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SOME COMPARISON THEOREMS FOR CONJUGATE
AND +-POINTS

WALTER LEIGHTON

Introduction. Section 1 of this paper is concerned with the effect on con-
jugate and o-points of various perturbations of ¢(x) for differential equations
of the form

2" 4+ q(x)z = 0.

An integral inequality is developed in Section 2 that involves corresponding
focal and conjugate points of such a differential equation.

1. On perturbations. In this section of the paper we shall consider solu-
tions z(x) and y(x), respectively, of differential equations

(1) 2" 4 qkx)z =0,
2) Y +p)y =0,

where ¢(x) and p(x) are positive functions, continuous on an interval [0, c],
except possibly at a finite number of points of the interval (0, ¢) at each of
which both left- and right-hand limits of p(x) and ¢(x) exist. The points of
discontinuity of p(x) and ¢(x) are not necessarily the same points. Unless
otherwise noted, a solution will always mean a nonnull solution.

We shall suppose that x = cis the first conjugate point of x = 0 with respect
to equation (1); that is, there exists a solution z(x) of (1), positive on (0, ¢),
such that

z(0) = z2(c) =0, 2(0) = 1.

The ¢-point of z(x) is the (unique) point ¢ on (0, ¢) at which z’(¢) = 0, and
similarly for y(x).

The paper is concerned with comparison theorems for the first conjugate
point and for the o-point of x = 0 with respect to equation (2), when p(x) is a
perturbation of ¢(x).

Use will be made of the following fundamental lemma (sec [4]).

LEmMA 1. If

®@) j;c [p(x) — ¢)*@)dx 2 0 [p(x) = ()],
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a solution y(x) of (2) that vanishes at x = 0 will have « zero on the open interval
0, ¢).

Let x = ¢ be the o-point of z(x) and let [a, B8] with midpoint m be any sub-
interval of [0, ¢]. On [a, 8] replace ¢(x) by a function p(x) with the property
that ¢(x) — p(x) > 0 on [a, m) while p(x) — q(x) > 0 on (m, B]. Finally, let
p(x) = ¢(x) outside |«, 8].

We have then the following result.

THEOREM 1. If

(4) pm+ e —glm+ e 2 qglm —¢) — p(m — ¢
for each € > O such that m + € < B, the conjugate point of y(x) precedes x = c.

In other words, a solution y(x) that vanishes at x = 0 must vanish again
on (0, ¢).

To prove the theorem, draw the graph of the function z2(x), note that 22(x)
is an increasing function on [0, ¢] and that (3) holds.

Clearly there is a dual theorem when the subinterval [, 8] C [o, ¢]. One
replaces ¢(x) on [, 8] by a function p(x) with the property that
p(x) — g(x) > 0 on [a,m) and g(x) — p(x) > 0 on (m, B8], where m is the
midpoint of [«, 8]. Let p(x) = ¢(x) outside |a, 8]. We then have the following
result.

THEOREM 2. If

(G) pm—e) —gm— ¢ 2 gm+ e —plm+ e

for ecach ¢ > 0 such that m + e < B, the conjugate point of y(x) precedes x = c.
Next, let z(x) be a solution of the system

6) = +q)z =0, 2(0) =0, ©) =1,

let y(x) be a solution of the system

@ Y+ pE)y =0 30) =0 y(0©) =1,

and let ¢ be the o-point of z(x).

Lemma 2. If

® [ e — e 20 1p6) = g0

0
the a-point of y(x) precedes that of z(x).

A special case of this result was proved in [4]. To prove the lemma, we

employ the Picone formula
a o r_ P\ 2 T
9) f (p — Q)z’dx + f (& 2y ) dx = [E (yg' — zy’)] .
0 0 y y 0
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Suppose first that y(x) > 0 on (0, ¢]. The right-hand member of (9) is then
zero. We shall have a contradiction unless the first two integrals in (9) are both
zero. But the second integral vanishing implies that y(x) = kz(x), where % is
a constant; that is, both y(x) and z(x) are solutions of (1) and of (2). Accord-
ingly, [p(x) — q(x)]y(x) = 0. Then y(x) must be identically zero on a subin-
terval (by hypothesis, known to exist) on which p(x) = ¢q(x). It would follow
that y(x) = 0 on [0, 4].

