reduction paths is called a critical pair and is evidence that

the rewriting theory is not confluent. A confluent system guarantees that reductions

can be applied in any order and still reach the same result. From the perspective of

programming language semantics, this type of non-determinism can be undesirable

since it makes it impossible to predict a single definitive result of a program since

there may be multiple incompatible results depending on the choices made during

execution. If we want to regain properties like confluence or determinism, which are

enjoyed by the λ-calculus, then some of these freedoms must be curtailed.

https://doi.org/10.1017/S0956796818000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000023


26 P. Downen and Z. M. Ariola

V ∈ Valuev ::= x E ∈ CoValuev ::= e

Operational rules:

(μv) 〈μα .c||E →�〉 c{E/α} (μ̃v) 〈V ||μ̃x.c →�〉 c{V/x}
Rewriting rules:

(ημ ) μα .〈v||α 〉 → v (α /∈ FV(v)) (ημ̃ ) μ̃x.〈x||e〉 → e (x /∈ FV(e))

c �→μv μ̃v c′

c →μv μ̃v c′
μvμ̃v

Fig. 7. The call-by-value (v) semantics for the core μμ̃v-calculus.

In order to recover determinism for the sequent calculus, Curien and Herbelin

(2000) observed that we only need to choose an evaluation strategy that determin-

istically picks the next step to take by giving priority to one reduction over the

other:

Call-by-value consists in giving priority to the μ redexes,

while call-by-name gives priority to the μ̃ redexes.

Prioritization between the two opposed sides means that there must be some potential

μ or μ̃ redexes that we could reduce but choose not to, thereby yielding priority to

the other side of the command. From another viewpoint, choosing a priority between

the two sides of a command is the same thing as choosing a restriction on the terms

and co-terms that can be substituted by the μ and μ̃ rules. And reversing directions,

choosing which terms and co-terms are substitutable by μ and μ̃ reductions also

chooses the evaluation strategy.

Reflecting the above observation back to the calculus, we can restore determinacy

to the operational semantics and confluence to the rewriting theory by making the

substitution rules strategy-aware: μ̃ only substitutes values for variables and μ only

substitutes co-values for co-variables. In other words, the decision of which values

and co-values are substitutable is enough information to determine an evaluation

strategy in the μμ̃-calculus. To get call-by-value reduction, we can restrict the notion

of value to exclude output abstractions and leave co-values unrestricted, thereby

giving priority to the μ redexes as shown in Figure 7. Dually for call-by-name

reduction, we can restrict the notion of co-value to exclude input abstractions

and leave values unrestricted, thereby giving priority to the μ̃ redexes as shown in

Figure 8. Notice that in any case, the ημ and ημ̃ reductions are not affected by the

restrictions on (co-)values, because they do no substitution and are sound under

any choice of evaluation strategy. These restrictions on substitution give us exactly

(Curien and Herbelin, 2000) notions of the call-by-value and call-by-name, which

restores determinacy and confluence to the semantics of μμ̃. Excluding a (co-)term

from the collection of (co-)values effectively prioritizes it by blocking opposing

reductions, whereas including a (co-)term as a (co-)value diminishes its priority since

it can be deleted or duplicated by substitution.
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V ∈ Valuen ::= v E ∈ CoValuen ::= α

Operational rules:

(μn) 〈μα .c||E →�〉 c{E/α} (μ̃n) 〈V ||μ̃x.c →�〉 c{V/x}
Rewriting rules:

(ημ ) μα .〈v||α 〉 → v (α /∈ FV(v)) (ημ̃ ) μ̃x.〈x||e〉 → e (x /∈ FV(e))

c �→μn μ̃n c′

c →μn μ̃n c′
μnμ̃n

Fig. 8. The call-by-name (n) semantics for the core μμ̃n-calculus.

5 The dual calculi

With the core μμ̃ language firmly in place, we can now enrich it with additional

programming constructs that correspond to the logical elements—the connectives

and logical rules—of Gentzen’s LK sequent calculus. The syntax and typing rules

for these extra logical constructs are shown in Figure 9, which extends the core

μμ̃-calculus from Figure 6. To help syntactically distinguish terms from co-terms, we

use the notational convention throughout that round parentheses are the grouping

brackets for terms, and square brackets are the grouping brackets for co-terms.

The correspondence with LK is that by erasing program-level constructs of a typing

derivation and replacing type constructors with the corresponding logical connectives

(replacing→ with ⊃, × with ∧, etc.,), we get an LK proof derivation: there is an LK

proof derivation of Γ � Δ if and only if there is a typing derivation of c : (Γ′ � Δ′)

for the Γ′,Δ′ corresponding to Γ,Δ and some command c, and similarly for typed

terms (Γ′ � v : A′ | Δ′) and co-terms (Γ′ | e : A′ � Δ′).

This language combines both (Curien and Herbelin, 2000) λμμ̃-calculus (the

portion associated with implication) and (Wadler, 2003) dual calculus (the portion

associated with conjunction, disjunction, and negation which was directly inspired

by λμμ̃) into a single calculus corresponding to all of the simply-typed LK sequent

calculus. Furthermore, the quantifiers of LK are interpreted as a sequent calculus

version of system F (Reynolds, 1983; Girard et al., 1989): universal quantification

(∀) acts as an abstraction over types analogous to implication, and existential

quantification (∃) is the mirror image of ∀. We refer to this combined language here

as the “dual calculi” because, as we will soon see, the language is the basis for two

different but highly related calculi that exhibit dual computational behavior to one

another.

Since the right introduction rules for logical connectives are shared by both

natural deduction and the sequent calculus, the dual calculi terms for creating

results of product, sum, and function types have the same form as in the λ-calculus.

Units are introduced by a constant, (), products are introduced by pairing, (v, v′),

sums are introduced by injection, in1(v) and in2(v), and functions are introduced

by λ-abstractions, λx.v. Additionally, the terms for creating results of universally

quantified types are Λ-abstractions, ΛX.v, as in system F, and the results of
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A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || ¬A || A → B || A−B || ∀X .A || ∃X .A

v ∈ Term ::= x || μα .c || () || (v,v) || in1(v) || in2(v) || not(e) || λ x.v || e · v || ΛX .v || B@v

e ∈ CoTerm ::= α || μ̃x.c || [] || out1[e] || out2[e] || [e,e] || not[v] || v · e || λ̃α .e || B@e || Λ̃X .e

c ∈Command ::= 〈v||e〉
Core rules:

x : A � x : A | VR | α : A � α : A
VL

c : (Γ � α : A,Δ)
Γ � μα .c : A | Δ AR

c : (Γ,x : A � Δ)
Γ | μ̃x.c : A � Δ AL

Γ � v : A | Δ Γ′ | e : A � Δ′

〈v||e〉 : (Γ′,Γ � Δ′,Δ)
Cut

Structural rules:
The same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

Γ � () : 1 | Δ
1R

no 1L rule no 0R rule Γ | [] : 0 � Δ
0L

Γ � v : A | Δ Γ � v′ : B | Δ
Γ � (v,v′) : A×B | Δ

×R
Γ | e : A � Δ

Γ | out1[e] : A×B � Δ
×L1

Γ | e : B � Δ
Γ | out2[e] : A×B � Δ

×L2

Γ � v : A | Δ
Γ � in1(v) : A+B | Δ

+R1
Γ � v : B | Δ

Γ � in2(v) : A+B | Δ
+R2

Γ | e : A � Δ Γ | e′ : B � Δ
Γ | [e,e′] : A+B � Δ

+L

Γ | e : A � Δ
Γ � not(e) : ¬A | Δ

¬R
Γ � v : A | Δ

Γ | not[v] : ¬A � Δ
¬L

Γ,x : A � v : B | Δ
Γ � λ x.v : A → B | Δ

→R
Γ � v : A | Δ Γ′ | e : B � Δ′

Γ′,Γ | v · e : A → B � Δ′,Δ
→L

Γ � v : A | Δ Γ′ | e : B � Δ′

Γ′,Γ � e · v : A−B | Δ′,Δ
−R

Γ | e : A � α : B,Δ

Γ | λ̃α .e : A−B � Δ
−L

Γ � v : A | Δ X /∈ FV(Γ � Δ)
Γ � ΛX .v : ∀X .A | Δ

∀R
Γ | e : A{B/X} � Δ
Γ | B@e : ∀X .A � Δ

∀L

Γ � v : A{B/X} | Δ
Γ � B@v : ∃X .A | Δ

∃R
Γ | e : A � Δ X /∈ FV(Γ � Δ)

Γ | Λ̃X .e : ∃X .A � Δ
∃L

Fig. 9. The syntax and types for the dual calculi.

existentially quantified types are “masked” terms, B@v, that hide some occurrences

of the type B in the underlying term v from being visible from the outside. In

contrast, the left introduction rules of the sequent calculus are distinct from the

right elimination rules of natural deduction, so the difference between the λ-calculus

and the dual calculi really appears when results are used.

Instead of function application, the left implication introduction →L builds a

co-term that represents a call-stack. If v is a term that produces a result of type
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A, and e is a co-term that consumes a result of type B, then the call-stack v · e is

a co-term that works with a function value of type A → B by feeding it v as an

argument and sending the returned result to e. For example, given that x1 : A1,

x2 : A2, x3 : A3, and β : B, then the call-stack x1 · [x2 · [x3 · β]] is expecting to

consume a function of type A1 → (A2 → (A3 → B)):

x1 : A1 � x1 : A1 |
VR

x2 : A2 � x2 : A2 |
VR

x3 : A3 � x3 : A3 |
VR | β : B � β : B

VL

x3 : A3 | x3 · β : A3 → B � β : B
→L

x3 : A3, x2 : A2 | x2 · x3 · β : A2 → A3 → B � β : B
→L

x3 : A3, x2 : A2, x1 : A1 | x1 · x2 · x3 · β : A1 → A2 → A3 → B � β : B
→L

Like the common notational convention in the simply-typed λ-calculus that the

function type constructor associates to the right, so that A1 → A2 → A3 → B =

A1 → (A2 → (A3 → B)), we adopt a similar notational convention that the call stack

constructor associates to the right, so that x1 · x2 · x3 · β = x1 · [x2 · [x3 · β]].

The left introductions for the other type constructors follow a similar pattern,

with each one building a co-term that expects to consume a value of that type.

There are two left conjunction introductions corresponding to the two projections

out of a product. If e1 is a co-term that consumes a value of type A, then ×L1

builds the co-term out1[e1] that works with a value of type A×B by projecting out

the first element of the product and sending it to e1 when needed (and similarly for

the second projection out2[e2] built by ×L2). If e1 and e2 are co-terms that consume

values of type A and B, respectively, then +L builds the co-term [e1, e2] that works

with a value of type A + B by checking its constructor: an injection of the form

in1(v1) has the value of v1 sent to e1 as needed, and likewise an injection of the form

in2(v2) has the value of v2 sent to e2 as needed. The co-term for the empty type 0 is

a constant, [], which observes an impossible term that cannot produce any output.

The co-term for ∀L is similar to the call stacks of →L, so that if e is a co-term that

consumes a value at the particular type A {B/X}, then B@e works with a value of

the general type ∀X.A by first specializing the polymorphic value and then passing

it along to e. Perhaps the most unusual co-term comes from ∃L, but this is just the

mirror image of the ∀R term. If e is a co-term that consumes a value of type A,

containing a generic type variable X, then ∃L gives the abstracted co-term Λ̃X.e

that works with a value of type ∃X.A by instantiating X with the value’s hidden

type before passing the underlying value to e.

The two type constructors that are not typically found in the λ-calculus, but

sometimes in a sequent calculus like LK or the dual calculi, are negation and

subtraction. The negation type ¬A represents an inversion between producers

and consumers—terms and co-terms—during computation. Intuitively, negation

expresses a form of continuations: a term of type ¬A is actually a consumer of A.

