
J. Aust. Math. Soc. 101 (2016), 335–355
doi:10.1017/S1446788716000148

REALIZABILITY PROBLEM FOR COMMUTING GRAPHS

MICHAEL GIUDICI and BOJAN KUZMA�

(Received 12 August 2015; accepted 16 February 2016; first published online 13 May 2016)

Communicated by B. Martin

Abstract

We investigate properties which ensure that a given finite graph is the commuting graph of a group or
semigroup. We show that all graphs on at least two vertices such that no vertex is adjacent to all other
vertices is the commuting graph of some semigroup. Moreover, we obtain complete classifications of the
graphs with an isolated vertex or edge that are the commuting graph of a group and the cycles that are the
commuting graph of a centrefree semigroup.
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1. Introduction and preliminaries
Let S be a semigroup with centre Z(S ) := {x ∈ S | xs = sx for all s ∈ S }. The
commuting graph Γ(S ) is the simple graph with vertex set S \Z(S ), and two distinct
vertices x and y are adjacent if and only xy = yx. This notion can be traced back at least
as far as the paper by Brauer and Fowler [6] who used commuting graphs to study the
distances between involutions in finite groups (it should be mentioned, however, that
the vertices of their graph consisted of all nonidentity elements).

Solomon and Woldar [16] showed that a commuting graph distinguishes finite
simple nonabelian groups. More precisely, if the commuting graph of a group is
isomorphic to the commuting graph of some finite nonabelian simple group, then the
two groups are isomorphic. In general, commuting graphs do not distinguish groups
as the commuting graph of Q8 and D8 both consist of three disjoint edges.

In the present paper, we will be concerned with the following inverse problem for
commuting graphs: given a simple graph Γ, can we find a group or semigroup whose
commuting graph is isomorphic to Γ? We say that such a graph Γ is realizable over
groups or over semigroups, respectively. Part of the motivation behind the present
study are the results of Pisanski [15] who showed that any graph on n vertices is
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isomorphic to the induced subgraph of commuting graph of S n
3, a direct product of n

copies of the symmetric group S 3. However, the vertices of this subgraph, in general,
do not form a semigroup as they may not be closed under multiplication. Unaware
of [15], the second author with collaborators [2] proved that every finite simple graph
is isomorphic to the induced subgraph of the commuting graph of complex matrices
with sufficiently large size. The vertices of this subgraph can be taken to be projections.
Further, they showed that, for any positive integer n, there exists a finite graph of order
n2 + 2 which is isomorphic to no induced subgraph of the commuting graph of n–by–n
matrices.

Araújo et al. [4, Problems (3) and (4)] asked to classify the commuting graphs of
semigroups and to prove or disprove that there is a semigroup whose commuting graph
has clique number, girth or chromatic number n for any integer n. We give a complete
answer to these two questions in Theorem 2.2 by showing that any finite graph on
at least two vertices that does not have a vertex adjacent to all other vertices is the
commuting graph of a semigroup. This also gives an alternative proof for the result of
Araújo et al. [4] that, for every integer n, there is a semigroup whose commuting graph
has diameter n. The semigroup in their proof has no centre while the semigroup in our
construction to prove Theorem 2.2 has a centre of order two. Given Theorem 2.2, it is
natural to restrict the realization question for semigroups to semigroups from particular
classes, for example centrefree semigroups. We undertake some investigations along
these lines with our main result being the following (the proof will be given after
Theorem 2.12).

Theorem 1.1. A cycle is the commuting graph of a centrefree semigroup if and only if
its length is divisible by four.

Commuting graphs of groups are much more restrictive. For example, a GAP [9]
computation shows that no graph of order less than five is a commuting graph of some
group. Moreover, 30 is the smallest order of a connected graph that is the commuting
graph of some group. In fact if G were a group with connected commuting graph on
less then 30 vertices then, since |Z(G)| divides |G|, we would have |G| < 60 but a GAP
calculation shows that no such group exists. There are seven groups with a connected
commuting graph with 30 vertices; each has order 32 and a centre of order two.

There are also many other restrictions on the possible graphs realizable as the
commuting graph of a group. Indeed, even though there is no bound for the diameter
of the commuting graph of a group [10], Morgan and Parker [14] have shown that
every connected component of the commuting graph of a group with trivial centre has
diameter at most 10. Moreover, they showed that if ∆ is a connected component of
such a graph for a nonsoluble group with ∆ containing no involutions, then ∆ must
be a clique. Furthermore, Afkhami et al. [1] have shown that only 17 groups have a
planar commuting graph. This result was also obtained by Das and Nongsiang [7],
who further proved that, for a given genus g, there are only a finite number of groups
whose commuting graph has genus g. In addition, [7] also shows that only three groups
have triangle-free commuting graphs.
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We collect some simple observations about the structure of commuting graphs of
groups in Section 3. In particular, Lemma 3.4 shows that any nonisolated edge of the
commuting graph of a group must lie in a triangle. We then determine the structure
of commuting graphs of groups that contain an isolated vertex or edge. This work is
summarised in the following two theorems.

Theorem 1.2. Let G be a group and suppose that Γ(G) has an isolated vertex. Then
Γ(G) has exactly |G|/2 isolated vertices and the remaining vertices form a clique.

Theorem 1.3. Let G be a group and suppose that Γ(G) has an isolated edge. Then Γ(G)
consists of isolated edges, cliques and at most one noncomplete connected component
∆. Moreover, ∆ has diameter at most five.

More specific information about the groups involved in Theorem 1.2 is given in
Theorem 3.9, while more details about the graphs and groups involved in Theorem 1.3
are given in Lemma 3.12, Theorem 3.13, Lemma 3.15 and Theorem 3.16. Combined,
they show how much the commutativity relation determines finite groups that contain
nontrivial self-centralizing subgroups of order at most three. For example, it follows,
from Theorems 3.9, 3.13 and 3.16, that if Γ(G) = 2k−2K2 + K2k−1−2 for k ≥ 4, then G is
dihedral, semidihedral or a generalized quaternion group. The proof of Theorem 1.3
uses some deep group theoretical results by Feit and Thompson [8], Mazurov [13] and
Wong [19] about groups with a self-centralizing subgroup of order three or four.

The groups that occur in Theorems 1.2 and 1.3 have centre of order at most two and
the diameter of each connected component is at most five. Given the result of Morgan
and Parker [14] that the diameter of each connected component of the commuting
graph of a group with trivial centre is at most 10, the following question seems natural.

Question 1.4. Is there some function f (d) such that if G is a group with |Z(G)| 6 d,
then each connected component of Γ(G) has diameter at most f (d)?

Note that there is no bound on the order of the centre for the family of examples
in [10] with unbounded diameter.

1.0.1. Notation. Given a graph, Γ we denote the vertex set of Γ by V(Γ) and the
edge set by E(Γ). Also, we denote by |V(Γ)| the cardinality of the vertex set of Γ. Given
vertices x, y ∈ Γ we denote by x ∼ y the fact that they form an edge in Γ. The distance,
d(x, y) between connected vertices x and y is the length of a minimal path between x
and y. We set d(x, y) =∞ if there is no path from x to y. We let Kn denote the complete
graph on n vertices.

