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SOME COMPARISON THEOREMS FOR CONJUGATE 
AND <7-POINTS 

WALTER LEIGHTON 

I n t r o d u c t i o n . Section 1 of this paper is concerned with the effect on con­
jugate and (7-points of various per turbat ions of q(x) for differential equations 
of the form 

z" + q(x)z = 0. 

An integral inequality is developed in Section 2 t h a t involves corresponding 
focal and conjugate points of such a differential equation. 

1. On p e r t u r b a t i o n s . In this section of the paper we shall consider solu­

tions z(x) and y(x), respectively, of differential equations 

(1) z" + q(x)z = 0, 

(2) y" +p(x)y = 0, 

where q(x) and p(x) are positive functions, continuous on an interval [0, c], 
except possibly a t a finite number of points of the interval (0, c) a t each of 
which both left- and r ight-hand limits of p(x) and q{x) exist. The points of 
discontinuity of p{x) and q(x) are not necessarily the same points. Unless 
otherwise noted, a solution will always mean a nonnull solution. 

We shall suppose tha t x = c is the first conjugate point of x = 0 with respect 
to equation (1); t ha t is, there exists a solution z(x) of (1), positive on (0, c), 
such tha t 

z (0 ) = z(c) = 0, z '(0) = 1. 

The ex-point of z(x) is the (unique) point a on (0, c) a t which z' (a) = 0, and 
similarly for y{x). 

The paper is concerned with comparison theorems for the first conjugate 
point and for the cr-point of x = 0 with respect to equation (2), when p(x) is a 
per turbat ion of q{x). 

Use will be made of the following fundamental lemma (see [4]). 

LEMMA 1. If 

(3) I [p(x) - q(x)]z\x)dx ^ 0 [p(x) fé q(x)], 
J o 
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a solution y(x) of (2) that vanishes at x = 0 will have a zero on the open interval 

(0, c). 

Let x = a be the cr-point of z(x) and let [a, 0] with midpoint m be any sub-
interval of [0, a]. On [a, /3] replace q(x) by a function p(x) with the property 
tha t q(x) — p{x) > 0 on [a, m) whi lep(#) — q(x) > 0 on (m, (3]. Finally, let 
p(x) = q(x) outside [a, 13]. 

We have then the following result. 

T H E O R E M 1. / / 

(4) p(m: + e) — q(m + e) ^ q(m — e) — p(m — e) 

/or eac/* e > 0 such that m + e < /3, the conjugate point of y(x) precedes x = c. 

In other words, a solution y(x) tha t vanishes a t x = 0 must vanish again 
on (0, c). 

T o prove the theorem, draw the graph of the function z2(x), note tha t z2(x) 
is an increasing function on [0, a] and tha t (3) holds. 

Clearly there is a dual theorem when the subinterval [a, fi] C [o", c\. One 
replaces q(x) on [a, ft] by a function £(x) with the property tha t 
p(x) — q(x) > 0 on [a, m) and q(x) — p(x) > 0 on (m, 0], where m is the 
midpoint of [a} /3]. Let £(x) = q(x) outside [a, /3]. We then have the following 
result. 

T H E O R E M 2. If 

(5) £ (m — e) — g(ra — e) ^ g(m + e) — £(ra + e) 

/or £ac/& e > 0 such that ni -\- e < /3, the conjugate point of y(x) precedes x = c. 

Next, let z{x) be a solution of the system 

(6) z" + q(x)z = 0, z(0) = 0, z'(0) = 1, 

let 3>(x) be a solution of the system 

(7) y" +p(x)y = 0, y(Q) = 0, / ( 0 ) = 1, 

and let a be the cr-point of z(x). 

LEMMA 2. / / 

/ ; 
(8) \p(x) - q(x)]z\x)dx ^ 0 \p(x) je q(x)\, 

J o 
the cr-point of y(x) precedes that of z(x). 

A special case of this result was proved in [4]. To prove the lemma, we 
employ the Picone formula 

(9) j a (p - q)z2dx + J * ( ^ Z-^Jdx = - (yzf - zy') 
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Suppose first t ha t y(x) > 0 on (0, a]. The r ight-hand member of (9) is then 
zero. We shall have a contradiction unless the first two integrals in (9) are both 
zero. But the second integral vanishing implies t h a t y(x) = kz(x), where k is 
a constant ; tha t is, both y(x) and z(x) are solutions of (1) and of (2). Accord­
ingly, \p(x) — q(x)]y(x) = 0. Then y(x) mus t be identically zero on a subin-
terval (by hypothesis, known to exist) on which p(x) ^ q(x). I t would follow 
tha t y(x) = 0 on [0, a]. 