The right negation introduction allows terms to contain consumers, so that if e is a

co-term expecting an input of type A then ¬R builds the term not(e). Dually, the left

negation introduction allows co-terms to contain producers, so that if v is a term

expecting to output a result of type A then ¬L builds the co-term not[v]. When a
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V ∈ Valuev ::= x || (V,V ) || in1(V ) || in2(V ) || not(e) || λ x.v || e ·V || ΛX .v || B@V

E ∈CoValuev ::= e

Operational rules:

(β×
v ) 〈(V1,V2)||outi[E] 〈→�〉 Vi||E〉 (β +

v ) 〈ini(V )||[E1,E2] 〈→�〉 V ||Ei〉
(β ¬

v ) 〈not(e)||not[v] 〈→�〉 v||e〉
(β→

v ) 〈λ x.v||V ·E 〈→�〉 v{V/x}||E〉 (β−
v ) 〈E ·V ||λ̃α .e 〈→�〉 V ||e{E/α}〉

(β ∀
v ) 〈ΛX .v||B@E 〈→�〉 v{B/X}||E〉 (β ∃

v ) 〈B@V ||Λ̃X .e 〈→�〉 V ||e{B/X}〉
Rewriting rules:

c �→βv
c′

c →βv
c′

βv

Fig. 10. The β semantics for the call-by-value (v) half of the dual calculi.

negated term and co-term meet each other in a command, the inversion is undone

so that their underlying components change places and continue the interaction.

The subtraction type A−B is dual to a function type: whereas a function represents

an answer that depends on another answer, a subtraction represents a question that

depends on another question. The left subtraction introduction allows for consumer

transformations which are mirror images of λ-abstractions, so that the −L rule builds

a co-term of the form λ̃α.e of type A− B when e is a consumer of A that references

a co-variable α of type B. On the other side, the right subtraction introduction pairs

up a producer and a consumer, so that if v produces an A result and e consumes

a B result then the −R rule builds the term e · v of type A − B. Subtraction gives

another way for continuations to appear in terms, so that a result of type A − B

yields both an answer (A) and a question (B) at the same time.

The above intuition on the dynamic meaning of types in the dual calculi can be

codified into an operational semantics. Recall from Section 4.2 that the semantics

of the core μμ̃-calculus was split in two to restore determinacy and confluence: one

semantics corresponding to call-by-value and the other to call-by-name. Likewise,

there are two deterministic operational semantics and two confluent rewriting

theories for the dual calculi, so that the same language bears two different calculi

(hence the name). Since both semantics of the core μμ̃-calculus are already given

in Figures 7 and 8, we only need to suitably expand the notions of value and

co-value to accommodate the new (co-)term introductions and explain the logical

steps of cut elimination (referred to by the common name β) that occur when two

opposed introduction forms of the same type meet in a command. The call-by-value

β operational rules are given in Figure 10 and the call-by-name β operational rules

are given in Figure 11, both of which extend the core semantics from Figures 7 and

8, respectively. Thus, we end up with the call-by-value μvμ̃vβv operational semantics

and μvμ̃vημημ̃βv rewriting theory as well as the call-by-name μnμnβn operational

semantics and μnμnημημ̃βn rewriting theory for the dual calculi. The β×, β+, and β¬

rules come from (Wadler, 2003) dual calculus, whereas the β→ rule is inspired by

(Curien and Munch-Maccagnoni, 2010) revision of the λμμ̃-calculus. The reason this
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V ∈ Valuen ::= v

E ∈ CoValuen ::= α || out1[E] || out2[E] || [E,E] || not[v] || v ·E || λ̃α .e || B@E || Λ̃X .e

Operational rules:

(β×
n ) 〈(V1,V2)||outi[E] 〈→�〉 Vi||E〉 (β +

n ) 〈ini(V )||[E1,E2] 〈→�〉 V ||Ei〉
(β ¬

n ) 〈not(e)||not[v] 〈→�〉 v||e〉
(β→

n ) 〈λ x.v||V ·E 〈→�〉 v{V/x}||E〉 (β−
v ) 〈E ·V ||λ̃α .e 〈→�〉 V ||e{E/α}〉

(β ∀
n ) 〈ΛX .v||B@E 〈→�〉 v{B/X}||E〉 (β ∃

n ) 〈B@V ||Λ̃X .e 〈→�〉 V ||e{B/X}〉
Rewriting rules:

c �→βn
c′

c →βn
c′

βn

Fig. 11. The β semantics for the call-by-name (n) half of the dual calculi.

differs from the original β→ rule (Curien and Herbelin, 2000) for the λμμ̃-calculus,

〈λx.v||v′ · e〉 �→ 〈v′||μ̃x.〈v||e〉〉 x /∈ FV (e)

will show up later on in Section 5.2.

Notice that, like in the core μμ̃-calculus, the form of the operational β rules are

the same in both semantics, so that the only difference is the definition of value and

co-value referred to in those rules. The rule of thumb is that a β rule only applies

when an introductory value and co-value interact in a command. For example, the

call-by-value β×v rule will only project from a pair value to extract a component that

is also a value. These restrictions are captured in the call-by-value definition of value

that admits only “simple” terms and hereditarily excludes complex terms like μα.c

(representing an arbitrarily complex computation before yielding a result on α) from

the values of product and sum types, which matches the behavior of products and

sums in strict functional languages like ML. However, there is no such restriction

on co-terms in the call-by-value operational semantics, and as such any co-term

counts as a co-value. Dually, the call-by-name β×n rule will only project out of a pair

when it is needed by a projection co-value to send that component to the underlying

co-value. These restrictions are captured in the call-by-name definition of co-value

that admits only “strict” co-terms and hereditarily excludes complex co-terms like

μ̃x.c (representing an arbitrarily complex computation before demanding a result

for x) from the co-values of product and sum types. However, there is no restriction

on terms in the call-by-name operational semantics, and as such any term counts as

a value.

5.1 Untyped fixed points and infinite loops

It’s worthwhile to mention that although the dual calculi are primarily seen as typed

languages, their semantics do not use any type information to run commands. We

can therefore execute untyped commands as well as typed ones, which of course

creates the possibility of getting stuck at fatal type errors. Untyped commands
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also open up the possibility of running general recursive programs, which can be

encoded in a similar manner as in the λ-calculus without any additional features

of the language. For example, Curry’s untyped fixed-point Y combinator in the

λ-calculus:

Y � λf.(λx.f (x x)) (λx.f (x x))

can be analogously defined in the dual calculi using functions as

Y � λf.μα.〈λx.μβ.〈f||μγ.〈x||x · γ〉 · β〉||(λx.μβ.〈f||μγ.〈x||x · γ〉 · β〉) · α〉

The two share analogous behavior: in the λ-calculus Y f = f (Y f) and in the

dual calculi 〈Y ||f · α〉 = 〈f||μβ.〈Y ||f · β〉 · α〉. Also analogous to the non-terminating

untyped term Ω � (λx.x x) (λx.x x) in the λ-calculus, the dual calculi both have

non-terminating untyped commands, which can be written using functions or more

simply with negation:

Ω � 〈not(μ̃x.〈x||not[x]〉)||not[μα.〈not(α)||α〉]〉

For example, in the call-by-name operational semantics, we have the following

infinite execution of Ω:

Ω � 〈not(μ̃x.〈x||not[x]〉)||not[μα.〈not(α)||α〉]〉
�→β¬n 〈μα.〈not(α)||α〉||μ̃x.〈x||not[x]〉〉
�→μ̃n 〈μα.〈not(α)||α〉||not[μα.〈not(α)||α〉]〉
�→μn 〈not(not[μα.〈not(α)||α〉])||not[μα.〈not(α)||α〉]〉
�→β¬n 〈μα.〈not(α)||α〉||not[μα.〈not(α)||α〉]〉
�→μn . . .

Note that encoding general recursion in the untyped sequent calculus requires

some logical connective, like negation or implication. The core μμ̃-calculus gives a

more restrained language of binders and substitution that does not express general

recursion even in the untyped calculus, where general (and non-confluent) μ- and μ̃-

reduction is still strongly normalizing (Polonovski, 2004)—that is, there are no infinite

sequences of μμ̃-reductions. This fact is in contrast with the untyped λ-calculus that

can express general recursion, because β-reduction is not strongly normalizing in

the untyped calculus.

5.2 Focusing on computation

There is a problem lurking in the β-based operational semantics for the dual calculi.

Consider how we would evaluate the projection out1((f 1), 2) in a call-by-value

functional language like ML. First, we would compute the application f 1 to

construct the pair value, then we would compute the out1 projection of that pair

and extract the value returned by f 1 as the result of the expression. However, if we

represent this program as the following command in the call-by-value dual calculus,

where α stands for the empty or top-level context that is implicit in the functional
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expression:

〈((μβ.〈f||1 · β〉), 2)||out1[α]〉
we find that no operational rule matches this command, so we are stuck! This is

not just a problem with the call-by-value operational semantics. The command

〈(1, 2)||out1[μ̃x.〈0||α〉]〉

that corresponds to the expression let x = out1(1, 2)in 0 in a functional language, is

also stuck in the call-by-name operational semantics.

This is clearly an undesirable situation that breaks the connection between the

λ-calculus and dual calculi—we should not get stuck on such commands with

unfinished computation in introduction forms—so something needs to be done

to refocus the attention in a command to the next step of computation. As it

stands now in the dual calculi, we either have too many programs with unexplained

behavior, or too few behaviors for executing programs. Correspondingly, there are

two general techniques to remedy prematurely stuck commands and restore the

connection between λ-calculus and the dual calculi:

(1) The static approach (Curien and Herbelin, 2000) removes the superfluous

parts of the syntax that cause β reduction to get stuck, but are not necessary

to express all the same computations as the original language.

(2) The dynamic approach (Wadler, 2003) adds the necessary extra steps to

the operational semantics that lift buried computations to the top of the

command, so that they are exposed and may take over control of the

computation.

Both of these techniques can be viewed as an application of an idea called focusing

(Andreoli, 1992; Laurent, 2002) from proof search at different points in a programs

life—either at “run time” or at “compile time”—to make sure that the call-by-

value and call-by-name semantics are complete without missing out on any essential

capabilities of the language.

Static focusing

For the static method of focusing, consider which syntactic patterns could lead to

β-stuck commands. In the call-by-value command above, 〈((μβ.〈f||1 · β〉), 2)||out1[α]〉,
the problem is that a pair with a non-value component (namely the first one) is

interacting with a projection co-value. Because the pair does not have values for

both components, the β×v operational step does not apply. Dually, the call-by-

name command above, 〈(1, 2)||out1[μ̃x.〈0||α〉]〉, puts a pair value in interaction with

a projection that has a non-co-value component. Because the projection does not

contain a co-value, the β×n operational step does not apply. After examining all the

βv rules, we see that the call-by-value βv operational semantics is only equipped

to deal with certain introduction forms containing values (namely the pairing ×R,

injection +R, and masking ∃R terms as well as calling →L co-terms). Similarly,

the call-by-name βn operational semantics is only equipped to deal with certain
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introduction co-terms containing co-values (namely the projection ×L, matching

+L, and calling →L, and specializing ∀L co-terms).