Unless otherwise stated, all semigroups and groups are written multiplicatively and
the identity in a group is one. Let |G| denote the order of the (semi)group G and, given
g ∈ G, let |g| denote the order of g. Let Z(G) be the centre of a (semi)group G, let
CG(A) be the centralizer of the subset A of a (semi)group G and, in the case where G is
a group, let NG(A) := {x ∈ G | x−1Ax = A} be its normalizer. Given elements x, y ∈ G,
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we denote by 〈x, y〉 the subgroup generated by x and y, so 〈x〉 is the subgroup generated
by x. By H 6 G we denote that H is a subgroup of a group G, and Aut(G) denotes the
automorphism group of G.

Let S n and An be the symmetric group and alternating group on n elements,
respectively, let Zp = Z/(pZ) be a cyclic group of order p, let SL(n, pk) be the special
linear group of n × n matrices with determinant one over the Galois field GF(pk) and let
PSL(n, pk) = SL(n, pk)/Z(SL(n, pk)) be the projective special linear group. As usual,
given a group homomorphism φ : G→G, its action on an element g ∈G is denoted by
gφ ∈ G.

2. Realizability over semigroups

We start with two basic obstructions that prevent realizability over semigroups.

Lemma 2.1. Let Γ be a graph. If either:

(i) |V(Γ)| = 1; or
(ii) Γ contains a vertex adjacent to all vertices in V(Γ)\{v},

then Γ is not the commuting graph of a semigroup.

Proof. Suppose that Γ = Γ(S ) for some semigroup S and that v ∈ V(Γ) such that either
V(Γ) = {v} or v is adjacent to all vertices in V(Γ)\{v}. Then v commutes with itself and
all elements of Z(S ) ∪ Γ = S so v ∈ Z(S ), which is a contradiction. �

In particular, Lemma 2.1 shows that complete graphs are not commuting graphs of
semigroups. However, the obstructions in Lemma 2.1 are the only ones that prevent
realizability over semigroups.

Theorem 2.2. Every finite graph Γ with at least two vertices and such that no vertex
is adjacent to all other vertices is the commuting graph of some semigroup S with
|S | = |Γ| + 2.

Proof. Let V(Γ) = {v1, . . . , vn} be the ordered vertex set of Γ. Pick a set Z = {0, z},
with two distinct elements disjoint from V(Γ). On the set S = V(Γ) ∪ Z define a
multiplication by S Z = ZS = {0}, and

viv j =

0 if i < j or (vi, v j) is an edge in Γ,
z if i > j and (vi, v j) is not an edge in Γ.

Clearly, S 2 ⊆ Z so S (S 2) ⊆ S Z = {0} and (S 2)S ⊆ ZS = {0} and hence the product of
any three elements gives zero. Therefore, the multiplication is associative and so S is
a semigroup with zero. Moreover, since no vertex in Γ is adjacent to all other vertices,
Z(S ) = Z. Also, vi, v j ∈ S \ Z(S ) commute if and only if they form an edge in Γ. �

Remark 2.3. Since each set can be well ordered, only cosmetic modification is
required to show that every infinite graph such that no vertex connects to all other
vertices is a commuting graph of a semigroup.
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Remark 2.4. The upper bound on the order of S is exact. Namely, it can be shown that
the six-cycle graph Γ = C6 is not the commuting graph of a semigroup of order seven.

Things are more complicated if we restrict ourselves to centrefree semigroups, that
is, to semigroups whose centre is the empty set. We demonstrate this with the next
lemma and its corollary.

Lemma 2.5. Let Γ be the commuting graph of a centrefree semigroup S and let
a, b, c ∈ V(Γ) such that:

(i) a ∼ b ∼ c and a / c; and
(ii) no triangle in Γ contains {a, b} or {b, c}.

Then
either ab = a and bc = c or ab = b = bc. (2.1)

Proof. Note first that ab = ba ∈ S commutes with both a and b and hence, in
Γ = Γ(S ), ab is adjacent to a and b. By the assumption (ii), it follows that ab ∈ {a, b}
and, similarly, bc = cb ∈ {b, c}. Now, assume that ab = a and bc = b. Then

ac = (ab)c = a(bc) = ab = a = ba = (cb)a = c(ba) = ca,

which contradicts the fact that a / c. Similarly, ab = b and bc = c is not possible since,
otherwise,

ac = a(bc) = (ab)c = bc = c = cb = c(ba) = (cb)a = ca. �

Corollary 2.6. Let Γ be the commuting graph of a centrefree semigroup S . Assume
that Γ contains a cycle C of length n ≥ 4 as an induced subgraph such that no two
adjacent vertices of C are contained in a triangle from Γ. Then n is even.

Proof. Suppose that Γ contains a cycle C. By Lemma 2.5, the vertices of C can be
labelled by {±1} such that, if ab = a and bc = c, we label vertex b with −1; otherwise, if
ab = b = bc, we label vertex b with +1. Hence, walking around the cycle, the labelling
alternates and so |C| is even. �

Example 2.7. The assumption in Corollary 2.6 that no edge from an induced cycle
forms a triangle in Γ is essential. For example, the multiplication table



s1 s2 s3 s4 s5 s6

s1 s1 s1 s1 s1 s1 s1
s2 s1 s1 s1 s1 s2 s2
s3 s1 s1 s1 s1 s3 s3
s4 s4 s4 s4 s4 s4 s4
s5 s1 s2 s2 s4 s5 s5
s6 s1 s3 s3 s4 s6 s6


makes the set S = {s1, s2, s3, s4, s5, s6} into a centrefree semigroup with Γ(S ) containing
the induced 5-cycle s2 ∼ s3 ∼ s6 ∼ s4 ∼ s5 ∼ s2. This is possible because s1 forms a
triangle with edges {s5, s2}, {s2, s3} and {s3, s6}.
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Figure 1. A house graph.

Corollary 2.8. If n ≥ 5 then there exists a graph on n vertices that is the commuting
graph of a semigroup but not the commuting graph of a centrefree semigroup.

Proof. If n is odd, consider an n-cycle. If n is even, consider the disjoint union of an
(n − 1)-cycle and an isolated vertex. �

Example 2.9. The edgeless graph Γ on n vertices is the commuting graph of the
centrefree semigroup S = {v1, . . . , vn} with multiplication defined by viv j = vi.

Example 2.10. GAP calculations show that each graph on at most four vertices that
does not satisfy the obstructions in Lemma 2.1 is the commuting graph of some
centrefree semigroup.

Example 2.11. GAP calculations show that there exist exactly two simple graphs on
five vertices, each vertex with valency at most three, which are not the commuting
graph of a centrefree semigroup. One such graph is the 5-cycle, while the other is a
house (see Figure 1).

Note that, by Theorem 2.2, both graphs are commuting graphs of a semigroup with
nontrivial centre.

Next, we give a complete picture of when a cycle is the commuting graph of some
centrefree semigroup and so prove Theorem 1.1. It turns out that if such a semigroup
exists, then it is essentially unique. Clearly, this is no longer the case if the restriction
about being centrefree is removed because S and its unitization S 1 = S ∪ {1} have
the same commuting graph. Note the following consequence of the Theorem below:
there is no upper bound on the diameter of a connected commuting graph of centrefree
semigroups (see, also, [4, Theorem 4.1]).

Semigroups S 1 and S 2 are (anti)isomorphic if there exists a bijection φ : S 1 → S 2
such that (ab)φ = (aφ)(bφ) for each a, b ∈ S 1 (that is, φ is an isomorphism) or (ab)φ =

(bφ)(aφ) for each a, b ∈ S 1 (that is, φ is an antiisomorphism).
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Theorem 2.12. A cycle is the commuting graph of some centrefree semigroup if and
only if its length is divisible by four. If a cycle has at least 5 vertices then up to
(anti)isomorphism there exists at most one centrefree semigroup whose commuting
graph is a given cycle.

