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ON GENERALIZED NORLUND
METHODS OF SUMMABILITY II

MiNORU TANAKA

The object of this paper is to establish some inclusion relations
between two generalized Norlund methods of summability. Our
results are generalizations of Das's Theorem and one of them is
also a generalization of a theorem of the author. They include
the well-known fact that the Cesiro method (C, a) is weaker

than (C, B) for B >a >0 .

1. Introduction

The object of this paper is to prove Theorems 1 and 2 below which are
generalizations of Das's Theorem ([1], Theorem 1), in particular Theorem 1
is also a generalization of a theorem of the author ([4], Theorem 1). They

are proved in §3, and in §2 we state some preliminary lemmas.
Let p = {pn} , O = {an} be given sequences of real numbers such

that

n
(p*a) = vég P, # 0 for all n .

Given a series Z‘an with its partial sum 8, » if ti’a +8 as n->rw®

where
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n
2= e w,) § ooy

then the series Zan is said to be summable (N, p, @) to s and we

write Zan = s(N, p, o) . UNecessary and sufficient conditions for the

regularity of the (N, p, o) method are, for each p =0 ,

n
= 0((P * a)n) s and E Ipn-va\)l = 0((p * a)n) . The method
v=0

Py_o

(N, p, a) reduces to the Norlund method (N, p) when a = 1, to the
method (N, o) when p, = 1

Let A and B be two summability methods. If every series summable
(A) to a finite sum is also summable (B) to the same sum, we write
ACB, and in addition if Ejan = 4w (A) implies a, = (B) , we
shall write B t.s. A (see [4]). We define recursively the two difference

o

operators Ak and Vk on a sequence {an} by Aoan =V an = an ,

>
1)
I

_ _ _ _ ko k-1
" Aan—an—anﬂ, Van—Van—an-an_l, Aan—A[A an] and

Vka = V[Vk—lan] for k=1, 2,

In the following theorems we suppose that pn >0, qn >0, otn >0

and Bn>0 for all n=n .

THEOREM 1. et {p }, {qn}’ {a,} and {8} be such that for some

integer k= 0 ,

(¢) Vp, >0 (s=0,1, ..., k), V'p s0 (n21),

k k

k k .
Vpn+2/Vpn+l_>.Vpn+l/Vpn,
.. s _ k k k
(i7) an>0 (s =0,1, ..., k), an+l/V qnszn+l/V pn,'

(11%) At(Bn/an) 20 (2=1,2, ..., k#1) ;

(iv) (N, q, B) is regular.
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Then (N, q, B) t.s. (N, p, a) . If a = Bn for all n, Vspn >0 and

Vg, >0 (s=0,1, ..., ) in (i) and (ii) may be Vp >0 and

k
v q, >0 only.

The case in which k = 0 is the author's result ([4], Theorem 1) and
so involves Das ([1], Theorem 1, Case A). In our theorem we can obtain the

= 4v-1 _ Aé—l
n

and
» 9, n

following well-known result, if we take p,

COROLLARY. (C, 8) t.s. (C, ¥) for 6§ >y >0 .

In the following result the case in which k = 0 is also due to Das

(C71, Theorem 1, Case B).
THEOREM 2. Let {pn}, {qn}, {an} and {Bn} be such that for some

integer k = 0 , the conditions (i) and (i1} of Theorem 1 hold and

(iii) 8%(8 fo) =0 (t=1,2, ..., ke,

B(qgxa) /alqgB) =01);
(iv) (N, g, o) is regular.
Then (W, p, o) < (N, q, B) . If a =B forall n, Vspn >0 and

Vg, >0 (s=0,1, ..., k) in (i) and (ii) may be Vp >0 and

qun >0 only.

REMARK. 1In our theorems when Xk = 1 we can not obtain an inclusion

relation for (N, p, a) € (N, B) directly since {qn} depends on {pn}
with the integer k . In fact the above relation does not hold when

Aé—l
n

a,=1 and p = (6 > 1) which satisfies the condition (Z) with

k=1[8] .