We can rule out the problematic commands via static focusing by limiting

ourselves to a sub-syntax of the dual calculi. However, since each operational

semantics (both call-by-value and call-by-name) have difficulty with different parts

of the syntax, static focusing effectively splits the language in two: one sub-syntax

for each evaluation strategy. For call-by-value, we must bake in the notion of

values into the syntax and restrict the ×R, +R, −R, ∃R, and →L inference rules

appropriately. Doing so gives us the LKQ sub-calculus (Curien and Herbelin,

2000) shown in Figure 12. Notice how the sub-syntax of LKQ no longer lets

us write terms like in1(μβ.c) and (μβ1.c1, μβ2.c2) because a μ-abstraction is not

a value; instead such terms can only be written with intermediate bindings as

μα.〈μβ.c||μ̃x.〈in1(x)||α〉〉 and μα.〈μβ1.c1||μ̃x1.〈μβ2.c2||μ̃x2.〈(x1, x2)||α〉〉〉 reminiscent of

CPS (Reynolds, 1993). The statically focused calculus makes the call-by-value

evaluation order more explicit in the program itself. Similar such restrictions are

imposed on the term constructors of subtraction and existential types, and on

the argument of function call stacks. Dually for call-by-name, we must bake

in the notion of co-values into the syntax and restrict the ×L, +L, →L, ∀L,

and −R inference rules appropriately, giving the LKT sub-calculus shown in

Figure 13. Notice that the sub-syntax of LKT instead prevents us from writing

co-terms like out1[μ̃y.c] and [μ̃y1.c1, μ̃y2.c2] because a μ̃-abstraction is not a co-value;

instead such co-terms can only be written indirectly as μ̃x.〈μα.〈x||out1[α]〉||μ̃y.c〉 and

μ̃x.〈μα1.〈μα2.〈x||[α1, α2]〉||μ̃y2.c2〉||μ̃y1.c1〉, which is symmetric to the explicit bindings

forced by LKQ.

The associated type systems separate the restricted notions of (co-)values from

general (co-)terms through a new form of focused sequent with a stricter sense of

active formula held in a stoup (Girard, 1991). LKQ introduces values in the focus

of a stoup on the right (Γ � V : A ; Δ) and LKT introduces co-values in the focus

of a stoup on the left (Γ ; E : A � Δ), which differ from the more general sequents

(Γ � v : A | Δ and Γ | e :� Δ) that allow for any (co-)term and not just (co-)values.

The new form of sequent calls for additional focusing structural rules FR (in LKQ)

and FL (in LKT), which acknowledge that every value is a term and every co-value

is a co-term. However, the reverse of the focusing rules—which would say that

every (co-)term is a (co-)value—are omitted in LKQ and LKT because they would

collapse the distinction between (co-)values and (co-)terms enforced by the stoup. As

a consequence of the fact that the stoup is one-way, the focus of the inference rules

is forcibly maintained through type checking: working bottom-up, once a (co-)value

is in focus in the stoup, our active attention cannot move to any other type in the

sequent, thereby limiting the derivations we can build on top of focused sequents.

As it turns out (Curien and Munch-Maccagnoni, 2010), distinguishing (co-)values

in type systems like LKQ and LKT correspond with the technique of focusing in

proof theory developed by Andreoli (1992), Girard (1993; 2001), and Laurent (2002).

If we erase the program-level annotations of typing derivations, the active position

in a sequent disappears but the one-way stoup remains giving us two different

sub-logics of the LK sequent calculus corresponding to LKQ in Figure 14 and LKT
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A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || ¬A || A → B || A−B || ∀X .A || ∃X .A

v ∈ Term ::= V || μα .c

V ∈ Value ::= x || () || (V,V ) || in1(V ) || in2(V ) || not(e) || λ x.v || e ·V || ΛX .v || B@V

e ∈ CoTerm ::= α || μ̃x.c || [] || out1[e] || out2[e] || [e,e] || not[v] ||V · e || λ̃α .e || B@e || Λ̃X .e

c ∈ Command ::= 〈v||e〉
Sequent ::= (Γ � v : A | Δ) || (Γ �V : A ; Δ) || (Γ | e : A � Δ) || c : (Γ � Δ)

Core rules:

x : A � x : A ;
VR | α : A � α : A

VL

c : (Γ � α : A,Δ)
Γ � μα .c : A | Δ AR

c : (Γ,x : A � Δ)
Γ | μ̃x.c : A � Δ AL

Γ �V : A ; Δ
Γ �V : A | Δ FR

Γ � v : A | Δ Γ′ | e : A � Δ′

〈v||e〉 : (Γ′,Γ � Δ′,Δ)
Cut

Structural rules:

Γ �V : C ; Δ
Γ �V : C ; α : A,Δ WR

Γ �V : C ; Δ
Γ,x : A �V : C ; Δ WL

Γ �V : C ; β : A,α : A,Δ
Γ �V {α/β } : C ; α : A,Δ CR

Γ,x : A,y : A �V : C ; Δ
Γ,x : A �V {x/y} : C ; Δ CL

Γ �V : C ; Δ,α : A,β : B,Δ′

Γ �V : C ; Δ,β : B,α : A,Δ′ XR
Γ′,y : B,x : A,Γ �V : C ; Δ
Γ′,x : A,y : B,Γ �V : C ; Δ

XL

And the same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

Γ � () : 1 ; Δ
1R

no 1L rule no 0R rule Γ | [] : 0 � Δ
0L

Γ �V : A ; Δ Γ �V ′ : B ; Δ
Γ � (V,V ′) : A×B ; Δ

×R
Γ | e : A � Δ

Γ | out1[e] : A×B � Δ
×L1

Γ | e : B � Δ
Γ | out2[e] : A×B � Δ

×L2

Γ �V : A ; Δ
Γ � in1(V ) : A+B ; Δ

+R1
Γ �V : B ; Δ

Γ � in2(V ) : A+B ; Δ
+R2

Γ | e : A � Δ Γ | e′ : B � Δ
Γ | [e,e′] : A+B � Δ

+L

Γ | e : A � Δ
Γ � not(e) : ¬A ; Δ

¬R
Γ � v : A | Δ

Γ | not[v] : ¬A � Δ
¬L

Γ,x : A � v : B | Δ
Γ � λ x.v : A → B ; Δ

→R
Γ �V : A ; Δ Γ′ | e : B � Δ′

Γ,Γ′ |V · e : A → B � Δ,Δ′ →L

Γ �V : A ; Δ Γ′ | e : B � Δ′

Γ′,Γ � e ·V : A−B ; Δ′,Δ
−R

Γ | e : A � α : B,Δ

Γ | λ̃α .e : A−B � Δ
−L

Γ � v : A | Δ X /∈ FV(Γ � Δ)
Γ � ΛX .v : ∀X .A ; Δ ∀R

Γ | e : A{B/X} � Δ
Γ | B@e : ∀X .A � Δ

∀L

Γ �V : A{B/X} ; Δ
Γ � B@V : ∃X .A ; Δ ∃R

Γ | e : A � Δ X /∈ FV(Γ � Δ)

Γ | Λ̃X .e : ∃X .A � Δ
∃L

Fig. 12. LKQ: The focalized sub-syntax and types for the call-by-value dual calculus.
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A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || ¬A || A → B || A−B || ∀X .A || ∃X .A

v ∈ Term ::= x || μα .c || () || (v,v) || in1(v) || in2(v) || not(e) || λ x.v || E · v || ΛX .v || B@v

e ∈ CoTerm ::= E || μ̃x.c

E ∈ CoValue ::= α || [] || out1[E] || out2[E] || [E,E] || not[v] || v ·E || λ̃α .e || B@E || Λ̃X .e

c ∈ Command ::= 〈v||e〉
Sequent ::= (Γ � v : A | Δ) || (Γ | e : A � Δ) || (Γ ; E : A � Δ) || c : (Γ � Δ)

Core rules:

x : A � x : A ;
VR | α : A � α : A

VL

c : (Γ � α : A,Δ)
Γ � μα .c : A | Δ AR

c : (Γ,x : A � Δ)
Γ | μ̃x.c : A � Δ AL

Γ � v : A | Δ Γ′ | e : A � Δ′

〈v||e〉 : (Γ′,Γ � Δ′,Δ)
Cut

Γ ; E : A � Δ
Γ | E : A � Δ FL

Structural rules:

Γ ; E : C � Δ
Γ ; E : C � α : A,Δ WR

Γ ; E : C � Δ
Γ,x : A ; E : C � Δ WL

Γ ; E : C � β : A,α : A,Δ
Γ ; E {α/β } : C � α : A,Δ CR

Γ,x : A,y : A ; E : C � Δ
Γ,x : A ; E {x/y} : C � Δ CL

Γ ; E : C � Δ,α : A,β : B,Δ′

Γ ; E : C � Δ,β : B,α : A,Δ′ XR
Γ′,y : B,x : A,Γ ; E : C � Δ
Γ′,x : A,y : B,Γ ; E : C � Δ

XL

And the same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

Γ � () : 1 | Δ
1R

no 1L rule no 0R rule Γ ; [] : 0 � Δ
0L

Γ � v : A | Δ Γ � v′ : B | Δ
Γ � (v,v′) : A×B | Δ

×R
Γ ; E : A � Δ

Γ ; out1[E] : A×B � Δ
×L1

Γ ; E : B � Δ
Γ ; out2[E] : A×B � Δ

×L2

Γ � v : A | Δ
Γ � in1(v) : A+B | Δ

+R1
Γ � v : B | Δ

Γ � in2(v) : A+B | Δ
+R2

Γ ; e : A � Δ Γ ; e′ : B � Δ
Γ ; [E,E ′] : A+B � Δ

+L

Γ | e : A � Δ
Γ � not(e) : ¬A | Δ

¬R
Γ � v : A | Δ

Γ ; not[v] : ¬A � Δ
¬L

Γ,x : A � v : B | Δ
Γ � λ x.v : A → B | Δ

→R
Γ � v : A | Δ Γ′ ; E : B � Δ′

Γ,Γ′ ; v ·E : A → B � Δ,Δ′ →L

Γ � v : A | Δ Γ′ ; E : B � Δ′

Γ′,Γ � e · v : A−B | Δ′,Δ
−R

Γ | e : A � α : B,Δ

Γ ; λ̃α .e : A−B � Δ
−L

Γ � v : A | Δ X /∈ FV(Γ � Δ)
Γ � ΛX .v : ∀X .A | Δ

∀R
Γ ; E : A{B/X} � Δ
Γ ; B@E : ∀X .A � Δ ∀L

Γ � v : A{B/X} � Δ
Γ � B@v : ∃X .A | Δ

∃R
Γ | e : A � Δ X /∈ FV(Γ � Δ)

Γ ; Λ̃X .e : ∃X .A � Δ
∃L

Fig. 13. LKT: The focalized sub-syntax and types for the call-by-name dual calculus.
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A,B,C ∈ Proposition ::= X || � || ⊥ || A∧B || A∨B || ¬A || A ⊃ B || A−B || ∀X .A || ∃X .A

Γ ∈ Hypothesis ::= A1, . . . ,An

Δ ∈ Consequence ::= A1, . . . ,An

Sequent ::= Γ � Δ || Γ � A ; Δ

Core rules:

A � A
Ax

A � A ;
AxF

Γ � A,Δ Γ′,A � Δ′

Γ′,Γ � Δ′,Δ
Cut

Γ � A ; Δ
Γ � A,Δ FR

Structural rules:

Γ � Δ
Γ � A,Δ WR

Γ �C ; Δ
Γ �C ; A,Δ

WRF
Γ � Δ

Γ,A � Δ WL
Γ �C ; Δ

Γ,A �C ; Δ
WLF

Γ � A,A,Δ
Γ � A,Δ CR

Γ �C ; A,A,Δ
Γ �C ; A,Δ

CRF
Γ,A,A � Δ
Γ,A � Δ CL

Γ,A,A �C ; Δ
Γ,A �C ; Δ

CLF

Γ � Δ,A,B,Δ′

Γ � Δ,B,A,Δ′ XR
Γ �C ; Δ,A,B,Δ′

Γ �C ; Δ,B,A,Δ′ XRF
Γ′,B,A,Γ � Δ
Γ′,A,B,Γ � Δ

XL
Γ′,B,A,Γ �C ; Δ
Γ′,A,B,Γ �C ; Δ

XLF

Logical rules:

Γ � � ; Δ �R
no �L rule no ⊥R rule Γ,⊥ � Δ ⊥L

Γ � A ; Δ Γ � B ; Δ
Γ � A∧B ; Δ

∧R
Γ,A � Δ

Γ,A∧B � Δ
∧L1

Γ,B � Δ
Γ,A∧B � Δ

∧L2

Γ � A ; Δ
Γ � A∨B ; Δ

∨R1
Γ � B ; Δ

Γ � A∨B ; Δ
∨R2

Γ,A � Δ Γ,B � Δ
Γ,A∨B � Δ

∨L

Γ,A � Δ
Γ � ¬A ; Δ

¬R
Γ � A,Δ

Γ,¬A � Δ
¬L

Γ,A � B,Δ
Γ � A ⊃ B ; Δ

⊃R
Γ � A ; Δ Γ′,B � Δ′

Γ′,Γ,A ⊃ B � Δ′,Δ
⊃L

Γ � A ; Δ Γ′,B � Δ′

Γ′,Γ � A−B ; Δ′,Δ
−R

Γ,A � B,Δ
Γ,A−B � Δ

−L

Γ � A,Δ X /∈ FV(Γ � Δ)
Γ � ∀X .A ; Δ ∀R

Γ,A{B/X} � Δ
Γ,∀X .A � Δ ∀L

Γ � A{B/X} ; Δ
Γ � ∃X .A ; Δ ∃R

Γ,A � Δ X /∈ FV(Γ � Δ)
Γ,∃X .A � Δ ∃L

Fig. 14. The sub-logic of the LK sequent calculus corresponding to LKQ.

in Figure 15. Notice how, even without the explicit notion of values and co-values,

the stoup still manages to restrict the possible derivations that might be built on top

of it. For example, a proposition in the stoup cannot be subject to structural rules.