Proof. By Lemma 2.1, a triangle is not the commuting graph of a semigroup. So, by
Corollary 2.6, it only remains to consider even cycles.

Suppose, therefore, that an even cycle C2k is the commuting graph of a centrefree
semigroup S . Each vertex x ∈ Γ(S ) has exactly two neighbours, say, y, z. It follows
that x2 ∈ CS ({y, x, z}) = {x}, so S is a band.

We label the vertices of Γ(S ) by x0, x1, . . . , x2k−1 such that xi ∼ xi±1 where addition
of subscripts is done modulo 2k. Now, by Lemma 2.5, the identity (2.1) holds for Γ(S )
and so, as in the proof of Corollary 2.6, the vertices of Γ(S ) can be labelled by {±1}.
Without loss of generality, we label the vertices with even subscripts by +1 and those
with odd subscripts by −1. Recall that this means that

x2ix2i±1 = x2i±1x2i = x2i i ∈ {0, 1, . . . , k − 1}. (2.2)

Step 1. If x, y ∈ C2k are at distance two then

xy ∈ {x, y}. (2.3)

To see this, let x ∼ b ∼ y be a path of length two from x to y. Note that xy commutes
with b and so xy ∈ {x, b, y}. Suppose that xy = b. Then xy commutes with x and so

bx = (xy)x = x(xy) = xy = b.

Thus b is labelled +1 and we also have by = b. Now yx also commutes with b and,
since x / y, we must have yx ∈ {x, y}. If yx = x, then, using the fact that x2 = x, we
have that xyx = x and so bx = x, which contradicts b being labelled +1. Thus yx = y,
but then yxy = y, and so by = y, which is another contradiction. Thus (2.2) holds.

Step 2. By (2.3), x0x2 ∈ {x0, x2} and, by considering, if necessary, the opposite
semigroup (with multiplication given by a · b := ba), we may assume that

x0x2 = x0. (2.4)

Step 3. We prove by induction that

x2ix2i+2 = x2i, i ∈ {0, 1, . . . , k − 1}. (2.5)

The base step is given by (2.4). To prove the induction step, assume we have already
shown that vertices a, c with d(a, c) = 2 and with labels +1 satisfy

ac = a.

Choose e , a with d(c, e) = 2 and assume, to the contrary, that

ce = e. (2.6)
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By (2.3), ca ∈ {c, a} and, as ca , ac = a,

ca = c.

Likewise, ec = c. Moreover, if d ∈ CS ({c, e}) is the unique vertex commuting with both
c and e, then, since both c, e have label +1,

dc = c = c d and e d = e = de,

and, from the inductive hypothesis (2.6), we deduce that

ad = (ac) d = a(c d) = ac = a. (2.7)

Furthermore, d(da) = d2a = da = d(ad) = (da)d, so da ∈ CS (d) = {c, d, e}. Note that
da = d is impossible because then da would commute with c and we would get that
c = cd = c(da) = (da)c = d(ac) = da = d, which is a contradiction. Hence

da ∈ {c, e}. (2.8)

Now, by our assumption, cea = ea = eac, and, by (2.7), also dea = ea = ead, so
ea ∈ CS ({c, d}) = {c, d}. If ea = d then, by (2.8), d = ea = ea2 = (ea)a = da ∈ {c, e},
which is a contradiction. Hence

ea = c.

Next, in (2.8), da = e is impossible, since then e = ce = c(da) = (cd)a = ca = c. So,

da = c.

For the unique b ∈ C({a, c}), which clearly satisfies

ba = a = ab and bc = c = cb

this further gives (bd)a = b(da) = bc = c. Thus bd , b (because ba = a = a2) and, as
(2.3) implies bd ∈ {b, d}, we see that

bd = d.

We also have db ∈ {b, d} and, since d / b, it follows that db = b. However, we then
have a = ba = (db)a = d(ba) = d(ab) = (da)b = cb = c, which is again a contradiction.
Hence (2.6) is contradictory and we must have ec = e, which proves the induction step
and hence the equation (2.5).

Step 4. We claim that
x2iy = x2i for all x2i, y ∈ S . (2.9)

In fact, (2.5) implies x0x4 = (x0x2)x4 = x0(x2x4) = x0x2 = x0 and, by induction,
x0x2i = x0. Likewise, we see that

x2ix2 j = x2i for all 0 ≤ i, j ≤ k − 1.

Furthermore, by (2.2), x2 jx2 j+1 = x2 j+1x2 j = x2 j, which implies that

x2ix2 j+1 = (x2ix2 j)x2 j+1 = x2i(x2 jx2 j+1) = x2ix2 j = x2i,

which proves (2.9).
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Step 5. By (2.9),
x2i+1x2 j ∈ CS (x2i+1) = {x2i, x2i+1, x2i+2}

for all i, j. Actually, x2i+1x2 j = x2i+1 is impossible, since then x2i+1x2i = x2i would give

x2i = x2i+1x2i = (x2i+1x2 j)x2i = x2i+1(x2 jx2i) = x2i+1x2 j = x2i+1,

which is a contradiction. Hence

x2i+1x2 j ∈ {x2i, x2i+2}. (2.10)

In particular, x2i+1x2 j has label +1 for all i and j and, for a fixed i, can take only two
values as j varies.

Step 6. Assume that we have x2i+1x2 j , x2i+1x2 j+2 for some i, j. We claim that then

x2i+1x2 j+1 = x2i+1. (2.11)

To see this, we first show that the product t := x2i+1x2 j+1 cannot have label +1.
Otherwise, by (2.9), ty = t for every y ∈ S . Combined with x2 j+1x2 j = x2 j and
x2 j+1x2 j+2 = x2 j+2 we would have

t = tx2 j = (x2i+1x2 j+1)x2 j = x2i+1(x2 j+1x2 j) = x2i+1x2 j,

and, likewise,
t = tx2 j+2 = (x2i+1x2 j+1)x2 j+2 = x2i+1x2 j+2,

which contradicts the fact that x2i+1x2 j , x2i+1x2 j+2. Thus x2i+1x2 j+1 has label −1 and,
as such, commutes with exactly two vertices with label +1, namely, tprec and tsucc. By
(2.9) and (2.10), given s ∈ {tprec, tsucc},

s = s(x2i+1x2 j+1) = (x2i+1x2 j+1)s ∈ x2i+1{x2 j, x2 j+2} ⊆ {x2i, x2i+2}.

Therefore the only option is {tprec, tsucc} = {x2i, x2i+2}, and hence t = x2i+1, as this is the
only vertex with label −1 that commutes with {tprec, tsucc} = {x2i, x2i+2}.

Step 7. We claim that d(x2 j, x2t) = 2 implies x2i+1x2 j , x2i+1x2t for each i ∈ Zk.
Without loss of generality, we assume that 2t = 2 j + 2.

In fact, this claim is trivial whenever x2i+1 is adjacent to both x2 j and x2t because
then, by (2.2), x2i+1x2 j = x2 j , x2t = x2i+1x2t.

Next, suppose that x2i+1 is adjacent to only one of x2 j and x2t. By symmetry, we
may assume that x2i+1 ∼ x2 j ∼ x2 j+1 ∼ x2 j+2 = x2t. Let us denote b := x2i+1, c := x2i+2,
d := x2i+3 and e := x2i+4 = x2t. Suppose, contrary to the claim, that bc = c = be.
By (2.3), bd, db ∈ {d, b}. Now, bd = d implies e = de = (bd)e = b(de) = be = c, which
is a contradiction. Hence bd = b. Since b / d, we have db = d. However, then
c = dc = d(be) = (db)e = de = e, which is a contradiction. Thus bc = c and be , c.