If the lemma is false, y(¢) must then be zero. The right-hand member of (9)
is again zero, since lim z/y exists at both x = 0 and x = ¢. The second integral
in (9) exists, and the above argument may be repeated.

The proof of the lemma is complete.

THEOREM 3. Under the hypotheses of either Theorem 1 or Theorem 2, the o-point
of y(x) precedes thal of z(x).

The arguments in support of Theorems 1 and 2, modified in an obvious way,
are valid for Theorem 3.

COROLLARY 1. Let [y, 81] and [az, B2] (a1 < as) be equal (possibly overlapping)
subintervals of [0, o] and consider the two differential equations

i) "+ @)y =0,
(i) " A+ palx)y: = 0,

where p1(x) = q(x) 4+ 6(6 > 0) on [ay, B1) and p1(x) = q(x) outside this sub-
interval of [0, ], while pa(x) = q(x) 4+ 6 on [az, Ba] and pa(x) = q(x) outside
this subinterval. Then, the conjugate point and the o-point of x = O with respect to
(i1) precede, respectively, the corresponding points with respect to (i).

This conclusion also holds in the dual situation—when the subintervals lie on
[o, ¢] and ay < «ay.

Il

Il

It is clear that the constant é in the corollary can be replaced by a positive
function & (x) mutatis mutandis.

Critique. Note that m need not be the midpoint of [«, 8] in the above theo-
rems. It may be any point of (a, 8) less than or equal to the midpoint in the
case of Theorem 1 and in the first part of Theorem 3. Similarly, it may be any
point greater than or equal to the midpoint of [@, 8] in Theorem 2 and in the
second part of Theorem 3. Then conditions (4) and (5) are required to hold only
where applicable—that is, on a subinterval of [, 8] of which m is the midpoint.
Outside such a subinterval, on the remainder of [«, 8], the left-hand members
of inequalities (4) and (5) will then be required simply to be nonnegative.

The following corollary is useful in computing estimates of the o-point of
z(x) for some functions g(x) (we return to this idea later in the paper).

COROLLARY 2. Suppose that q(x) 1s an increasing convex function, and let
x = ¢ be the a-point of the corresponding solution z(x) of (6). Let the interval
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[0, o] be divided into n subintervals on each of which q(x) 1s replaced by 1ts value
at the midpoint of the subinterval and let p(x) be the resulting step-function on
[0, o], while p(x) = q(x) on (o, c]. The a-point of the solution y(x) of (7) will
follow the o-point of z(x), and there will be no conjugate point of x = 0 corre-
sponding to the equation y"' + p(x)y = 0 on the interval (0, c].

If q(x) is decreasing and concave and q(x) is replaced on [0, ] by the above
step-function, the o-point of y(x) will precede the a-point of z(x), and, likewise,
the conjugate point of y(x) will precede that of z(x).

We continue with generalizations of earlier results of the present writer
[1, Theorem 6], the proofs of which are less immediate.

Suppose now that in addition to previous assumptions ¢ (x) is nondecreasing
on [0, ¢], and let m be any point of (0, ¢). We employ the following lemma.

LeMMA 3. Suppose q(x) is nondecreasing on [0, c], let m be any point of (0, c)
such that 2m =< ¢, and let z(x) be the solution defined by (6). Then, z(m + €) >
z(m — €) for each ¢ (0 < ¢ < m).

To prove the lemma; construct the auxiliary differential equation
(10) 2" 4+ q1(x)z = 0,

where ¢;(x) = ¢(2m — x)(m = x < 2m). Note that ¢;(x) is the reflection in
the line x = m of ¢(x) and that ¢;(x) is defined only on the interval [m, 2m].
Let z;(x) be the solution of (10) defined by the conditions
21(27}1) = 0, 21,(27%) = —1.