If the lemma is false, y (a) mus t then be zero. T h e r ight-hand member of (9) 
is again zero, since lim z/y exists a t both x = 0 and x = a. The second integral 
in (9) exists, and the above argument may be repeated. 

T h e proof of the lemma is complete. 

T H E O R E M 3. Under the hypotheses of either Theorem 1 or Theorem 2, the a-point 

of y(x) precedes that of z(x). 

The arguments in support of Theorems 1 and 2, modified in an obvious way, 
are valid for Theorem 3. 

COROLLARY 1. Let [au ft] and [a2, ft] («i < a2) be equal (possibly overlapping) 
subintervals of [0, a] and consider the two differential equations 

(i) yi" +Pi(x)ji = 0, 

(ii) y2" + p2{x)y2 = 0, 

where p\(x) = q(x) + ô(ô > 0) on [ai, ft] and pi(x) = q(x) outside this sub-
interval of [0, c], while p2(x) = q(x) + ô on [a2j P2] and p2(x) = q(x) outside 
this subinterval. Then, the conjugate point and the a-point of x = 0 with respect to 
(ii) precede, respectively, the corresponding points with respect to (i). 

This conclusion also holds in the dual situation—when the subintervals lie on 
[a, c] and a2 < <x\. 

I t is clear t ha t the constant ô in the corollary can be replaced by a positive 
function 5(x) mutatis mutandis. 

Critique. Note t ha t m need not be the midpoint of [a, ft in the above theo­
rems. I t may be any point of (a, ft less t han or equal to the midpoint in the 
case of Theorem 1 and in the first par t of Theorem 3. Similarly, it may be any 
point greater than or equal to the midpoint of [a, ft in Theorem 2 and in the 
second par t of Theorem 3. Then conditions (4) and (5) are required to hold only 
where appl icable—that is, on a subinterval of [a, ft of which m is the midpoint . 
Outside such a subinterval , on the remainder of [a, ft, the left-hand members 
of inequalities (4) and (5) will then be required simply to be nonnegative. 

The following corollary is useful in computing est imates of the c-point of 
z(x) for some functions q(x) (we return to this idea later in the paper ) . 

COROLLARY 2. Suppose that q(x) is an increasing convex function, and let 
x = a be the a-point of the corresponding solution z{x) of (6). Let the interval 
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[0, a] be divided into n subintervals on each of which q{x) is replaced by its value 
at the midpoint of the subinterval and let p{x) be the resulting step-function on 
[0, a], while p(x) = q(x) on (a, c]. The a-point of the solution y(x) of (7) will 
follow the a-point of z(x), and there will be no conjugate point of x = 0 corre­
sponding to the equation y" + p(x)y = 0 on the interval (0, c]. 

If q{x) is decreasing and concave and q(x) is replaced on [0, a] by the above 
step-function, the a-point of y(x) will precede the a-point of z(x), and, likewise, 
the conjugate point of y(x) will precede that of z{x). 

We continue with generalizations of earlier results of the present writer 
[1, Theorem 6], the proofs of which are less immediate. 

Suppose now tha t in addition to previous assumptions q(x) is nondecreasing 
on [0, c], and let m be any point of (0, c). We employ the following lemma. 

LEMMA 3. Suppose q(x) is nondecreasing on [0, c], let m be any point of (0, c) 
such that 2m ^ c, and let z(x) be the solution defined by (6). Then, z(m + e) > 
z(m — e) for each e (0 < e < m). 

To prove the lemma; construct the auxiliary differential equation 

(10) Z l " + qi{x)z = 0, 

where qi(x) = q(2m — x) (m ^ x ^ 2m). Note tha t qi(x) is the reflection in 
the line x = m of q(x) and tha t qi(x) is defined only on the interval [m, 2m]. 
Let Ziix) be the solution of (10) defined by the conditions 

2i(2w) = 0, z1
/(2m) = - 1 . 