Now assume the claim does not hold and let x2i0+1 and x2 j0 be the vertices with least
distance for which

x2i+1x2 j = x2i+1x2t, d(x2 j, x2t) = 2.
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Clearly, 2t0 = 2 j0 + 2 or 2t0 = 2 j0 − 2. By the symmetry, we may assume the former,
so d(x2i0+1, x2t0 ) = d(x2i0+1, x2 j0+2) ≥ d(x2i0+1, x2 j0 ) =: δ0. By the first part of the proof
of Step 7, we must have δ0 ≥ 5. Then, there exists a vertex d̂ = x2 j0±1 with label −1
(on the short arc from x2i0+1 to x2 j0 ) such that, simultaneously, d(x2i0+1, d̂) ≤ δ0 − 1 and
d(d̂, x2 j0+2) = 3. By the minimality of distance δ0 we have, d̂x2i0 , d̂x2i0+2, and hence,
by Step 6, d̂x2i0+1 = d̂. Therefore

d̂x2 j0 = (d̂x2i0+1)x2 j0 = d̂(x2i0+1x2 j0 ) = d̂(x2i0+1x2 j0+2) = (d̂x2i0+1)x2 j0+2

= d̂x2 j0+2,

which contradicts the fact that δ0 was the minimal distance with such equality possible,
while d(d̂, x2 j0+2) = 3 < δ0.

Step 8. Combining the previous step with (2.10) shows that x1x2 j alternates between
x0 and x2 as j varies over Zk. This is only possible if j is even or, equivalently, if the
number of vertices in the cycle is divisible by four.

Conversely, given a cycle with 4k vertices C4k = {x0, x1, . . . , x4k−1}, define the
multiplication in the only possible way (up to considering the opposite semigroup,
that is, up to antiisomorphism), determined by (2.2), (2.5), (2.9)–(2.11): that is,

x2iy := x2i,

x2i+1x2i+4 j := x2i, x2i+1x2i+4 j+2 := x2i+2,

x2i+1x2 j+1 := x2i+1

for all i, j ∈ Z2k and y ∈ C4k, where addition of subscripts in modulo 4k. It is
straightforward to verify that this multiplication is associative, and hence makes C4k

into a semigroup, and that xy = yx if and only if x and y are adjacent vertices in
the cycle C4k. Moreover, as shown in previous steps, up to considering the opposite
semigroup this is the only option for a centrefree semigroup whose commuting graph
is the 4k-cycle. �

3. Commuting graph of a group

We now turn our attention to realizability over groups. Our main results classify
graphs with an isolated vertex or edge that are commuting graphs of a group.
Conversely, we also classify all groups whose commuting graphs have an isolated
vertex or edge.

Let us start with several results of a general nature. Our first lemma is well known,
but we give a proof for the sake of completeness. Recall that d(v) denotes the valency
of a vertex v, that is, the cardinality of the set of all vertices adjacent to v.

Lemma 3.1. Let G be a finite group with centre Z and Γ its commuting graph. Then |Z|
is a common divisor of the integers {d(v) + 1 | v ∈ Γ}.

In particular, if dmin is the minimal valency of vertices in Γ, then Z has at most
dmin + 1 elements.
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Proof. Take any v ∈ Γ. Its neighbourhood equals CG(v) \ (Z ∪ {v}). Observe that CG(v)
is a group which contains Z as a subgroup and, therefore, |CG(v)| is divisible by |Z|.
Hence |Z| also divides |CG(v)\Z| = d(v) + 1. �

Lemma 3.2. Let Γ1 be a connected component with diameter at most two of the
commuting graph of a group G. Then Γ1 ∪ Z(G) is a subgroup of G.

Proof. Choose any v ∈ Γ1. Then v−1 ∈ CG(v) and is clearly not in Z(G). So either
v is an involution or v−1 ∼ v, and hence, in both cases, v belongs to the connected
component containing v, that is, to Γ1. It remains to show that the product of any
v,w ∈ Z(G) ∪ Γ1 is also inside Z(G) ∪ Γ1. This is trivial if v,w commute, since their
product is either in Z(G) or else commutes with v and w, and hence is adjacent
to both v and w. Assume that v, w do not commute. Since the diameter of Γ1
is at most two, there exists g ∈ CG(v) ∩ CG(w) ∩ Γ1. Thus v,w ∈ CG(g), so, also,
vw ∈ CG(g) ⊆ Z(G) ∪ Γ1. �

Our next example shows that the previous lemma does not hold for components
with larger diameters.

Example 3.3. Let Γ = Γ(S 4). It is an elementary calculation that the set of elements of
order two or four form a connected component of Γ on 15 vertices with diameter three.
However, S 4 contains no subgroups of order 15 + |Z(S 4)|.

A proper subgroup M of a group G is called a CC-subgroup if CG(m) 6 M for
all m ∈ M\{1}. By Lemma 3.2, if Z(G) = 1 and Γ1 is a connected component with
diameter at most two of the commuting graph of G, then Γ1 ∪ {1} is a CC-subgroup
of G. The structure of finite groups with a CC-subgroup was determined by Arad
and Herfort [3]. Note, however, that there are groups with nontrivial centre whose
commuting graph contains a connected component of diameter at most two (see, for
example, Theorem 3.16 below). Such a group cannot have a proper CC-subgroup.

We now state a simple obstruction for realizability among groups. It reflects sharply
against the realizability with centrefree semigroups (cf. Theorem 2.12). We remark
that Theorems 3.9 and 3.13 give additional obstructions.

Lemma 3.4. Let Γ be the commuting graph of a group G. Then each edge {a, b} that is
not an isolated edge lies on a triangle.

Proof. Let {a, b} be a nonisolated edge and let Γ1 be the connected component
containing {a, b}. Then either every vertex in Γ1\{a, b} is at distance one from both
a and b and so forms a triangle with {a, b}, or, without loss of generality, there is some
vertex c with a ∼ b ∼ c and a / c. Since a and b commute, their product, ab, commutes
both with a and with b. Since a and b are nontrivial and distinct, {a, ab, b} are distinct,
pairwise commuting elements. Also, ab ∈ Z(G), contradicts the fact that c commutes
with b but not with a = (ab)b−1. Thus ab ∈ G \ Z(G) forms a triangle with {a, b}. �

Recall that a bridge in a connected component Γ1 of a graph Γ is an edge whose
deletion (without removing vertices) makes Γ1 disconnected. Also, a leaf is a vertex
of valency one, and thus the unique edge containing it is a bridge.
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Corollary 3.5. Let Γ be the commuting graph of a finite group G. If {u, v} ∈ Γ is a
bridge in some connected component, then {u, v} is an isolated edge.

Corollary 3.6. Let Γ be a commuting graph of a group and suppose that u is a leaf of
Γ with unique neighbour v. Then {u, v} is an isolated edge.

The lexicographic product of graphs Γ1 and Γ2 is the graph Γ1[Γ2], with vertex set
V(Γ1) × V(Γ2), where (x1, y1) and (x2, y2) form an edge if (x1, x2) ∈ E(Γ1) or if x1 = x2

and (y1, y2) ∈ E(Γ2). We note the following result of Vahidi and Talebi [17].