Then z(x) will be well defined on [m, 2m] and will be the reflection on that
interval in the line x = m of z(x) on the interval [0, m], and z,(m) = z(m) > 0,
z)/ (m) = —z (m). Observe that [4] m £ ¢/2 £ ¢; consequently,
(11) z/(m) = —z'(m) = 0.

The conclusion of the lemma is obvious, unless m + ¢ > o. So assume that

this inequality holds. It follows from (11) that z;(x) < z(x) on a small inter-
val (m, m + e)(e; > 0). Suppose that at some point

x =x1(m < x; < 2m), z(x1) = z,(x).

‘

At such a point, z,"(x;) > 2'(x;). But the “wronskian”

w =23 — 2z
has the property that
w(x) = [gi(x) — g(x)]z(x)zi(x) <O

for x on (x;, 2m]; that is, w(x) is nonincreasing on this interval. We have,
however,

w(xy) = 2(x))[2" (x1) — 21" (x1)] <0,
w(2m) = —z/(2m)z(2m) > 0,
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a contradiction. Accordingly, z;(x) < z(x)(m < x =< 2m), and the conclusion
of the lemma follows.

THEOREM 4. Let q(x) be nondecreasing on (0, ¢) and let m be any point of (0, ¢)
such that 2m < c. If on [0, 2m] q(x) is replaced by a function p (x) with the prop-
erty that

pm +e€) —gm+e¢) 2Zqgm —¢) —pm—e) 20 (0<e=m),

with p(x) = q(x) on (2m, c], the conjugate point of x = 0 with respect to the
differential equation y'' + p(x)y = 0 precedes that of z(x), unless p(x) = q(x).

An appeal to Lemmas 1 and 3 yields the proof of the theorem.
The dual of Theorem 4 is the following.

THEOREM 5. Let q(x) be « nonincreasing function on (0, ¢) and let m be any
point of (0, ¢) such that 2m = c. If, on the interval [(2m — ¢, c], q(x) 1s replaced
by a function p(x) with the property that

(12) p(m —¢) —qlm — €) 2 gim + ¢) — p(m + ¢)
0 O<e=zc—m)

v v

with p(x) = q(x) on [0, 2m — ¢), the conjugate point of x = 0 with respect to
the differential equation y" + p(x)y = 0 precedes that of z(x), unless
p(x) = q(x).

Theorems 4 and 5 generalize Theorems 1.1 and 1.2 of [4].

An instructive example. Let q(x) = 1. Then z(x) = sinx, and ¢ = m,
o = 7/2. Set

N0 =x<7/2)
pl) = {f (r/2 <x < ),

where X and u are numbers on the interval (0, 2). A solution of the system
(13) '+ p)y =0, »(0) =0
is, then,

sin\x (0=x =< 7/2)
(14) y = gsin (A\w/2) cos u(x — 7/2) + (A/u) cos (A7/2) sin u(x — 7/2)
(r/2 <x = m).

A little trigonometry reveals that for (13)
L B
¢ = +9 [w—arctan (—tana)] (@ =Am/2,8 = ur/2),
23 a

o=5- (A>1),

I g[l +Barc tan (Ea—l—):l A< 1).

>
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When, for example, A = 3/2, u = 1/2, we have ¢ = 2.2143, ¢ = 7/3. Note
that ¢ < 7 and ¢ < ¢/2. When X = 1/2, u = 3/2, we have ¢ = 2.8325, ¢ =
1.7853. In this case, ¢ < m, while ¢ > ¢/2 (cf. [4]).

In the limiting case A = 0, if we take p = /2, say, we have ¢ = 2.9806 < ,
and ¢ = 2.3824 > ¢/2. This is, of course, equivalent to defining p(x) = 0 on
[0, 7/2) and p(x) = 2 0n [7/2, 7r]. When A = /2, u = 0, then ¢ = 7/2/2 =
1.1107, and ¢ does not exist.

Finally, it is of interest to determine u?, when A? is an arbitrary number < 1
and ¢ = 7. This leads at once to the equation

tan 8 . tana
5 T a

A little computation leads to the following paired values of A\* and p*:
A%:0.000 0.0625 0.2500 0.5625 1.000
w?:1.664 1.638 1.538 1.369  1.000

= 0.