These restrictions imposed by focusing can help guide the bottom-up development of

a proof tree, cutting out unneeded flexibility from the inference rules that encourage

proof development to “fail early.” In the LKQ sub-logic, when the ∨R1 rule is

applied to the conclusion Γ � A ∨ B ; Δ we get the premise Γ � A ; Δ where A is

still in focus, forcing us to keep working with A to see if we made the correct choice

(perhaps B was the correct disjunct to prove). Dually in the LKT sub-logic, when
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A,B,C ∈ Proposition ::= X || � || ⊥ || A∧B || A∨B || ¬A || A ⊃ B || A−B || ∀X .A || ∃X .A

Γ ∈ Hypothesis ::= A1, . . . ,An

Δ ∈ Consequence ::= A1, . . . ,An

Sequent ::= Γ � Δ || Γ ; A � Δ

Core rules:

A � A
Ax

; A � A
AxF

Γ � A,Δ Γ′,A � Δ′

Γ′,Γ � Δ′,Δ
Cut

Γ ; A � Δ
Γ,A � Δ FL

Structural rules:

Γ � Δ
Γ � A,Δ WR

Γ ; C � Δ
Γ ; C � A,Δ

WRF
Γ � Δ

Γ,A � Δ WL
Γ ; C � Δ

Γ,A ; C � Δ
WLF

Γ � A,A,Δ
Γ � A,Δ CR

Γ ; C � A,A,Δ
Γ ; C � A,Δ

CRF
Γ,A,A � Δ
Γ,A � Δ CL

Γ,A,A ; C � Δ
Γ,A ; C � Δ

CLF

Γ � Δ,A,B,Δ′

Γ � Δ,B,A,Δ′ XR
Γ ; C � Δ,A,B,Δ′

Γ ; C � Δ,B,A,Δ′ XRF
Γ′,B,A,Γ � Δ
Γ′,A,B,Γ � Δ

XL
Γ′,B,A,Γ ; C � Δ
Γ′,A,B,Γ ; C � Δ

XLF

Logical rules:

Γ � �,Δ �R
no �L rule no ⊥R rule Γ ; ⊥ � Δ ⊥L

Γ � A,Δ Γ � B,Δ
Γ � A∧B,Δ

∧R
Γ ; A � Δ

Γ ; A∧B � Δ
∧L1

Γ ; B � Δ
Γ ; A∧B � Δ

∧L2

Γ � A,Δ
Γ � A∨B,Δ

∨R1
Γ � B,Δ

Γ � A∨B,Δ
∨R2

Γ ; A � Δ Γ ; B � Δ
Γ ; A∨B � Δ

∨L

Γ,A � Δ
Γ � ¬A,Δ

¬R
Γ � A,Δ

Γ ; ¬A � Δ
¬L

Γ,A � B,Δ
Γ � A ⊃ B,Δ

⊃R
Γ � A,Δ Γ′ ; B � Δ′

Γ′,Γ ; A ⊃ B � Δ′,Δ
⊃L

Γ � A,Δ Γ′ ; B � Δ′

Γ′,Γ � A−B,Δ′,Δ
−R

Γ,A � B,Δ
Γ ; A−B � Δ

−L

Γ � A,Δ X /∈ FV(Γ � Δ)
Γ � ∀X .A,Δ ∀R

Γ ; A{B/X} � Δ
Γ ; ∀X .A � Δ ∀L

Γ � A{B/X} ,Δ
Γ � ∃X .A,Δ ∃R

Γ,A � Δ X /∈ FV(Γ � Δ)
Γ ; ∃X .A � Δ ∃L

Fig. 15. The focused sub-logic of the LK sequent calculus corresponding to LKT.

the ∧L1 rule is applied to the conclusion Γ ; A∧B � Δ we get the premise Γ ; A � Δ

which forces us to keep working with the A in focus in case it was the wrong choice

(perhaps B was the correct assumption to use). So in proof search, focusing makes

the search algorithm more efficient by cutting down on the search space, whereas in

calculi, focusing identifies a well-behaved sub-syntax for the operational semantics.

Dynamic focusing

For the dynamic method of focusing, consider which steps were missing from the

operational semantics. So instead of ruling out troublesome corners of the syntax, we
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F ∈ FocusCxt ::= (�,v) || (V,�) || in1(�) || in2(�) || e ·� || B@�
L ∈ CoFocusCxt ::= �· e

Operational rules:

(ςv) 〈F [v]||E 〈→�〉 v||μ̃x.〈F [x]||E〉〉 (v /∈ Valuev, x /∈ FV(F)∪FV(E))

(ςv) 〈V ||L[v] 〈→�〉 v||μ̃x.〈V ||L[x]〉〉 (v /∈ Valuev, x /∈ FV(L)∪FV(V ))

Rewriting rules:

(ςv) F [v] → μβ .〈v||μ̃x.〈F [x]||β 〉〉 (v /∈ Valuev, x /∈ FV(F), β /∈ FV(F)∪FV(v))

(ςv) L[v] → μ̃y.〈v||μ̃x.〈y||L[x]〉〉 (v /∈ Valuev, x /∈ FV(L), y /∈ FV(L)∪FV(v))

Fig. 16. The ς semantics for the call-by-value (v) half of the dual calculi.

will add additional steps to kick-start stuck commands. Recall that in our stuck call-

by-value command, 〈((μβ.〈f||1 · β〉), 2)||out1[α]〉, the β×v operational step was stuck

because a pair with a non-value component needs to interact with a projection. One

thing we can do in this situation is lift the non-value component out of the pair and

assign it a name via an input abstraction. Such a step reveals a hidden μv reduction

and lets the computation continue to bring the application of f to the top:

〈((μβ.〈f||1 · β〉), 2)||out1[α]〉 �→? 〈μβ.〈f||1 · β〉||μ̃x.〈(x, 2)||out1[α]〉〉
�→μv 〈f||1 · μ̃x.〈(x, 2)||out1[α]〉〉

Now, assuming that the call to f returns the result 3, the computation can continue

along to present 3 as the result to α, yielding the desired answer:

〈f||1 · μ̃x.〈(x, 2)||out1[α]〉〉 �→→ 〈3||μ̃x.〈(x, 2)||out1[α]〉〉
�→μ̃v 〈(3, 2)||out1[α]〉
�→β×v 〈3||α〉

That one extra lifting step was all that was needed to continue the computa-

tion and get to the final command. Likewise, the stuck call-by-name command

〈(1, 2)||out1[μ̃x.〈0||α〉]〉 has a non-co-value component in the projection, so we can

similarly lift the component out of the projection and assign it a name via an output

abstraction:

〈(1, 2)||out1[μ̃x.〈0||α〉]〉 �→? 〈μβ.〈(1, 2)||out1[β]〉||μ̃x.〈0||α〉〉
�→μ̃n 〈0||α〉

Lifting non-(co-)value components out of introduction forms of (co-)terms seems to

be the missing step in β-stuck commands.

The full set of such lifting rules are given in Figure 16 for the call-by-value

semantics and Figure 17 for the call-by-name semantics. These operational rules

give a minimal set of extra steps required to reduce hidden computations nested

deeply inside terms and co-terms in a way that matches the call-by-value and call-by-

name semantics for the λ-calculus. Additionally, the rewriting rules are generalized

to operate on terms and co-terms directly, making it possible to lift the appropriate

sub-computations out of (co-)terms in any context, rather than only in commands.
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F ∈ FocusCxt ::= �· v
L ∈ CoFocusCxt ::= out1[�] || out2[�] || [�,e] || [E,�] || v ·� || B@�

Operational rules:

(ςn) 〈F [e]||E 〈→�〉 μα .〈F [α ]||E〉||e〉 (e /∈ CoValuen, α /∈ FV(F)∪FV(E))

(ςn) 〈V ||L[e] 〈→�〉 μα .〈V ||L[α ]〉||e〉 (e /∈ CoValuen, α /∈ FV(L)∪FV(V ))

Rewriting rules:

(ςn) F [e] → μβ .〈μα .〈F [α ]||β 〉||e〉 (e /∈ CoValuen, α /∈ FV(F), β /∈ FV(F)∪FV(v))

(ςn) L[e] → μ̃y.〈μα .〈y||L[α ]〉||e〉 (e /∈ CoValuen, α /∈ FV(L), y /∈ FV(L)∪FV(v))

Fig. 17. The ς semantics for the call-by-name (n) half of the dual calculi.

For example, the call-by-value operational rule ςv lets us lift out the non-value v

in the command 〈in1(v)||α〉, whereas the generalized rewriting rule lets us lift out v

directly in the term in1(v) itself by abstracting over the co-variable α:

in1(v)→ςv μα.〈v||μ̃x.〈in1(x)||α〉〉

This extra generality is necessary when we want to use the rewriting theory to

aggressively perform lifting reductions in advance, as we soon will in the following

subsection. Furthermore, note that extending the semantics of the dual calculi with

the ς rules preserves determinism of the operational semantics and confluence of the

rewriting theory, since there are no critical pairs between the ς rules and μμ̃ημημ̃β

rules in either the call-by-value or call-by-name calculus.

For the μvμ̃vβvςv call-by-value operational semantics, the net effect is that the final

commands are always a value yielded to a co-variable or a simple co-value (that is,

a co-variable or a left introduction co-term) applied to a variable as follows:

FinalCommand v ::= 〈V ||α〉 || 〈x||Es〉
V ∈ Valuev ::= x || (V , V ′) || in1(V ) || in2(V ) || not(e) || λx.v || e · V || ΛX.v || B@V

Es ∈ SimpleCoValuev ::= α || out1[e] || out2[e] || [e, e′] || not[v] || V · e || λ̃α.e || B@e || Λ̃X.e

Dually for the μnμ̃nβnςn call-by-name operational semantics, the final commands are

always a simple value (a variable or an introduction term) yielded to a co-variable

or a co-value applied to a variable as follows:

FinalCommandn ::= 〈Vs||α〉 || 〈x||E〉
Vs ∈ SimpleValuen ::= x || (v, v′) || in1(v) || in2(v) || not(e) || λx.v || E · v || ΛX.v || B@v

E ∈ CoValuen ::= α || out1[E] || out2[E] || [E,E ′] || not[v] || v · E || λ̃α.e || B@E || Λ̃X.e

If we only take well-typed commands into consideration, then we get a standard

type safety theorem which says that well-typed commands always reduce to a final

command, and do not get stuck on any interacting (and potentially mismatched)

introduction forms:
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Theorem 3 (Type safety)

For any command c : (Γ � Δ):

• if c �→→ c′ by the μvμ̃vβvςv operational semantics, then c′ : (Γ � Δ) and c′ is

irreducible (i.e., c′ ��→) if and only if c′ is a call-by-value final command, and

• if c �→→ c′ by the μnμ̃nβnςn operational semantics, then c′ : (Γ � Δ) and c′ is

irreducible (i.e., c′ ��→) if and only if c′ is a call-by-name final command.