2. Preliminary lemmas

We introduce several definitions. For given sequences {pn} and
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{qn} > let
(2.1) {cn} : (e * p)n =1(n=0),=0(nz=1),
(2.2) {kn} : (k *p), = q, (n=0) .

It follows from these definitions that

(2.3) k, = (c q)n for all n .

LEMMA 1. Let o, # 0 for all n . Then the necessary and

sufficient conditions that (W, p, a) < (N, q, B) holds are

n

(2.4) ;ég ((p * a)pKZ = 0((q * B)n) s
(2.5) KZ = o((q * B)n) as n—+o , for each p=0,
where
n
(2.6) KZ = vé? qn_vcv—pﬁv/av for nzp=z20.

This lemma is due to Das ([!], Lemma 1). It easily follows from (2.1)
and (2.6)- that

n
(2.7) ng (p * G)pKz = (q * B)n for all n .

LEMMA 2 ([4], Lemma 3). Let p,>0, q,>0, a >0 and
Bn >0 for all n . Then necessary and sufficient conditions that

(N, g, B) t.s. (N, p, ) are (2.5) and for some integer N = O ,

(2.8) Kz >0 for n=p=¥W.

(m) _ & (m-1)

Now given any sequence {an} , let a =

for integer
n
v=0

m=1 .

LEMMA 3. Let {pn} be such that for some integer k = 0 ,
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k k k (k)
Vp,>0, Vp, Vp, 2 [V pn+l) hold. Then e, " =0 for nz1, and

cék) > 0 . Furthermore if V p =0, then cgk+l)

v

0 for all n .

This lemma is a generalization of Kulza ([Z], Theorem 22) which is our

case kK =0, and is proved in a similar way, replacing pn by Vkpn
LEMMA 4. TIet {pn} and {qn} be such that for some integer
k = 0, the condition of Lemma 3 holds and qun >0,

k ko ok ok
v qn+lv Py = v an P -

Then

m
0k = Y Ivsqn_v)cik) for m=0,1, ..., n.

Proof. By (2.3), using Abel's transformation, we have

X
n

2ok (k)
NI LN

% n
[70) 2, [Fonma)el”

n
[qun /Vkpn) T ok, oK)
v=0

v

=0 for all »=n .

Since cvk =0 for n=1, it follows that for m =0, 1, ..., n ,

m
ks S [qu ]c(k) ,
n v=0 n-=vj v

and so our lemma is proved.

It is worth noting that from this result we see that an inclusion

relation (N, p) € (W, q) holds when {pn} and {qn} satisfy the

conditions that (N, g) is regular and Vk+lpn = 0 with the conditions of

Lemma 4. The same kind of inclusion relation for the absolute Norlund
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sumnability is discussed by Kishore ([3], Theorem 2).

3. Proof§ of Theorems 1 a

3.1.
(2.5) and (2.8) hold.

Abel's transformation to (2.6), we will have

Proof of Theorem 1.

nd 2

n-p
(3.1) KZ T L (Bv+p/av+p)qn-p—vcv
v=0
n (1)
" Vo [A (Byap®yap) )qn-p—vcv
n-p
+ ;20 [Bv+p+lﬁ1v+p+l)(ann-p-v)c
2 2 2
= Yy ¥ . Yy ey, r,, , 7,)
r. =l r =1 r= P 12 k
1 2 k
where
n-p s s
_ 1 2 (k)
Ig(l”l, rza °s Pk) - Z A (B\)+O+S /a\)+p+s ) [Vn qn_p_\))c\) >
v=0 2 2
here let 81 be the number of occurrences of the digit 1 in the set
{rn :1<n=<k} and 8, = k - 8 - Now if s, # k , then
sytl
v q, >0 . Hence by (i2) and (Zii) it follows from Lemma 3 that
s s
1 -2 (k+1)
Iz(Pl’ rs, o rk) = |A (Bp+32/ap+32) [ qn—p)cn—p
= 0.
On the other hand when 8§, = k , sl = 0 . We also have
nep k (k)
1’;(2, 2, .., 2) = \EO (6\)+p+k/a\)+p+k) [V qn_p_v)cv
= (Bo*rk/ 0Lp+7<)kn—r:>
2 0 , by Lemma 3.

https://doi.org/10.1017/50004972700006523 Published online by Cambridge University Press

By Lemma 2 we may show that the conditions

To show (2.8) holds, using repeated application of

(1)

v


https://doi.org/10.1017/S0004972700006523

Methods of summabil ity 237

Hence it follows from (3.1) that Kz >0 for n=2p=0.