Approximating ¢. A method of obtaining both lower and upper bounds of
a-points was developed in [3]. Corollary 2 to Theorem 3 above permits sharper
results in two situations. Consider the differential equation

(15) " + qx)y = 0,

where ¢(x) is positive, nondecreasing, and convex on [0, ¢], and where x = o
is the o-point of a solution of (15) that vanishes at x = 0. Divide the interval
[0, ¢] into = subintervals |0, k], [k, 2], - - - [(n — 1)k, nk] of common length #.
If g(x) is then replaced by the step-function p(x), where

pu>=qGﬁFlh)=cf
2
on the ¢th subinterval ( = 1,2, - - -, n), the ¢-point of x = 0 with respect to

(16) " 4+ px)y =0

will, by Corollary 2 to Theorem 3, follow that of (15)—that is, will provide an
upper bound for ¢ of (15).

The above observations yield a method of obtaining such a bound (see
[3, 6]). One solves the equations

Ca
tan g, = o tan ¢k,
1

(17) tangz; = ZC—' tan (ciih + 2:21) (= 3,4, ", n),

i—1

1 (~n
h=aG—%)

for h using a modified version of successive approximations (see [6]).
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Similarly, if g(x) is positive, nonincreasing, and concave on [0, ¢], equations
(17) will provide a lower bound for the o-point associated with (15).

For example, the o-point of x = 0 associated with (17), when ¢(x) = 7 — «x?,
is known to be

V9 —+/57

— = 10O
5 0.6021.

Taking n = 5 in (17) one obtains the lower bound 0.6020~—a very good lower
bound considering the small value of #n employed.

2. Some integral inequalities. In another paper [4] it was shown that if
P (x) is positive and increasing on [a, ¢] and x = ¢ is the first conjugate point of
x = a, then

1) [ pear < | poa

where ¢ is the ¢-point of a solution vanishing at x = «. The inequality is
reversed when p(x) is a decreasing function. It is also true when p(x) is in-
creasing that ¢ < f, where x = fis the focal point of the line x = «. If we write

(19) p(x) = 1/h*(x)

and assume that p(x) is of class C”/, an inequality stronger than (18) may be
available, as the following result shows.

THEOREM 6. Suppose that p(x) > 0 is an increasing function of class C”,
that B (x) < 0, and that y,(x) is a solution of the differential equation

(20) "+ px)y =0
such that y1(a) = y1(c) = 0, y1(x) # 0 on (a, c). Then
21) ¢/2<o<f

and

J c
(22) fa px)dx < f, P (x)dx.

The result (21) is known [4]. To prove (22), let y(x) be a solution of (20)
and set

z(x) = 3 (x).
Then z(x) is a solution of the differential equation
(23) @E'/p) +2=0.

If in this equation we substitute

e = [ s,
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we have

.. 1
w+p1(t)'w =0,

where w(t) = z(x) = v (x), and p:(t) = p(x), subject to (24). Further, we
have the following identities:

Il
=

Suppose now that y(x) is a solution of (20) such that y(¢) = 1, y'(a)
y(f) = 0, y(x) > 0 on (q,f). Then x = f is the focal point of the line x =
We observe that when x = a, t = 0, and write

J b, = [ oo

where x = g is the first zero of y’'(x) following x = «. It follows that w(0) =
0 = w(ty).

Because p(x) is an increasing function, 1/p,(¢) decreases, as ¢t increases. It
follows [1] that 2¢; < fy; that is,

s ¢
(25) f px)dx < f P (x)dx.
a s
But (see [5]) because 7'/ (x) < 0, g < ¢, and (22) follows.

A companion result is the following.

|
=

I

b

THEOREM 7. If in Theorem 6, p(x) 1s a decreasing funclion with h'' (x) > 0,
then f < ¢ < ¢/2 and

fafp(x)dx > f; p(x)dx.

The proof is analogous to that of Theorem 6.
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