This statement of big-step type safety follows from the small-step lemmas of progress

and preservation (Wright and Felleisen, 1994), which can easily be confirmed by

induction on typing derivations and inversion on the possible operational steps.

Lemma 1 (Progress and preservation)

For any command c : (Γ � Δ):

Progress: either c is a call-by-value (respectively, call-by-name) final command or

there is a command c′ such that c �→ c′ by the call-by-value μvμ̃vβvςv (respec-

tively, call-by-name μnμ̃nβnςn) operational semantics, and

Preservation: if c �→ c′ by either the call-by-value μvμ̃vβvςv or call-by-name μnμnβnςn
operational semantics, then c′ : (Γ � Δ).

Recall that λμμ̃-calculus originally used a different β rule for functions, namely

(β→) 〈λx.v||v′ · e〉 �→ 〈v′||μ̃x.〈v||e〉〉 x /∈ FV (e)

This β→ works the same for both call-by-name and call-by-value reduction; since

the argument v′ is bound to x with an input abstraction, the rules of the core μμ̃-

calculus take over to determine whether or not the argument is evaluated now (by a

μv reduction, for example) or later (by a μ̃n reduction). Furthermore, this form of β→

reduction applies more often than the strategy-specific β→v and β→n , so we might ask

if it avoids the need of focusing for functions altogether. Unfortunately, the general

β→ rule still suffers a similar, if more subtle, fate as the strategy-specific β rules.

For example, consider the command 〈f||μβ.〈1||α〉 · μ̃x.〈0||α〉〉 that corresponds to the

expression let x = f (abort1)in 0 in a functional language containing the control

operator abort that halts the current computation and yields its argument as the

result. In call-by-value this expression should evaluate to 1, and in call-by-name it

should evaluate to 0, but the β→ rule does not help us since there is a free variable

f instead of a λ-abstraction. In this command, the ς rules are still necessary to get

the final result, and unfortunately combining the general β→ rule with ς→ creates a

mild form of non-determinism in the operational semantics since some β→ redexes

are also ς→ redexes (though the associated rewriting theories are still confluent).

As it turns out, though, the combination of lifting and strategy-specific β→

reductions are more powerful than the generalized β→ rule. In call-by-value, the

combination of ς→v , μ̃v , and β→v exactly simulate the λμμ̃-calculus β→ rule as follows:

〈λx.v||v′ · e〉→ [ςv]〈λx.v||μ̃y.〈v′||μ̃x.〈y||x · e〉〉〉→ [μ̃v]〈v′||μ̃x.〈λx.v||x · e〉〉
→ [β[→][v]]〈v′||μ̃x.〈v||e〉〉
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In call-by-name, observe that the combination of λμμ̃’s β→ and μn rules simulate

the call-by-name-specific β→n even when the call stack is not a co-value,

〈λx.v||v′ · e〉 → [β→]〈v′||μ̃x.〈v||e〉〉 → [μn]〈v {v′/x}||e〉

but together the μ̃nημβ
→
n ςn rules perform the same reduction as follows:

〈λx.v||v′ · e〉 →ςn 〈λx.v||μ̃y.〈μα.〈y||v′ · α〉||e〉〉 →μ̃n 〈μα.〈λx.v||v′ · α〉||e〉
→β→n 〈μα.〈v {v

′/x}||α〉||e〉 →ημ 〈v {v′/x}||e〉

So even though type safety (Theorem 3) cannot dispense with the ς rules by adopting

the λμμ̃-calculus’ original β→ rules, we can still rely on the combination of strategy-

specific β→ς rules from Figures 10, 16 and Figures 11, 17 to get all the same results

with deterministic operational semantics.

Static versus dynamic focusing

Now that we have two different methods for addressing β-stuck commands, one

question still remains: what do the static and dynamic methods have to do with

one another? As it turns out, they are compatible and complementary solutions

to the same problem—two sides of the same coin—that apply the same essential

idea at different times. First, one of the major features of static focusing in proof

theories and type systems is that the apparent restriction on inference rules is

no real restriction at all: every program (i.e., proof) in the original system has a

corresponding program with the same type (i.e., specification) in the focused sub-

system. We can make this claim more formally for LKQ and LKT by observing

that the syntactic transformations in Figures 18 and 19 translate general dual calculi

expressions into the LKQ and LKT sub-syntaxes, respectively, with the same type

(which can be confirmed by induction on syntax and typing derivations). These

translations are defined in such a way that an expression that happens to already lie

in the LKQ sub-syntax is not altered by Q-focusing translation, and likewise LKT

expressions are not altered by T -focusing translation.

With the focusing translations and the ς rewriting theory in hand, we can now

observe that both the static and dynamic methods of focusing amount to the same

thing. In particular, notice that the LKQ sub-syntax is just the ςv-normal forms

from the original dual calculus and the Q-focusing translation performs call-by-value

ςv-normalization, and similarly the T -focusing translation is just call-by-name ςn-

normalization into the LKT sub-syntax of ςn-normal forms, which can be confirmed

by induction on the syntax of (co-)terms and commands.

Theorem 4 (Focusing)

• In the call-by-value dual calculus, every LKQ command, term, and co-term is a

ςv-normal form, and c→→ςv �c�Q, v→→ςv �v�Q, and e→→ςv �e�Q.

• In the call-by-name dual calculus, every LKT command, term, and co-term is a

ςn-normal form, and c→→ςn �c�T , v→→ςn �v�T , and e→→ςn �e�T .
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Fig. 18. The Q-focusing translation to the LKQ sub-syntax.

Fig. 19. The T -focusing translation to the LKT sub-syntax.
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Therefore, the difference between the static and dynamic methods of focusing

is not a matter of what but when: do we prefer to leave ς redexes to happen

during execution, or would we rather reduce them all up front as a preprocessing

pass?

Abstract machines

The operational semantics of the core and dual calculi is relatively straightforward

to specify and execute: reduction rules are checked against and applied directly to

commands. The situation in the term-based λ-calculus, however, is not so easy; the

next step to take may not be found directly at the top of the term itself, but may be

buried somewhere deep inside. Therefore, an operational semantics for the λ-calculus

must also include a search for the next step which is very different from the way that

the λ-calculus is implemented on a real machine. To help bridge the gap between the

mathematics and the machine, we can instead use an abstract machine for evaluating

terms. As opposed to an operational semantics that composes together reduction

with a recursive search function as separate steps, an abstract machine is an iterative

interpreter that weaves both parts of evaluation together. To achieve this iterative

structure, an abstract machine for the λ-calculus does not act on terms in isolation,

but on a configuration including both terms and a representation of their context

for evaluation. By having direct access to the evaluation context, it can be built up

to search deeper into a term for the next step and then broken down to propagate

results back up.

Let us now consider two different abstract machines for the λ-calculus, one im-

plementing call-by-name evaluation and one implementing call-by-value. Although

abstract machines usually implement variable binding explicitly with an environment

that is part of the machine configuration to be closer to a real implementation, here

we will remain more abstract by using substitution-based machines. First, consider

the following substitution-based Krivine-style machine (Krivine, 2007) for call-by-

name evaluation:

〈v v′||E〉� 〈v||E[� v′]〉

〈λx.v||E[� v′]〉� 〈v {v′/x}||E〉

The configuration for this machine contains two parts—a λ-calculus term v and an

evaluation context E—so that 〈v||E〉 can be understood as “the term v found inside

the context E.” This machine uses two forms of evaluation context—the application

of the computation in question to an argument, E[� v′], and the empty context,

�—for finding the next β-redex to perform. The first rule is searching for the next

step of the operational semantics; given an application v v′, the function v must

be evaluated first, which is done by looking at v inside the larger context E[� v′].

The second rule is performing a function call by β reduction; if an abstraction

λx.v is found inside an application to v′, then the result v {v′/x} is returned to the

surrounding evaluation context.
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Second, consider the substitution-based CEK-style machine (Felleisen and Fried-

man, 1986) for call-by-value evaluation:

〈v v′||E〉� 〈v||E[� v′]〉
〈V ||E[� v]〉� 〈v||E[V �]〉

〈V ||E[(λx.v) �]〉� 〈v {V/x}||E〉

Compared to previous machine, this machine uses one additional form of evalua-

tion context—the application of a function value to the computation in question

E[V �]—for finding the next β-redex to perform. The first rule is the same as before.

The second rule is new, and reflects the fact that in call-by-value arguments must

be evaluated before function calls can be performed; when the function of a call is

found to be a value but its argument is not, then our attention must shift to the

argument to search for the next step. The third rule is a rephrasing of the β reduction

rule from before; if a value V is found inside of an application of the abstraction

λx.v, then the result v {V/x} is returned to the surrounding evaluation context.

Since the dual calculi effectively represents evaluation contexts with an explicit

syntactic object e, it gives us an abstract language for abstract machines (Ariola et al.,

2009). In particular, we may view the syntax of the dual calculi as a higher-level

representation of the above substitution-based abstract machines. The λ-calculus

term can be represented by a dual calculus term v, the evaluation context can

be represented by a co-term e, and the configuration of the machine can be

represented by a command c. Interestingly, though, the treatment of focusing in

abstract machines tends to be asymmetrical depending on the evaluation strategy:

call-by-value abstract machines (like the CEK machine above) tend to rely on

dynamic focusing that happens during execution, whereas call-by-name abstract

machines (like the Krivine machine above) tend to maintain static focusing.

We can relate the states of the call-by-name Krivine machine to the call-by-name

dual calculus by translating the evaluation contexts to co-terms. The empty context

can be represented by just an arbitrary co-variable α, and the application to an

argument is represented directly as a call stack co-term: E[� v′] � v′ · E. With this

interpretation, the first rule of the machine states the relationship between function

application in the λ-calculus and call stacks in the dual calculus, and the second rule

is exactly the β→n operational step:

〈v v′||E〉 = 〈μα.〈v||v′ · α〉||E〉 �→ [μ[n]]〈v||v′ · E〉 = 〈v||E[� v′]〉
〈λx.v||E[� v′]〉 = 〈λx.v||v′ · E〉 �→ [β→[n]]〈v {v′/x}||E〉

Note that if we always start with a co-value in the machine state then the first rule

only ever builds co-values in the LKT sub-syntax. For example, by evaluating a

term v in the “empty context” as 〈v||α〉, the co-term in the machine will always be a

chain of call stacks with some number of arguments like v1 · v2 · v3 · v4 · α. Therefore,

this Krivine-style machine operates within the statically focused LKT sub-syntax.