Then Z\(x) will be well defined on [m, 2m] and will be the reflection on tha t 
interval in the line x = m of z(x) on the interval [0, m], and Zi(?n) = z(m) > 0, 
Zi (m) = —z'{m). Observe tha t [4] m ^ c/2 ^ a; consequently, 

(11) zi'(m) = -z'(m) S 0. 

The conclusion of the lemma is obvious, unless m + e > a. So assume tha t 
this inequality holds. I t follows from (11) tha t z\(x) < z(x) on a small inter­
val (m, m + ei)(ei > 0). Suppose tha t a t some point 

x = X\(m < Xi < 2m), z(xi) = s i (xi) . 

At such a point, Zi'(xi) > z'(x\). But the "wronskian" 

W = Z\Z* — Z\Z 

has the property tha t 

w'(x) = IqAx) - q(x)]z(x)Zl(x) < 0 

for x on (xi, 2m]; tha t is, w(x) is nonincreasing on this interval. We have, 
however, 

w(Xl) = zixOiz'ixi) - zi '(xi)] < 0, 

w(2m) = -zi'(2m)z(2m) > 0, 
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a contradiction. Accordingly, z\(x) < z(x)(m < x S 2m), and the conclusion 
of the lemma follows. 

T H E O R E M 4. Let q(x) be nondecreasing on (0, c) and let m be any point of (0, c) 
such that 2m ^ c. If on [0, 2m] q(x) is replaced by a function p(x) with the prop­
erty that 

p(m + e) — q(m + e) ^ q(m — e) — p(m — e) ^ 0 (0 < e g m), 

with p(x) = q(x) on (2m, c], the conjugate point of x = 0 with respect to the 
differential equation y" + p{x)y = 0 precedes that of z(x), unless p(x) = q(x). 

An appeal to Lemmas 1 and 3 yields the proof of the theorem. 
The dual of Theorem 4 is the following. 

T H E O R E M 5. Let q(x) be a nonincreasing function on (0, c) and let m be any 
point of (0, c) such that 2m ^ c. If, on the interval [2m — c, c], q(x) is replaced 
by a function p{x) with the properly that 

(12) p(m — e) — q(m — e) ^ q(m + e) — p(m + e) 

> 0 (0 < e ^ c - m) 

with p(x) = q(x) on [0, 2m — c), the conjugate point of x = 0 with respect to 
the differential equation y" + pipe) y = 0 precedes that of z(x), unless 
p(x) = q(x). 

Theorems 4 and 5 generalize Theorems 1.1 and 1.2 of [4]. 

An instructive example. Let q(x) = 1. Then z(x) = sin x, and c = w, 
a = TT/2. Set 

. , v /X 2 (0 ^x < IT/2) 
P{X) = V ( T T / 2 < * ^ ) , 

where X and jii are numbers on the interval (0, 2) . A solution of the system 

(13) y" + p(x)y = 0, y(0) = 0 

is, then, 

(sin \x (0 ^ x ^ TT/2) 

(14) 3/ = <sin (XTT/2) cos »(x - TT/2) + (X /M) cos (XTT/2) sin /i(x - TT/2) 

( ( T T / 2 < X ^ TT). 

A little t r igonometry reveals t ha t for (13) 

2/3 L 
(f tan a) J 7T — arc tan I - tan a I (a = \T/2, (3 — txir/2), 

— ^ ( A > D , 

^ i L l + i a r c t a n ^ - ^ j (X < 1). 
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When, for example, X = 3/2, /x = 1/2, we have c = 2.2143, a = TT/3. Note 
t ha t c < ir and o- < c/2. When X = 1/2, /x = 3/2, we have c = 2.8325, o- = 
1.7853. In this case, c < TT, while o- > c/2 (cf. [4]). 