Lemma 3.7 [17]. Let G be a group with nontrivial centre of size k. Then Γ(G) is
the lexicographic product Γ1[Kk], where Γ1 is the subgraph of Γ induced on a set
of representatives of the nontrivial cosets of Z(G) in G.

The structure of regular commuting graphs was essentially obtained by Itô [12] and
follows from Lemma 3.7. Recall that a finite group whose order is a power of a prime
p is called a p-group, and a finite group whose order is not divisible by a prime p is
called a p′-group.

Lemma 3.8. Let Γ be the commuting graph of a finite group G and suppose that Γ is
regular. Then G � P × A for some p-group P and abelian p′-group A. Moreover, Γ is
the lexicographic product Γ1[Kpa |A|], where |P| = pa+b with a, b ≥ 1 and Γ1 has order
pb − 1.

Proof. Let g ∈ G and let d be the valency of Γ. If g < Z(G), then g is a vertex of Γ and
so has centralizer of order |Z(G)| + d + 1. Thus the conjugacy classes of G have size
|G|/(|Z(G)| + d + 1) or one (for elements in Z(G)). The structure of groups with only
two conjugacy class sizes was determined by Itô [12], from which we deduce that G is
as in the statement of the lemma. Then Z(G) = Z(P) × A. The result follows from the
fact that p-groups have nontrivial centre and Lemma 3.7. �

We can now state the first main result of the present section. We say that a group
automorphism φ is fixed-point-free if xφ = x implies x = 1. If xφ = x for x , 1, then x
is a nontrivial fixed point. An automorphism of a group A is referred to as inversion if
it maps each a ∈ A to a−1.

Theorem 3.9. Suppose that Γ is a finite graph with an isolated vertex. Then the
following are equivalent.

(i) Γ is the commuting graph of a group.
(ii) 1 , |V(Γ)| ≡ 1 mod 4 and Γ has exactly (|V(Γ)| + 1)/2 isolated vertices, while the

remaining (|V(Γ)| − 1)/2 vertices form a complete graph.

Moreover, the commuting graph of a group G has an isolated vertex if and only if G
is the semidirect product A o Z2 for some abelian group A of odd order, where Z2 acts
on A by inversion.
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Proof. Let Γ be a finite graph with isolated vertex v and suppose that Γ is the
commuting graph of a group G. By Lemma 3.1, |Z(G)| = 1 and so G is a finite group
with V(Γ) = G\{1}. Since v commutes with v2 but v has no neighbours, v2 ∈ Z(G) = 1.
As conjugation by an element of G induces an automorphism of Γ, every element in
the conjugacy class of v corresponds to an isolated vertex in Γ. Since the conjugacy
class of v contains |G|/|CG(v)| elements, and since CG(v) = {1, v}, we see that |G| = 2n
is even and at least n vertices are isolated. We label them so that the conjugacy class
of v consists of {v1, . . . , vn}, where v1 = v. In particular, v2

i = 1 for each i.
Now, for distinct indices i, j, if viv j is isolated, then, as above, (viv j)2 = 1, which

we rewrite as viv j = v−1
j v−1

i = v jvi, so vi and v j commute, which contradicts the fact
that vi is isolated. Hence, fixing i, {viv1, . . . , vivn}\{v2

i } consists of n − 1 pairwise
distinct and nonisolated vertices. Since |G\{v1, . . . , vn, 1}| = n − 1, it follows that
every vertex in the set N̂ := G\{v1, . . . , vn, 1} can be written as viv j for some j. Let
N := N̂ ∪ {1}. Then, for u,w ∈ N, u = v1vi for some i, and w = vivk for some k, and
hence uw = v1vivivk = v1vk ∈ N. Also, u−1 = viv1 ∈ N, so N is a subgroup of index two
in G and, therefore, is a normal subgroup.

The map n 7→ v−1nv is an automorphism of N of order two. Moreover, it is fixed-
point-free because CG(v) = {1, v}. This implies (see [11, Theorem 1.4, page 336]) that
N is abelian and v−1nv = n−1 for all n ∈ N. Therefore, |N| = n = 2k + 1 must be odd
(otherwise, n−1 = n for some n ∈ N\{1}). Hence |V(Γ)| = |G| − 1 = 2n − 1 = 4k + 1
for some integer k, and Γ has exactly n = (|V(Γ)| + 1)/2 isolated vertices, while the
remaining |N| − 1 = (|V(Γ)| − 1)/2 vertices lie in the abelian subgroup N, so they form
a complete induced subgraph, as claimed in (ii). Moreover, since v1 < N and has order
two, it follows that G = N o 〈v1〉.

Conversely, if A is an abelian group of odd order n = 2k + 1 ≥ 3, then A has no
elements of order two, so inversion is a fixed-point-free automorphism of order two.
This implies that G := A o Z2, where Z2 acts on A by inversion, has trivial centre. It
is easily seen that the commuting graph Γ(G) has an isolated vertex, corresponding
to the generator of Z2 and, by the first part of the proof, Γ(G) is a graph with the
properties stated in (ii). This also shows that (ii) implies (i), because if Γ is a graph
with properties as in (ii) of order 4n + 1 ≥ 5, then there exists an abelian group A of
odd order 2n + 1. �

Corollary 3.10. If Γ has an isolated vertex and |V(Γ)| = 2p − 1 for some odd prime
p, then there exists, up to isomorphism, exactly one group such that Γ is its commuting
graph.

We next study groups whose commuting graph has an isolated edge. We will not be
able to give as precise a description of the groups in this case as we are only aware of
a structural description of nilpotent groups admitting fixed-point-free automorphisms
of order three, rather than their complete classification.

Lemma 3.11. Let G be a finite group whose commuting graph Γ = Γ(G) contains an
isolated edge {v,w}. Then Z(G) contains at most two elements. Moreover:
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(i) if |Z(G)| = 1, then |v| = 3 (also, w = v2 and CG(v) = 〈v〉);
(ii) if |Z(G)| = 2, then either:

(a) |v| = 4 (also, Z(G) = {1, v2}, w = v3 and CG(v) = 〈v〉 � Z4); or
(b) |v| = 2 (also, Z(G) = {1, z}, w = zv and CG(v) = 〈v, z〉 � Z2 × Z2).

Proof. Each vertex in an isolated edge has valency one, so the claim about the size
of the centre of G follows from Lemma 3.1. First, assume that Z(G) is trivial. Then
〈v〉 6 CG(v) = {v,w} ∪ Z(G) = {1, v,w}. Thus v has order three, and (i) follows.

Next, assume that Z(G) = {1, z} has two elements. Then z2 = 1 and |G| = |V(Γ)| + 2
and, clearly, zv is noncentral, but commutes with v. Hence w = zv. Also, v2 commutes
with v, so either v2 = w = zv or v2 ∈ Z(G). The former possibility contradicts the fact
that v is noncentral, so

v2 ∈ {1, z}.

If v2 = 1, then CG(v) = {1, v, z, zv} � Z2 × Z2. However, if v2 = z, then CG(v) =

{1, v, v2, v3} � Z4 and so w = v3 = zv. �

We can now combine Lemma 3.11 with several group-theoretic results to obtain a
characterization of centrefree groups whose commuting graph has an isolated edge.
Note that, as additive groups, Z4

2 is isomorphic to the GF(4)2 and thus has a natural
SL(2, 4) module structure.

Lemma 3.12. Let G be a finite group with trivial centre whose commuting graph has
an isolated edge. Then one of the following holds.

(i) G � N o Z3 or G � N o S 3, where N is a nilpotent group of nilpotency class at
most two with |N| ≡ 1 mod 3, and each element of G of order three acts as a
fixed-point-free automorphism of N.