Now consider how to apply this relationship to the call-by-value CEK machine and

the call-by-value dual calculus. We can extend the previous translation of evaluation
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contexts to co-terms so that an applied function value is represented indirectly with

an input abstraction: E[V �] � μ̃x.〈V ||x · E〉. With this interpretation, the first rule

of the machine relates function application and call stacks as before, the second rule

of the machine is exactly the ςv operational step, and the last rule is a combined

μ̃vβ
→
v step:

〈v v′||E〉 = 〈μα.〈v||v′ · α〉||E〉 �→μv 〈v||v′ · E〉 = 〈v||E[� v′]〉
〈V ||E[� v]〉 = 〈V ||v · E〉 �→ςv 〈v||μ̃x.〈V ||x · E〉〉 = 〈v||E[V �]〉

〈V ||E[(λx.v) �]〉 = 〈V ||μ̃y.〈λx.v||y · E〉〉 �→μ̃v 〈λx.v||V · E〉 �→ [β→[v]]〈v {V/x}||E〉

Notice that this machine does not necessarily operate within the focused LKQ

sub-syntax: the first rule might push a non-value computation onto a call stack. In

this case, the ςv rule is needed to refocus the machine during execution. Of course,

we could avoid the need for ςv reduction at run-time by changing our interpretation

of application to pre-ςv-normalize the call stack, as in E[� v] � μ̃x.〈v||μ̃y.〈x||y · E〉〉.
However, this is just a matter of taste since the two timings of focusing amount to

the same thing (Theorem 4).

5.3 Call-by-value is dual to call-by-name

We now turn to the duality for which the dual calculi are named. We saw how

the symmetries of the sequent calculus present a logical duality that captures De

Morgan duals in Section 3.3. This duality is carried over by the Curry–Howard

isomorphism and presents itself as two dualities in programming languages:

(1) a duality between the static semantics (types) of languages, and

(2) a duality between the dynamic semantics (reductions) of languages.

These dualities of programming languages were first observed by (Filinski, 1989)

from the correspondence with duality in category theory, which was later expanded

upon by Selinger (2001; 2003) in the style of natural deduction. Curien and Herbelin

(2000) and Wadler (2003; 2005) brought this duality to the language of sequent

calculus, and show how it is better reflected in the language as a duality of syntax

corresponding to the inherent symmetries in the logic.

The static aspect of duality between types comes directly from the logical duality

of the sequent calculus. Since duality spins a sequent around its turnstile, so that

assumptions are exchanged with conclusions, we also have a corresponding swap in

the programming language. The dual of a term v of type A is a co-term of the dual

type and vice versa, so that the term and co-term components of a command are

swapped. Likewise, the duality on types lines up directly with the De Morgan duality

on logical propositions. For example, since the types for pairs (×) and sums (+)

correspond to conjunction (∧) and disjunction (∨), we have the same relationship

with the duality operation:

(A× B)⊥ � (A⊥) + (B⊥) (A + B)⊥ � (A⊥)× (B⊥)

Also following the De Morgan duality, negation (¬) is self-dual.

https://doi.org/10.1017/S0956796818000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000023


A tutorial on computational classical logic 47

Fig. 20. The duality relation between the dual calculi.

With the dual counterpart to functions in place, the full duality relationship of

types and programs of the dual calculi is defined in Figure 20, where we assume an

underlying bijection, denoted by x and α, between variables and co-variables.This

relationship is not just a syntactic word game, but it gives us a duality between

the typing derivations of terms and co-terms (Curien and Herbelin, 2000; Wadler,

2003):

Theorem 5 (Static duality)

• The command c : (Γ � Δ) is well-typed if and only if the command c⊥ : (Δ⊥ � Γ⊥)

is.

• The term Γ � v : A | Δ is well-typed if and only if the co-term Δ⊥ | v⊥ : A⊥ � Γ⊥

is.

• The co-term Γ | e : A � Δ is well-typed if and only if the term Δ⊥ � e⊥ : A⊥ | Γ⊥
is.
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Furthermore, if a command, term, or co-term lies in the LKQ sub-syntax, its dual

lies in the LKT sub-syntax and vice versa.

Also, notice that the duality operation is involutive on the nose: the dual of the

dual is exactly the same as the original.

Theorem 6 (Involution)

For all commands c, terms v, and co-terms e of the dual calculi, c⊥⊥ � c, v⊥⊥ � v, and

e⊥⊥ � e.

The dynamic aspect of duality takes form as a relationship between the two

reduction systems for evaluating programs: call-by-value reduction is dual to call-

by-name reduction. That is, if we have a command c that behaves a certain way

according to the call-by-value calculus, then the dual command c⊥ behaves in a

correspondingly dual way according to the call-by-name calculus, and vice versa.

The two operational and rewriting semantics mirror each other exactly, rule for rule.

Theorem 7 (Dynamic duality)

c �→μvμ̃vβvςv c′ if and only if c⊥ �→μnμ̃nβnςn c′⊥, and dually c �→μnμ̃nβnςn c′ if and only if

c⊥ �→μvμ̃vβvςv c
′⊥. And analogously for the rewriting rules.

This duality relationship inherent to computational interpretations of the sequent

calculus is a useful vehicle for exploring programming language design and imple-

mentation. Because duality is so syntactic in this language, once the general pattern

is set up no cleverness is needed to exploit it: terms are mirrored by co-terms, and

so we can always ask what happens when they switch places. For example, even

though we have presented LK and the dual calculi with subtraction from the start,

it was actually developed after the fact as a means to complete duality (Curien and

Herbelin, 2000). Once a sequent-based language with functions is developed, there is

a glaring gap of symmetry begging one to ask “what happens when λ-abstractions

and call-stacks switch places?” Similarly, this syntactic form of duality was used

to ask (Wadler, 2005), and subsequently answer (Ariola et al., 2011), the question

“if call-by-value is dual to call-by-name, then what is dual to call-by-need (Ariola

et al., 1995)?” By figuring out what is a call-by-need sequent calculus, the dual to

call-by-need comes for free.

6 Conclusion

We have now seen how the sequent calculus gives us a programming language for

classical logic by using the Curry–Howard isomorphism to derive another view of

computation. This view lets us look at functional programming from a lower level

using a language tailored for representing abstract machines. The important role of

contexts is always in the background of the λ-calculus and functional languages—for

example, when studying the semantics of the λ-calculus, contexts explicitly arise in

abstract machines, operational semantics, and CPS—and the sequent calculus gives

a first-class body to the essence of contexts. The language of the sequent calculus

also lets us see the computational meaning of dualities in logic as it is expressed

directly in the syntax of programs, showing us
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• the duality between call-by-value and call-by-name evaluation,

• the duality between manipulating values and manipulating contexts, and

• the duality between types in programming languages, like products and sums.

And in the context of functional programming, these kinds of dualities can be used

to tackle difficult issues like deriving well-founded principles of co-induction from

the more intuitive principles of induction (Downen et al., 2015). We also saw how

the concept of focusing from proof search can be used to maintain type safety

in the sequent calculus, so that we avoid getting prematurely stuck while keeping

computation at the top of a command. The two approaches to focusing in the syntax

or in the reductions amount to the same end, and just differ in their timing: static

focusing (i.e., translating to the LKT and LKQ sub-syntaxes (Curien and Herbelin,

2000)) occurs during “compile-time” and dynamic focusing (i.e., performing ς-

reductions (Wadler, 2003)) occurs during “run-time.” For an alternative view and

introduction to the sequent calculus from the perspective of proof search rather than

computation see (Pfenning, 2010b), and for an application of focusing for deciding

equivalence of typed λ-calculus terms see (Scherer, 2016).

In our experience, we have found that the sequent calculus provides an enlightening

and practical alternative perspective to functional programming that complements

the foundations based on the λ-calculus. For example, variations on the λ-calculus

are popularly used as an intermediate language in real-world compilers of functional

programming languages, so that the compiler can reason about and optimize pro-

grams. Given the machine-like nature of the sequent calculus, perhaps which would

make for a good intermediate language, too? To answer this question, we designed

such an intermediate language and implemented it as a plugin for the GHC (Downen

et al., 2016), and obtained a representation that was a compromise combining the

advantages of the λ-calculus in both direct style and CPS. Of particular note, we

learned how join points—which are a useful feature in both CPS (Kennedy, 2007)

and static single assignment (Cytron et al., 1991) intermediate languages—are still

important and can be incorporated in a direct style language. From this experiment,

we used the connection between natural deduction and the sequent calculus (Gentzen,

1935b) to develop a minimal extension to GHC’s existing intermediate language that

incorporates the join points from our sequent-based language. As a result, we found

that real functional programs benefited from the extension of GHC with join points

(see https://ghc.haskell.org/trac/ghc/wiki/SequentCore for more details of

GHC’s use of join points in practice), confirming that the sequent calculus can serve

as a catalyst in the practice and implementation of functional languages.

In this paper, we only covered the basics of using the sequent calculus as the core

for a programming language. One topic that we did not cover, but is of increasing

importance for the foundations of functional programming, is the concept of polarity.

In terms of computation, polarity takes into consideration not just the operational

meaning of each type (i.e., β-conversion in the λ-calculus) but also the observational

meaning of types (i.e., η-conversion in the λ-calculus). Instead of deciding on a

single strategy for the language once and for all, the programs of each type are

evaluated according to their “optimal” strategy which maximizes their observational
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properties. For example, η-conversion for functions types happens on terms in the

sequent calculus, so expressions of function type should be evaluated with the call-by-

name strategy to let η-conversion be as strong as possible. In contrast, η-conversion

for sums types happens on co-terms in the sequent calculus, so expressions of

sum types should be evaluated with the call-by-value strategy for the same reason.

This difference in η comes from properties of the inference rules for types and

lets us divide types into two camps: the positive types like sums that warrant a

call-by-value interpretation and the negative types like functions that warrant a call-

by-name interpretation. Lecture materials by Zeilberger (2013), Pfenning (2010a),

and Graham-Lengrand (2016) give an introduction to the idea of polarity in logic

and languages.

The polarized approach shows how we can design languages that incorporate both

eager and lazy evaluation to take advantage of the strengths of both evaluation

strategies without bias as to which one must be the “default” throughout programs.

But even for functional programming languages which (largely) use a single default

strategy, polarity still gives us new insights. For example, polarity gives a logical

reconstruction of pattern-matching as found in functional programming languages

(Zeilberger, 2009) and shows us how to better reason about the equivalence of

functional programs using sum types (Munch-Maccagnoni and Scherer, 2015).

Polarity first arose hand-in-hand with focusing in the study of proof search (Andreoli,

1992; Laurent, 2002), and interestingly it too says something important about

computation. Whereas focusing tells us how to focus attention on sub-computations,

polarity tells us how to adapt the dynamic meaning of types (i.e., how programs

are evaluated) to match the static meaning of types (i.e., how programs are type-

checked). Since the logic of the sequent calculus is the lingua franca of proof

search, the sequent calculus serves as an intermediate common language which

lets us discover the surprising connections between proof search and programming

languages.
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Appendix A. Classical versus intuitionistic logic and computation

The fact that the LK sequent calculus can prove the law of excluded middle

(A ∨ (¬A)), assured by duality of the law of contradiction (¬(A ∧ (¬A))) in Section

3.3, means that it is a proof system for classical logic. In contrast, intuitionistic

logic is missing duality since it accepts non-contradiction in general, but rejects

the universal truth of laws like excluded middle or double negation elimination

((¬(¬A)) ⊃ A), only allowing for specialized proofs depending on the particular A

in question. Intuitionistic logic also only validates three of the four De Morgan

laws for commuting negation with conjunction and disjunction, rejecting ¬(A∧B) ⊃
(¬A) ∨ (¬B) in particular, showing another break of duality.

(Gentzen, 1935a) introduced another sequent calculus called LJ for formalizing

intuitionistic logic instead of classical logic. Notice that the LK proof of excluded

middle made critical use of multiple consequences and contraction on the right of

the sequent in order to apply both ∨R1 and ∨R1 to the same original consequence.

Without the ability to manipulate sequents with multiple consequences, the general

proof that A ∨ (¬A) is true for any A would not be possible. Such a restriction

would break the symmetry of LK—as multiple hypotheses cannot be mirrored by

multiple consequences—and destroy the duality that let us convert the general proof

of non-contradiction into a proof of the excluded middle. LJ is thus defined as the

restriction of LK where sequents contain exactly one consequence at all times. Note

that with this restriction, LJ does not allow for the right structural rules WR, CR,

and XR since they necessarily involve sequents with more than one consequence.