Next to show that (2.5) holds we use the above notation. Since

c;k) =0 for n=1l , we have

bl sl s2

<
p(rl, Tps eees pk) = |A (8p+s2/ap+s2] [V qn-p)co .
Hence we have by (iv), for each fixed p =2 0 ,

In(rl, r

0 vy rk) = o((q * B)n) as n>®

2’
and so it follows from (3.1) that for each fixed p > O ,

Kg = 0((q * B)n) as n > o ,

Finally, if o, = Bn for all n , then KZ = kn 0 and so the required

result follows from Lemma 4.

This completes the proof of our theorem.

3.2. Proof of Theorem 2 . We first prove (2.4) in Lemma 1. By

repreated application of Abel's transformation to (2.6), we will have

n-p
Kg ) vég (BV+p/aV+D)qn—p—vcv
5P (1) , "8t (1)
- 2 (Bv+p/av+p)(vnqn-p-v)cv £ (A(Bv+p/av+p))qn-p-v-1cv
v=0 v=0
DA )
= ) Py Py vu., P ,
riél r2=l rk=1 prl 2 k
where
n-p-s
1 s 8
_ 1 2 (k)
JZ(rl, T VE% [A (Bv+p/av+p]) v qn—p—v—sl ey s

here sl and 82 are denoted in the same way of the proof of Theorem 1.

Furthermore let us divide the factor JZ(Z, 2, ..., 2) in the following
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= k (k)
Jz(Q, 2, , 2) = Jgo (Bv+p/av+p)lv qn-p-v)cv
n-p-1 v P (%)
T Vo (A(B\Ho/awo) ) —;go [V qn—p-i)ci + (B,/0, )k
=J’;(2, 2, ..., 2; 1)+J’;(2, 2, ..., 2, 2) .
. (k+1) L
Now since e, >0 for all #n and from (7i%i) it follows that
JZ(Q, 2, ..., 2; 2) = 0 and others are negative. So by {(2.7),

p_

Therefore (2.4) follows

To prove (2.5) w

y i
Lo *a), ol

1A

n
2 go (p * a)pf;(z, ..

.5 23 2) = (g = B)
o n

}

n

2 [Bn/an){pzo (p o)k

2(8,/a )(q *a) .

1A

from (227).

e also use the above notations:

(3.2) E Iy vpe s ) S KOS T2, 2, ..., 2502)
(r> 7o o) # (2,2, .00, 25 2)
Now since cék) =0 for n=21l , we have

A

Hence it follows from

as n > o | for each

JH2, ...

P
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k
(Bn/an)lv qn—p)eo
(Bn(q * a)n/an(q * B)n)[qun_p/(q * a)n)co(q * 8

(144) and (iv) that J:)’(e, s 252 =o0((g» 8B

p =2 0. Similarly we get
n-p-1
k
, 25 1) 2 L (A(Bwp/awp)] [v qn_p)co
k
2 (-(8,/9,)) [P0,y )eo -

* B)n) as n +o , for each p = 0 .
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Finally when (rl, Toy ees rk) # (2, 2, ..., 2) , we have by Lemma 3,
n-p-s
1 8 8
1 2 (k+1)
Jz[rl’ Too i Pk) - véé (Sv+p/av+p)) n qn-\)—sl v
n-p-s
s s
2 1
S UG S S ICRIVIWR)
n-le 0 v=0 v+p' T V+p

2 st
o)

v
2]

and hence by (Zv), Jz(Pl’ Phs eens rk) = o((q * 6)n) as n + o , for each

p =0 . Therefore (2.5) follows from (3.2).

Thus the proof of Theorem 2 is completed.
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