In the limiting case X = 0, if we take xx = v % say, we have c = 2.9806 < TT, 
and a = 2.3824 > c/2. This is, of course, equivalent to defining p(x) = 0 on 
[0, TT/2) and p(x) = 2 on [TT/2, TT]. When X = v ^ /x = 0, then o- = TT/2V / 2" = 

1.1107, and c does not exist. 
Finally, it is of interest to determine ju2> when X2 is an arbi t rary number < 1 

and c = 7T. This leads a t once to the equation 

tan 0 tan a _ 
~T" + a ~ 

A little computat ion leads to the following paired values of X2 and JU2: 

X2 : 0.000 0.0625 0.2500 0.5625 1.000 

M2 : 1.664 1.638 1.538 1.369 1.000 

Approximating a. A method of obtaining both lower and upper bounds of 
o--points was developed in [3]. Corollary 2 to Theorem 3 above permits sharper 
results in two situations. Consider the differential equation 

(15) y" + q(x)y = 0, 

where q(x) is positive, nondecreasing, and convex on [0, a], and where x = a 
is the cr-point of a solution of (15) tha t vanishes a t x = 0. Divide the interval 
[0, a] into n subintervals [0, h], [h, 2h], • • • [{n — l)h, nh] of common length h. 
If q(x) is then replaced by the step-function p(x), where 

p(x) = qy~2—h J = Ci2 

on the ith subinterval {i = 1, 2, • • • , n), the cr-point of x = 0 with respect to 

(16) y" + p(x)y = 0 

will, by Corollary 2 to Theorem 3, follow tha t of (15)—that is, will provide an 
upper bound for a of (15). 

The above observations yield a method of obtaining sucli a bound (see 
[3, 6]). One solves the equations 

tan z2 = — tan C\h, 
C\ 

(17) tan zt = —L tan (c^ih + zt-i) (i = 3, 4, • ' • , n), 
Ci-i 

h = i\f ~z") 
for h using a modified version of successive approximations (see [6]). 
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Similarly, if q(x) is positive, nonincreasing, and concave on [0, a], equations 
(17) will provide a lower bound for the ex-point associated with (15). 

For example, the o--point of x = 0 associated with (17), when q(x) = 7 — x2, 
is known to be 

^ v ë = a602L 
Taking n — 5 in (17) one obtains the lower bound 0.6020"—a very good lower 
bound considering the small value of n employed. 

2. Some integral inequalities. In another paper [4] it was shown that if 
p(x) is positive and increasing on [a, c] and x = c is the first conjugate point of 
x = a, then 

(18) J p(x)dx < i p (x)dx, 

where a is the a-point of a solution vanishing at x = a. The inequality is 
reversed when p(x) is a decreasing function. It is also true when pipe) is in­
creasing that a < / , where x — f is the focal point of the line x = a. If we write 

(19) pipe) = l/h2(x) 

and assume that p(x) is of class C", an inequality stronger than (18) may be 
available, as the following result shows. 

THEOREM 6. Suppose that p(x) > 0 is an increasing function of class C", 
that h"'(x) < 0, and that y\{x) is a solution of the differential equation 

(20) y" + p(x)y = 0 

such that yi(a) = yi(c) = 0, yi(x) ^ 0 on (a, c). Then 

(21) c/2<a<f 

and 

(22) I p(x)dx < I p(pc)dx. 
J a J f 

The result (21) is known [4]. To prove (22), let y{x) be a solution of (20) 
and set 

z{x) = y'ix). 

Then z(x) is a solution of the differential equation 

(23) iz'lp)' + z = 0. 

If in this equation we substitute 

- / 
*J n 

(24) t = I p(x)dx, 
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we have 

MO 
where w(t) = z(x) = yf(x), and pi(t) = £ (x ) , subject to (24). Fur ther , we 

have the following identities: 

p(x) p(x) 

Suppose now tha t y(x) is a solution of (20) such tha t y (a) = 1, y'(a) = 0, 

y(f) = 0, y(x) > 0 on (a,f). Then x = / is the focal point of the line x = a. 

We observe tha t when x = a, t = 0, and write 

/1 = I p{x)dx, fa = \ p(x)dx, 
J a J a 

where x = g is the first zero of y'f (x) following x = a. I t follows tha t w(Q) = 

0 = w(*2). 

Because p(x) is an increasing function, l/pi(t) decreases, as / increases. I t 

follows [1] t ha t 2/i < fa; t ha t is, 

(25) I p(x)dx < I p{x)dx. 
J a J f 

But (see [5]) because h"(x) < 0, g < c, and (22) follows. 

A companion result is the following. 

T H E O R E M 7. / / in Theorem 6, p(x) is a decreasing function with h"{x) > 0, 

then f < a < c/2 awJ 

/
p(x)dx > I p(x)dx. 

a J f 

T h e proof is analogous to tha t of Theorem 6. 
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