(ii) G � N o A5, where N is the direct product of copies of Z4
2, each viewed as the

natural module for SL(2, 4) � A5.
(iii) G � PSL(2, 7).

Proof. Let {v,w} be an isolated edge. Then, by Lemma 3.11, 〈v〉 is a self-centralizing
subgroup of G of order three. Thus, by Feit and Thompson [8], we have one of the
following:

(a) G has a normal nilpotent subgroup N such that G/N � Z3 or S 3;
(b) G has a normal 2-subgroup N such that G/N � A5;or
(c) G � PSL(2, 7).

Note that CG(v) = 〈v〉 � Z3 implies that its normalizer, NG(〈v〉), either fixes elements
in CG(v) or swaps v and v2, so NG(〈v〉) � Z3 or S 3.

In case (a), we only need to consider N , 1. Then N has a nontrivial centre and,
as 〈v〉 is self-centralizing, we must have either N = 〈v〉 or N ∩ 〈v〉 = 1. The first
option is not possible, as it would imply that a Sylow 3-subgroup of G has order
nine, which would contradict the fact that 〈v〉 is self-centralizing. Thus N ∩ 〈v〉 = 1
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and so conjugation by v is a fixed-point-free automorphism of N. Then, considering
the orbits of this action, |N| ≡ 1 mod 3. Consequently, 〈v〉 is a Sylow 3-subgroup of
G and hence all elements of G of order three are conjugate to either v or v−1, and
so act fixed-point-freely on N. Moreover, as NG(〈v〉) ∩ N E NG(〈v〉) and v < N it
follows thatNG(〈v〉) ∩ N = 1. By Mazurov [13, Theorem, page 29], G = NNG(〈v〉), so
either G � N o Z3 or G � N o S 3. The additional structure for N and G in cases (a)
and (b) follows from Mazurov [13, Theorem, page 29 and Lemma 9, page 33]. �

We note that not every group appearing in (a) and (b) of the proof of Lemma 3.12
has a self-centralizing subgroup of order three. For example, the dihedral group D12 of
order 12 contains a normal cyclic (and hence nilpotent) subgroup N of order two such
that G/N is isomorphic to S 3. However, the unique subgroup of order three in D12 is
not self-centralizing.

We now investigate the structure of commuting graphs in each of the cases given
by Lemma 3.12. We denote by nKi + mK j a disjoint union of n copies of the complete
graph Ki and m copies of the complete graph K j.

Theorem 3.13. Let Γ be the commuting graph of a finite group G with trivial centre
and suppose that Γ has an isolated edge. Then one of the following holds:

(i) G � S 3 and Γ = 3K1 + K2;
(ii) G � A5 and Γ = 10K2 + 5K3 + 6K4;
(iii) G � PSL(2, 7) and Γ = 28K2 + 8K6 + ∆, where ∆ is a connected component on

63 vertices with diameter five;
(iv) G � N o Z3 and Γ = ((|V(Γ)| + 1)/3) K2 + ∆, where ∆ is a connected component

of size |V(Γ)| − 2/3 containing a vertex adjacent to all other vertices in ∆;
(v) G � N o S 3 and Γ = ((|V(Γ)| + 1)/6) K2 + ∆, where ∆ is a connected component

of diameter three; or
(vi) G � N o A5 and Γ = ((|V(Γ)| + 1)/6) K2 + ((|V(Γ)| + 1)/10) K4 + ∆, where ∆ is

a connected component of diameter three which contains a clique C of size
(|V(Γ)| + 1)/60 and each element of ∆ is adjacent to an element of C.

In the last three cases the structure of N is given in Lemma 3.12.

Proof. Let {v,w} be an isolated edge. By Lemma 3.11, |v| = 3 and w = v2. The
possibilities for G are listed in Lemma 3.12. If G � S 3, A5 or PSL(2, 7), then we
have one of the first three cases.

Suppose that G � N o Z3 or N o S 3 for some nontrivial nilpotent group N with
properties as in (1) of Lemma 3.12. By Lemma 3.12 and its proof, we know that
CG(v) = 〈v〉 � Z3 is a Sylow 3-subgroup of G and so there are precisely

|G|/|NG(〈v〉)|

isolated edges. Moreover, NG(〈v〉) � Z3 or S 3 and NG(〈v〉) ∩ N = 1. Thus G =

N oNG(〈v〉) and the number of isolated edges equals |G|/|NG(〈v〉)| = (|V(Γ)| + 1)/3,
when G/N � Z3, and |G|/|NG(〈v〉)| = (|V(Γ)| + 1)/6, when G/N � S 3.
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If G/N � Z3, then these cover all the elements of G not in N. Since N is nilpotent,
it has a nontrivial centre and so the elements of N\{1} all have at least one common
neighbour. This gives us case (iv).

Let G/N � S 3. Conjugation by v acts fixed-point-freely on N and hence also on
Z(N). All involutions of NG(〈v〉) � S 3 are conjugate and so if one acts fixed-point-
freely (by conjugation) on Z(N) all three of them do. Moreover, it follows that each
such involution acts as inversion [11, Theorem 1.4, page 336] and so the product of
any two acts trivially on Z(N). This contradicts v acting fixed-point-freely on Z(N)
and so each involution g ∈ NG(〈v〉) centralizes a nontrivial element of Z(N). Thus
each ng ∈ Ng centralizes some z ∈ Z(N)\{1} and so

∆ =

(
N ∪

⋃
g∈NG(〈v〉)
|g|=2

Ng
) ∖
{1}

forms a connected component of diameter at most three with |∆| = 4|N| − 1 =

4((|V(Γ)| + 1)/6) − 1. Let g1, g2 be distinct involutions in NG(〈v〉) and suppose that
there exists x ∈ CG(g1) ∩ CG(g2). Then x = nh for some n ∈ N and h ∈ NG(〈v〉). Now
nh = (nh)gi = ngi hgi with ngi ∈ N and hgi ∈ NG(〈v〉). Thus both h and n are centralized
by g1 and g2. Hence h = 1 and n is centralized by g1g2. However, g1g2 is a nontrivial
element of 〈v〉, which acts fixed-point-freely on N, which is a contradiction. Thus the
diameter of ∆ is three.

Finally, suppose that G � N o H with H � A5 � SL(2, 4) and with N =
⊕t

1 Z
4
2 the

direct sum of t copies of the natural module Z4
2 � GF(4)2 for SL(2, 4). Then 〈v〉 is

a Sylow 3-subgroup of G and so there are precisely |G|/|NG(〈v〉)| = (|V(Γ)| + 1)/6
isolated edges (use that S 3 ⊆ H, so v and v2 are conjugate). Let g ∈ G have order
five. By Sylow’s theorem, g is conjugate to an element of H, so we may assume
that g ∈ H. Since no matrix of order five in SL(2, 4) acting on its natural module
has one as an eigenvalue, it follows that CG(g) ∩ N = 1. Thus CG(g) � CG(g)N/N 6
CG/N(gN) � CH(g) = 〈g〉. Hence CG(g) = 〈g〉 and 〈g〉\{1} is a connected component
of Γ(G) isomorphic to K4. Since NG(〈g〉) ∩ N is a normal subgroup of NG(〈g〉) that
is disjoint from 〈g〉, it must centralize 〈g〉 and so NG(〈g〉) ∩ N = 1. Thus NG(〈g〉) �
NNG(〈g〉)/N, which is isomorphic to a subgroup of NG/N(〈Ng〉) � NH(〈g〉) � D10.
Hence NG(〈g〉) = NH(〈g〉) � D10, which gives |G|/|NG(〈g〉)| = |G|/10 isolated copies
of K4 in Γ. It remains to consider the set