For the same reason, LJ does not include the logical connectives for negation (¬)

and subtraction (−), since the introduction rules for these connectives do not fit

within the single-consequence discipline. In their place, they can be encoded in terms

of the other connectives in LJ as ¬A = A→ ⊥ and A− B = A ∧ (¬B).

The LJ sequent calculus has a close relationship with (Gentzen, 1935a) system

NJ of natural deduction, which is naturally a proof system for intuitionistic logic

already. More specifically, NJ proofs can be converted to equivalent LJ proofs,

and vice versa. The NJ system of natural deduction is shown in Figure A1, which

corresponds to the polymorphic λ-calculus with products, sums, and existential types

shown in Figure A2. We call a leaf of an NJ proof tree that is not closed off by

an axiom (an inference rule with no premise) a free assumption of that proof tree

and call an NJ proof tree without any free assumptions a closed proof. Similarly,

a variable found in a λ-calculus term that is not under a matching binder of that

variable (introduced by a λ or case term) is called a free variable, and a term

without any free variables is called a closed term. With this terminology in mind, the

correspondence between the two is that there is an NJ proof derivation of B with free

assumptions A1, . . . , An if and only if there is a typing derivation for some term M : B

with free variables x1 : A1, . . . , xn : An. By taking advantage of the correspondence
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A,B,C ∈ Proposition ::= X || � || ⊥ || A∧B || A∨B || A ⊃ B || ∀X .A || ∃X .A

� �I
no �E rule no ⊥I rule

⊥
C

⊥E

A B
A∧B

∧I A∧B
A

∧E1
A∧B

B
∧E2

A
A∨B

∨I1
B

A∨B
∨I2

A∨B

A
x

....
C

B
y

....
C

C
∨Ix,y

A
x

....
B

A ⊃ B
⊃Ix

A ⊃ B A
B

⊃E

.... (X /∈ FV(∗))
A

∀X .A
∀IX

∀X .A
A{B/X} ∀E

A{B/X}
∃X .A

∃I
∃X .A

A
x

.... (X /∈ FV(∗))
C (X /∈ FV(C))

C
∃EX ,x

Fig. A1. Gentzen’s NJ system of natural deduction.

between NJ and the polymorphic λ-calculus and between the LJ restriction of LK

and the analogously restricted dual calculi with a single output, we can demonstrate

the correspondence between NJ and LJ as a translation on programs. Consider

the mutual translations between the polymorphic λ-calculus and single-output dual

calculi shown in Figure A3. The fact that these two translations preserve types

means that the logics of LJ and NJ prove the same propositions true.

Theorem 8 (Well-typed translation)

(a) If M : A is a well-typed λ-calculus term with free variables of type Γ, then

Γ � �M�LJ : A | is a well-typed pure dual calculi term.

(b) If Γ � v : A | is a well-typed pure dual calculi term then �v�NJ : A is a

well-typed λ-calculus term with free variables of type Γ.

(c) If c : (Γ � α : A) is a well-typed pure dual calculi command then �c�NJ : A is

a well-typed λ-calculus term with free variables of type Γ.

(d) If Γ | e : B � α : A is a well-typed pure dual calculi co-term, then for all

well-typed λ-calculus terms M : B with free variables of type Γ, it follows that

�e�NJ[M] : A is a well-typed λ-calculus term with free variables of type Γ.

Theorem 9 (LJ–NJ provability)

A proof of A1, . . . , An � B is derivable in LJ if and only if a proof of B with free

assumptions A1, . . . , An is derivable in NJ.
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A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || A → B || ∀X .A || ∃X .A

M,N,P ∈ Term ::= x

|| () || (caseM of)

|| (M,N) || out1(M) || out2(M)

|| in1(M) || in2(M) || (caseM of in1(x) ⇒ N| in2(y) ⇒ P)

|| λ x.M || M N

|| ΛX .M || M B

|| B@M || (caseM ofX@x ⇒ N)

Typing rules:

() : 1
1I

no 1E rule no ⊥I rule
v : 0

caseM of : C
0E

M : A N : B
(M,N) : A×B

×I
M : A×B

out1(M) : A
×E1

M : A×B
out2(M) : B

×E2

M : A
in1(M) : A+B

+I1
M : B

in2(M) : A+B
+I2

M : A+B

x : A
x

....
N : C

y : B
y

....
P : C

(caseM of in1(x) ⇒ N| in2(y) ⇒ P) : C
+Ix,y

x : A
x

....
M : B

λ x.M : A → B
→Ix

M : A → B N : A
M N : B

→E

.... (X /∈ FV(∗))
M : A

ΛX .M : ∀X .A
∀IX

M : ∀X .A
M B : A{B/X} ∀E

M : A{B/X}
B@M : ∃X .A

∃I
M : ∃X .A

x : A
x

.... (X /∈ FV(∗))
N : C (X /∈ FV(C))

(caseM ofX@x ⇒ N) : C
∃EX ,x

Call-by-name rewriting rules:

(β×) outi(M1,M2) → Mi

(β +)

case ini(M)of

in1(x1) ⇒ N1

in2(x2) ⇒ N2

→ Ni {M/xi}

(β→ () λ x.M) N → M {N/x}
(β ∀ () ΛX .M) B → M {B/X}

(β ∃)
caseB@M of

X@y ⇒ N
→ N {B/X}{M/y}

Fig. A2. The polymorphic λ-calculus.
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Fig. A3. Translations between the polymorphic λ-calculus and the pure dual calculi.

Furthermore, because of the consistency of LJ (coming from the consistency of

LK by cut elimination in Theorem 1), the correspondence between LJ and NJ

means NJ is also consistent. Because NJ does not use sequents, we cannot state its

consistency in terms of the contradictory sequent • � •. Instead, we can say that

NJ is consistency because the provability of propositions is not a trivial predicate:

there exist some propositions with proofs and some propositions without proofs.

For example, � is axiomatically true in NJ, whereas ⊥ does not proof because that

would mean that • � ⊥ can be proved in LJ which would lead to an impossible

contradiction caused by ⊥L and Cut .

Corollary 2 (Consistency)

There are propositions A and B such that a closed proof of A is derivable in NJ and

a closed proof of B is not derivable in NJ.
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This gives us a close relationship between the two alternative formalizations of

intuitionistic logic: NJ and LJ. If we want to find a system of natural deduction that

corresponds with the full classical LK sequent calculus, we would have to extend the

NJ basis to include proofs of classical reasoning principles. If we are only interested

in provability, a direct way to extend the intuitionistic natural deduction NJ to

classical logic is to add a sufficiently expressive classical reasoning principle as an

axiom to the system. For example, we could add the law of excluded middle to NJ

to get NK as Gentzen (1935a) did.

However, there is a more programmatic way of looking at the difference between

intuitionistic and classical logic. It turns out that μ-abstractions let programs

manipulate their own control flow similar to Scheme’s (Kelsey et al., 1998) callcc

control operator, or Felleisen’s (1992) C operator. Intuitively, a use of callcc or an

abort can be read in terms of an output abstraction that duplicates or deletes its

bound co-variable, respectively, to perform contraction or weakening on the active

type of the term as seen in Section 4:

callcc(λα.v) � μα.〈v||α〉 abortc � μδ.c (δ /∈ FV (c))

This phenomenon is a consequence of Griffin (1990) observation that under the

Curry–Howard correspondence, classical logic corresponds to control flow ma-

nipulation, along with the fact that the LK sequent calculus formalizes classical

logic. Under this interpretation, multiple consequences in the sequent calculus

correspond to multiple available co-variables that give the program multiple possible

exit paths. The weakening and contraction rules on the right for these multiple

consequences correspond to deleting or copying an exit path, respectively. Indeed,

multiple consequences with right-handed structural rules may be seen as the logical

essence for this “classical” form of control effects (so called for the connection

to classical logic as well as callcc being the traditional control operator), since

extending natural deduction with multiple consequences, as in (Parigot, 1992) λμ-

calculus. This gives rise to a programming language with control effects equivalent

to the λ-calculus with a primitive callcc operator given the type for Pierce’s law

∀X.∀Y .((X → Y ) → X) → X (Ariola and Herbelin, 2003) or with a primitive C

operator given the type for double negation elimination ∀X.((X → ⊥) → ⊥) → X,

which uses the empty type ⊥.

Appendix B. An implicit treatment of structure

The traditional LK sequent calculus from Figure 4 represents the structural prop-

erties of sequents—exchange, weakening, and contraction—explicitly in the form of

inference rules. However, there are alternate sequent calculi and variations on LK

that forgo these structural rules by baking the properties deeper into the logic itself,

which is especially common when formalizing the type systems for core programming

languages based on the sequent calculus (Curien and Herbelin, 2000; Wadler, 2005;

Curien and Munch-Maccagnoni, 2010; Munch-Maccagnoni and Scherer, 2015). The

first change along this line is to treat the hypotheses and consequences of sequents

as unordered collections of propositions, for example building sequents out of sets or

multisets. This way, the exchange rules XL and XR do not do anything at all, since
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the sequents in the premise and conclusion are considered identical. The second

change is to rephrase the core axiom and cut rules in a way that bakes in weakening

and contraction as follows:

Γ, A � A, δ
Ax

Γ � A, δ Γ, A � δ

Γ � δ
Cut

Contraction is completely implicit when hypothesis and consequences are represented

by sets: Γ, A, A and Γ, A are already the same set. And in any case, even if multisets

are used, contraction can still be derived from these above new Ax and Cut rules.

CL is derived as

Γ, A, A � δ Γ, A � A, δ
Ax

Γ, A � δ
Cut

and the derivation of CR is similar. Weakening, unfortunately, cannot be directly

derived in the same manner as contraction, but instead it is admissible. That is to

say, given any proof of the sequent Γ � δ, we can build similar proofs Γ, A � δ, and

Γ � A, δ by pushing the unused A through the proof until it is finally discarded by

the generalized Ax rule or another axiom like �L or ⊥L.

In terms of provability—the question of which sequents can conclude a valid proof

tree—the versions of LK with explicit and implicit structural rules are the same.

In the implicit system, exchange is invisible, contraction is a consequence of axiom

and cut, and all weakening is pushed to the leaves. Furthermore, the two different

versions of the axiom and cut rules are interderivable with respect to their different

logics. The explicit Ax rule in Figure 4 is a special case of the implicit one above,

whereas the implicit Ax rule can be expanded into many weakenings followed by

the explicit rule. Likewise, the explicit Cut rule can be derived from the implicit

rule by weakening the two premises until they match, whereas the implicit Cut rule

can be derived from the explicit rule by contracting the result of the conclusion to

remove the duplication. Therefore, up to provability, the choice between these two

different styles for handling the structural properties of sequents in a classical or

intuitionistic logic are a matter of taste.

On the same subject, it is also sensible to consider an alternate version of left

implication introduction and right subtraction introduction that duplicates rather

than splitting hypotheses and consequences among the premises in the style of our

revised Cut above:

Γ � A, δ Γ, B � δ

Γ, A ⊃ B � δ
⊃ L

Γ � A, δ Γ, B � δ

Γ � A− B, δ
−R

In the presence of structural properties (either explicit or implicit), the two different

⊃ L and −R rules are equivalent up to provability. However, if we want a more

refined view of the structural properties, as in sub-structural logics like linear logic

(Girard, 1987), then these differences become more acute and must be considered

carefully.