∆ =

(
N ∪

⋃
gi∈H
|gi |=2

giN
) ∖
{1},

which has size |G| − 2|G|/6 − 4|G|/10 − 1 = 16|G|/60 − 1 (note that A5 contains 15
involutions). Since N is abelian, the elements of N\{1} form a clique. Moreover, since
|N| is even, each involution in H centralizes a nontrivial element of N and so every
element of ∆ is adjacent to some element of N\{1}. Hence the elements of ∆ form a
single connected component of diameter at most three. To show that its diameter is at
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least three, choose involutions g1, g2 ∈ NG(〈g〉) � D10. Since 〈g1, g2〉 = NG(〈g〉) and
CN(g) = 1, it follows that g1 and g2 do not centralize the same nontrivial element
of N. Consequently, if g1 ∼ x ∼ g2 is a path in Γ(G), then x < N and, as such,
g1N ∼ xN ∼ g2N would be a path in Γ(G/N) = Γ(A5). However, in Γ(A5), the
involutions lie in cliques of size three, which contradicts the fact that 〈g1N, g2N〉 �
〈g1, g2〉 � D10 is nonabelian. Hence ∆ has diameter three. �

We now investigate groups with nontrivial centre. First we define some groups.

Definition 3.14.

(i) Let J = 〈a, b, c, γ | a3 = b3 = c2 = abc = γ2, aγ = b〉 be a nonsplit extension of
SL(2, 3) = 〈a, b, c | a3 = b3 = c2 = abc〉 by 〈γ〉 � Z4; this is SmallGroup (48, 28)
in GAP [9]. We refer to [18, pages 104 and 105] for a realization of J as the
subgroup of semilinear transformations ΓL(2, 9).

(ii) Let D2n = 〈a,b | an = b2 = 1,ab = a−1〉, for n ≥ 2, be a dihedral group. We remark
that D4 � Z2 × Z2.

(iii) Let S D2n = 〈a, b | an = b2 = 1, ab = an/2−1〉, for n = 2k ≥ 8, be a semidihedral
group.

(iv) Let Q4n = 〈a, b | a2n = b4 = 1, an = b2, ab = a−1〉, for n ≥ 2, be a generalized
quaternion group.

Lemma 3.15. Let G be a finite group with nontrivial centre whose commuting graph
contains an isolated edge {v,w}. Then one of the following holds:

(i) G � SL(2, 3) or G � SL(2, 5);
(ii) G has an abelian normal subgroup N of odd order with G/N � GL(2, 3) or J,

the preimage of SL(2, 3) in G, centralizes N and v acts on N by inversion; or
(iii) G � N o H, where N is an abelian group of odd order and H is isomorphic to

one of Z4, D4, D8, Q8 or D2k , S D2k , Q2k , with k ≥ 4. Furthermore, if N , 1, then
the group induced by the action of H on N via conjugation is Z2 or Z2 × Z2 and
v acts on N by inversion. Moreover, if N = 1, then H � Z4 or D4.

Proof. Let {v,w} be an isolated edge in the commuting graph Γ(G). By Lemma 3.11,
|Z(G)| = 2 and either |v| = 4 with w = v3 and Z(G) = 〈v2〉 or |v| = 2 = |w| = |vw| with
Z(G) = 〈vw〉. ThusCG(v) = CG(w) = CG(〈v,w〉) = 〈v,w〉 and 〈v,w〉 is a self-centralizing
subgroup of G of order four. Let N be the largest odd order normal subgroup of G.
Since |Z(G)| = 2, we have Z(G) ∩ N = 1 and so Z(G/N) ≥ 2. Thus, by Wong [19,
Theorems 1 and 2], G/N is isomorphic to one of Z4, D4, D8, Q8, SL(2, 3), SL(2, 5),
GL(2, 3), J or D2k , S D2k or Q2k , for some k ≥ 4. Moreover, if G/N � Z4 or D4, then
N , 1, since G is nonabelian.

Since |CG(v)| = 4 while |N| is odd, CG(v) ∩ N = 1. Combined with v2 ∈ Z(G), it
follows that v induces a fixed-point-free automorphism of N of order two. This implies
(see [11, Theorem 1.4, page 336]) that N is abelian and v acts on N by inversion.

Suppose that N , 1 and let φ : G → Aut(N) be the homomorphism induced by
the action of G on N by conjugation. Let M = ker φ. Then Z2 � Z(G) 6 M and
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Z(G) ∩ N = 1. Thus N < M EG and M/N contains a central subgroup of G/N of order
two. Moreover, v < ker(φ) and, since vφ is inversion, 1 , vφ ∈ Z((G)φ) � Z(G/M). In
particular, letting R be the preimage of Z((G)φ) in G, we have the chain of subgroups

N < NZ(G) 6 M < R 6 G,

each normal in G, with R/M = Z(G/M) , 1 and NZ(G)/N being central in G/N
and of order two. This is impossible when G/N � SL(2, 3) or SL(2, 5). Thus, if
G/N � SL(2, 3) or SL(2, 5), then N = 1 and (i) holds.

Next, assume that G/N � GL(2, 3) or J. Since GL(2, 3) and J have a unique normal
subgroup of order two, we must have G/NZ(G) � S 4. Using the normal structure of
S 4 and the fact that R/M is a nontrivial central subgroup of G/M, it follows that R = G
and M/NZ(G) � A4. In particular, M/N � SL(2, 3) and, by definition, M centralizes N.
Thus (ii) holds.

Suppose finally that G/N � Z4, D4, D8, Q8 or D2k , S D2k or Q2k , with k ≥ 4. Since
N is odd, Sylow’s theorems imply that G = N o H for some Sylow 2-subgroup H of G
containing v. Clearly, H � G/N. Now v acts on N by inversion and, by Lemma 3.11,
|CG(v)| = 4. Thus, if H � Z4 or D4, then H = CG(v) and (H)φ = Z2 as Z(G) 6 H and
acts trivially on N. In the rest of the cases, take standard generators a and b for H,
as given in Definition 3.14, with b having order four when H � Q2k and order two
otherwise. Suppose that |H| ≥ 16. Since |CG(v)| = 4, it follows that v = aib for some
integer i. Moreover, as av = a−1 or a2k−2−1 but the inversion map (v)φ commutes with
(a)φ, it follows that (a2)φ = 1. Hence (H)φ = Z2 or Z2 × Z2. The same argument holds
when |H| = 8 and v = aib. Thus it remains to consider the case where H = D8 or Q8,
and v = a. However, since vb = v−1 and (v)φ commutes with (b)φ, it once again follows
that (a2)φ = 1. Thus (iii) holds. �

We now determine the graphs that arise from the groups listed in Lemma 3.15.
Commuting graphs of dihedral groups and generalized quaternion groups were studied
by [17].

Theorem 3.16. Let Γ be the commuting graph of a group G with nontrivial centre and
suppose that Γ has an isolated edge. Then one of the following holds.