The implicit treatment of structural rules in LK corresponds to the variant of

the core μμ̃-calculus type system shown in Figure B1. In this formulation, there is

no explicit use of structural rules in a typing derivation, but instead the structural

properties of sequents follow from the natural scoping rules for static (co-)variables
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Γ,x : A � x : A | Δ VR Γ | α : A � α : A,Δ VL

c : (Γ � α : A,Δ)
Γ � μα .c : A | Δ AR

c : (Γ,x : A � Δ)
Γ | μ̃x.c : A � Δ AL

Γ � v : A | Δ Γ | e : A � Δ
〈v||e〉 : (Γ � Δ)

Cut

Fig. B1. Implicit (co-)variable scope in the core μμ̃ typing.

in the μμ̃-calculus, more closely analogous to the treatment of variable scope in the

λ-calculus. During type checking, an output abstraction Γ � μα.c : A | δ (dually an

input abstraction Γ | μ̃x.c : A � δ) signals that the active type A may undergo an

arbitrary number of structural rules depending on how α (dually x) is referenced in

c. During execution, the behavior of structural rules are implicitly implemented by

the substitution operation used by μ and μ̃ reduction, corresponding to the structural

steps of a cut elimination procedure.

As with logic of LK in, the choice between the two formulations of the scoping

properties of μμ̃ (co-)variables is somewhat arbitrary and a matter of taste. Since

we are dealing with a calculus corresponding to classical logic, both treatments of

structural properties are equivalent to each other in a sense—both formulations will

admit type checking the same expressions, even in richer extensions of the core

language. However, the two formulations have their own advantages. The implicit

scoping presented in Figure B1 is concise and forgoes the redundancy of repeated

rules, whereas the explicit scoping presented in Figure 6 easily allows for a more

refined analysis of the structural properties and exploration of sub-structural calculi

(Munch-Maccagnoni, 2009) corresponding to sub-structural logics that forbid certain

uses of structural rules. The most important thing, though, is that something is done

to express the scope of (co-)variables in the classical language μμ̃.

Appendix C. Terminology and notation

Here, we give definitions for the common notations and terminology used in this

article, namely: free variables (Section C1), substitution and α renaming (Section

C2), and (deterministic) operational semantics, and (confluent) rewriting theory

(Section C3).

To avoid too much redundancy, we will only consider the definitions for the dual

calculi explicitly. The corresponding definitions for the core μμ̃-calculus follow the

appropriate subset of the dual calculi, and the relevant definitions for LK come

from the following relationship between logical connectives and type constructors:

� = 1 ⊥ = 0 A ∧ B = A× B A ∨ B = A + B A ⊃ B = A→ B

The rest of the logical connectives (¬, −, ∀, ∃X) correspond to the type constructor

of the same name. So the definitions of free variables, substitution, and α renaming

for LK propositions can be translated from the corresponding definitions for dual

calculi types.
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C1 Free variables

The set of free variables of a type are defined by the following function:

FV : Type → ℘(TypeVariable)

FV (X) � {X} FV (¬A) � FV (A)

FV (A× B) � FV (A) ∪ FV (B) FV (A + B) � FV (A) ∪ FV (B)

FV (A→ B) � FV (A) ∪ FV (B) FV (A− B) � FV (A) ∪ FV (B)

FV (∀X.A) � FV (A)− {X} FV (∃X.A) � FV (A)− {X}

The main lines of note is that X has exactly itself in its set of free variables, and

the quantifiers ∀ and ∃ bind their given type variable, thereby removing it from

their set of free variables. In contrast, the free type variables of sequents is defined

pointwise in terms of the above function by collecting together the union of all the

free variables in each type:

FV (xn : An, . . . , x1 : A1 � α1 : B1, . . . , αm : Bm)

� FV (An) ∪ · · · ∪ FV (A1) ∪ FV (B1) ∪ · · · ∪ FV (Bm)

The set of free variables in commands, terms, and co-terms follows a similar logic

to the free variables in types, where (co-)variables are their own free sets, and binders

(μ, μ̃, λ, λ̃, Λ, Λ̃) remove their bound variable from the free set. For the purpose of

representing the result of the FV function on commands and (co-)terms, we use the

set AnyVariable which is the union of all variables (x, . . . ), co-variables (α, . . . ), and

type variables (X, . . . ):

FV : Command → ℘(AnyVariable)

FV (〈v||e〉) � FV (v) ∪ FV (e)

FV : Term → ℘(AnyVariable) FV : CoTerm → ℘(AnyVariable)

FV (x) � {x} FV (α) � {α}

FV (μα.c) � FV (c)− {α} FV (μ̃x.c) � FV (c)− {x}

FV ((v, v′)) � FV (v) ∪ FV (v′) FV ([e, e′]) � FV (e) ∪ FV (e′)

FV (ini(v)) � FV (v) FV (outi[e]) � FV (e)

FV (not(e)) � FV (e) FV (not[v]) � FV (v)

FV (λx.v) � FV (v)− {x} FV (λ̃α.e) � FV (e)− {α}

FV (e · v) � FV (e) ∪ FV (v) FV (v · e) � FV (v) ∪ FV (e)

FV (ΛX.v) � FV (v)− {X} FV (Λ̃X.e) � FV (e)− {X}

FV (B@v) � FV (B) ∪ FV (v) FV (B@e) � FV (B) ∪ FV (e)
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C2 Substitution

The main obstacle in capture-avoiding substitution is to ensure that, when substi-

tuting underneath a binding form, the bound variable is not free in the expression

being substituted under the binder, which is the action known as capture. The

capture-avoiding substitution of C for Z in a type A, written A {C/Z}, is defined as

the following partial function:

X {C/Z} �
{
X if X �= Z

C if X = Z
(¬A) {C/Z} � ¬(A {C/Z})

(A× B) {C/Z} � (A {C/Z})× (B {C/Z}) (A + B) {C/Z} � (A {C/Z}) + (B {C/Z})
(A→ B) {C/Z} � (A {C/Z})→ (B {C/Z}) (A− B) {C/Z} � (A {C/Z})− (B {C/Z})

(∀X.A) {C/Z} � ∀X.(A {C/Z}) (∃X.A) {C/Z} � ∃X.(A {C/Z})
if X /∈ FV (C) if X /∈ FV (C)

The main lines of interest is what happens during X {C/Z}, in which we must

check whether X and Z are the same type variable to determine whether X is left

unchanged or replaced with C , and during (∀X.A) {C/Z} and (∃X.A) {C/Z}, in

which we must check that X is not a free variable of C to avoid capture and fail to

produce any result in that case.

At the level of programs, capture-avoiding substitution follows a similar pattern.

Substituting values for variables is defined as:

〈v||e〉 {V/z} � 〈v {V/z}||e {V/z}〉

x {V/z} �
{
x if x �= z

V if x = z
α {V/z} � α

(μα.c) {V/z} � μα.(c {V/z}) [μ̃x.c] {V/z} � μ̃x.(c {V/z})
if α /∈ FV (V ) if x /∈ FV (V )

(v, v′) {V/z} � (v {V/z} , v′ {V/z}) [e, e′] {V/z} � [e {V/z} , e′ {V/z}]
ini(v) {V/z} � ini(v {V/z}) outi[e] {V/z} � outi[e {V/z}]
not(e) {V/z} � not(e {V/z}) not[v] {V/z} � not[v {V/z}]
(λx.v) {V/z} � λx.(v {V/z}) [λ̃α.e] {V/z} � λ̃α.[e {V/z}]

if x /∈ FV (V ) if α /∈ FV (V )

(e · v) {V/z} � [e {V/z}] · (v {V/z}) [v · e] {V/z} � (v {V/z}) · [e {V/z}]
(ΛX.v) {V/z} � ΛX.(v {V/z}) [Λ̃X.e] {V/z} � Λ̃X.[e {V/z}]

if X /∈ FV (V ) if X /∈ FV (V )

(B@v) {V/z} � B@(v {V/z}) [B@e] {V/z} � B@[e {V/z}]

Here, we must decide whether x is replaced in x {V/z}, and be careful to avoid

capture when going under the binders μ, μ̃, λ, λ̃, Λ, Λ̃ by failing to produce a result

in the worst case. Substituting co-values for co-variables is defined analogously to

the above with the same free variable checks for capture-avoidance and where two
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base cases for variables and co-variables are changed to the following:

x {E/γ} � x α {E/γ} �
{
α if α �= γ

E if α = γ

Additionally, substituting types for type variables in commands and (co-)terms is

also analogous to the above, where we have fewer places that we need to check for

capture (because variables and co-variables cannot appear in types), but also need

to distribute substitution into existential hiding (B@v) and universal instantiation

(B@e) as follows:

x {C/Z} � x α {C/Z} � α

(λx.v) {C/Z} � λx.(v {C/Z}) (λ̃α.e) {C/Z} � λ̃α.(e {C/Z})

(B@v) {C/Z} � (B {C/Z})@(v {C/Z}) [B@e] {C/Z} � (B {C/Z})@[e {C/Z}]

To get around the partiality of the above substitution operations, we can use

α renaming to replace bound variables and avoid undefined cases. Intuitively,

for any instance of substitution, the primary expression being substituted into

(be it a type, command, term, or co-term) can always be α renamed into an

equivalent expression for which substitution has a definite result: for all A, Z , and

C there is a B =α A such that B {C/Z} is defined. The α renaming rules of types

are:

∀X.A =α ∀Y .(A {Y /X}) ∃X.A =α ∃Y .(A {Y /X})

Similarly, the α renaming rules of terms and co-terms are:

μα.c =α μβ.(c {β/α}) μ̃x.c =α μ̃y.[c {y/x}]

λx.v =α λy.(v {y/x}) λ̃α.v =α λ̃β.[e {β/α}]

ΛX.v =α ΛY .(v {Y /X}) Λ̃X.e =α Λ̃Y .[e {Y /X}]

C3 Rewriting and operational semantics

The single-step operational relation (c �→ c′) is a relation between commands

defined by the operational rules stated previously: c �→ c′ if any of the indi-

vidual rules apply. The operational semantics (c �→→ c′) is the reflexive, transitive

closure of the single-step operational relation defined by the following inference

rules:

c �→ c′

c �→→ c′
Inclusion

c �→→ c Reflexivity
c �→→ c′ c′ �→→ c′′

c �→→ c′′
Transitivity

An operational semantics is deterministic when each command can step to at most

one other command, i.e., c �→ c1 and c �→ c2 implies that c1 and c2 are identical

commands.

The single-step rewriting relation (→) is a family of relations between commands,

terms, and co-terms, respectively, defined by the rewriting rules stated previously
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and closed under the following compatibility inference rules:

c→ c′

μα.c→ μα.c′
v → v′

〈v||e〉 → 〈v′||e〉
e→ e′

〈v||e〉 → 〈v||e′〉
c→ c′

μ̃x.c→ μ̃x.c′

v1 → v′1
(v1, v2)→ (v′1, v2)

v2 → v′2
(v1, v2)→ (v1, v

′
2)

e1 → e′1
[e1, e2]→ [e′1, e2]

e2 → e′2
[e1, e2]→ [e1, e

′
2]

v → v′

ini(v)→ ini(v
′)

e→ e′

not(e)→ not(e′)
v → v′

not[v]→ not[v′]
e→ e′

outi[e]→ outi[e
′]

v → v′

λx.v → λx.v′
v → v′

e · v → e · v′
e→ e′

e · v → e′ · v
v → v′

v · e→ v′ · e
e→ e′

v · e→ v · e′
e→ e′

λ̃α.e→ λ̃α.e′

v → v′

ΛX.v → ΛX.v′
v → v′

B@v → B@v′
e→ e′

B@e→ B@e′
e→ e′

Λ̃X.e→ Λ̃X.e′

The rewriting theory (→→) is the reflexive, transitive closure of the family of single-

step rewriting relation defined by analogous inference rules as for the operational

semantics: an inclusion, reflexivity, and transitivity inference rule for each of

commands, terms, and co-terms. A rewriting theory is confluent if any two divergent,

many-step reductions join back together, i.e., c→→ c1 and c→→ c2 implies that c1→→ c′

and c2→→ c′ for some c′, and similarly for reductions on terms and co-terms.
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