(i) G � SL(2, 3) and Γ = 3K2 + 4K4.
(ii) G � SL(2, 5) and Γ = 15K2 + 10K4 + 6K8.
(iii) G � GL(2, 3) or J and Γ = 6K2 + 4K4 + 3K6.
(iv) G � Q8 or D8 and Γ = 3K2.
(v) G � D2k , S D2k or Q2k with k ≥ 4, and Γ = 2k−2K2 + K2k−1−2.
(vi) G is as in part (ii) of Lemma 3.15 with N , 1 and Γ = ((|V(Γ)| + 2)/8)K2 + ∆

with ∆ connected of diameter four.
(vii) G is as in part (iii) of Lemma 3.15 with N , 1, |V(Γ)| + 2 is not a power of two

and either:

(a) Γ = ((|V(Γ)| + 2)/4)K2 + Kk where k = (|V(Γ)| − 2)/2; or
(b) Γ = ((|V(Γ)| + 2)/8)K2 + ∆ with ∆ connected of diameter at most three.
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Proof. Let {v,w} be an isolated edge. By Lemma 3.11, |Z(G)| = 2 and 〈v,w〉 � Z4
or Z2 × Z2. The possibilities for G are given in Lemma 3.15. If G � SL(2, 3), we
have case (i), if G = SL(2, 5), we have case (ii) while, if G = GL(2, 3) or J, we have
case (iii).

To continue, suppose first that G/N � GL(2, 3) or J, where N is a nontrivial abelian
normal subgroup of odd order. We will use various properties of GL(2, 3) and J that
can be verified using Magma [5] or GAP [9]. By Lemma 3.15, the preimage H of
SL(2, 3) in G centralizes N and v acts on N by inversion. Since |Z(G) ∩ 〈v,w〉| = 2,
any element of G that normalizes 〈v,w〉 either centralizes 〈v,w〉 or interchanges v and
w. Thus |NG(〈v,w〉)| = 4 or 8. A Sylow 2-subgroup of G is isomorphic to a Sylow
2-subgroup of G/N, and so, looking in GL(2, 3) or J, we see that |NG(〈v,w〉)| = 8.
Moreover, in GL(2, 3) and J all self-centralizing subgroups of order four are conjugate
and so G has only one conjugacy class of self-centralizing subgroups of order four.
Thus there are |G|/8 isolated edges in Γ. Since N is abelian, the elements of
NZ(G)\Z(G) form a clique and each element of H\NZ(G) is adjacent to each element
of N. As H/N � SL(2, 3) is nonabelian, the graph induced on H\Z(G) is of diameter
two and contains |G|/2 − 2 vertices. If g ∈ GL(2,3)\SL(2,3) (respectively, J\SL(2,3))
does not lie in a self-centralizing subgroup of order four, then g has order eight,
g2 ∈ SL(2, 3) and CGL(2,3)(g2) = 〈g〉 (respectively, CJ(g2) = 〈g〉). Hence, given two
elements g1, g2 ∈ G\H that are not in an isolated edge, we have that g2

1, g
2
2 ∈ H\Z(G)

and so, for arbitrary n ∈ N\{1}, g1 ∼ g2
1 ∼ n ∼ g2

2 ∼ g2 is a path of length four in Γ.
Choose g1, g2 so that 〈g1N〉, 〈g2N〉 are distinct self-centralizing subgroups of order
eight in G/N whose intersection is Z(G/N). If g1 ∼ a ∼ b ∼ g2 were a path of length
three in Γ, then g1N ∼ aN ∼ bN ∼ g2N would be a path in the commuting graph
of G/N, where we now allow elements in the centre. Since 〈g1N〉 and 〈g2N〉 are
self-centralizing in G/N, it follows that aN ∈ 〈g1N〉 and bN ∈ 〈g2N〉. Since the only
elements of 〈g1N〉 which commute with elements not in 〈g1N〉 are those in Z(G/N), it
follows that aN ∈ Z(G/N), which contradicts the fact that g1 ∈G\H = vH acts on N as
a fixed-point-free inversion. Thus the set of vertices of Γ not in an isolated edge forms
a connected subgraph of diameter four and Γ is as in part (vi).

Next, suppose that G = N o Z4 or N o D4, with N a nontrivial abelian group
of odd order. Since |Z(G) ∩ 〈v, w〉| = 2, any element of G that normalizes 〈v, w〉
either centralizes 〈v,w〉 or interchanges v and w. Since 〈v,w〉 is self-centralizing
and is a Sylow 2-subgroup of G, it follows that NG(〈v,w〉) = 〈v,w〉 and there are
|G|/4 = (|V(Γ)| + 2)/4 isolated edges in Γ. This covers |G|/2 of the vertices in G and
consists of all elements not in the index-two normal subgroup NZ(G). Since N is
abelian, so is NZ(G), and hence the vertices not in an isolated edge form a clique of
size (|V(Γ)| − 2)/2. This gives case (vii)(a).

Next, suppose that G = N o H with H � D2k , S D2k or Q2k and k ≥ 3 (if H � S D2k ,
then k ≥ 4). Take standard generators a and b for H as in Definition 3.14. Let z = a2k−2

such that Z(G) = 〈z〉. If N = 1 and k = 3, then G � D8 or Q8 and Γ(G) = 3K2. This
is case (iv). If N = 1 and k ≥ 4, then the elements of 〈a〉\〈z〉 form a clique of size
2k−1 − 2. Elements of the form aib have order two when H is dihedral and order four
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when H is quaternion. When H is semidihedral, aib has order two, when i is even, and
order four, when i is odd. In all three cases, CH(aib) = 〈aib, z〉 has order four. Thus
Γ(G) is as in part (v).

Now suppose that N , 1. By Sylow’s theorems, we may assume that v ∈ H, and, by
Lemma 3.15, 〈a2〉 centralizes N. Hence (N × 〈a2〉)\〈z〉 is a clique of size |N|2k−2 − 2.
Since v acts on N by inversion and |CG(v)| = 4, we have for |H| > 8, that v < 〈a〉 and so
the kernel M1 of the action of H on N is either 〈a2〉, 〈a〉 or 〈a2, av〉. For |H| = 8, it is
possible to have v = a or a3, in which case 〈a2, b〉 and 〈a2, ab〉 are also possibilities for
M1.

Suppose, first, that M1 = 〈a〉. Then N × 〈a〉 is an abelian group and so (N × 〈a〉)\〈z〉
is a clique of size |G|/2 − 2. For g ∈ G\(N × 〈a〉), g induces inversion on N and
conjugates a to a−1 or a2k−2−1. Thus CG(g) � 〈g, z〉 and so Γ(G) contains precisely
|G|/4 isolated edges. Hence we have case (vii)(a).

Next, suppose that M1 = 〈a2〉. Since v acts on N by inversion, each of the |H|/2
elements of H\〈a2, v〉 induces an automorphism of N of order two that is not an
inversion (see (iii) of Lemma 3.15). Hence it centralizes a nontrivial element of the
abelian group N. Therefore, as N , 1, the elements from [N × (〈a2〉 ∪ (H\〈a2, v〉))] \
〈z〉 form a connected component ∆ of diameter at most three on |G|/4 + |G|/2 − 2
vertices. In addition, |NG(〈v, z〉)| = 8 implies there are |G|/8 isolated edges in Γ(G)
conjugate to {v,w} and Γ(G) = (|G|/8)K2 + ∆, where ∆ is a connected graph of diameter
at most three. Thus we have case (vii)(b).

Next, suppose that M1 = 〈a2, av〉. Then, (N × M1)\〈z〉 has diameter at most two.
Also, we may assume v = b. Moreover, the |G|/4 conjugates of v provide |G|/8 isolated
edges. The elements of Nai for each odd i act on N by inversion. For |H| > 8,
these elements commute with a2 < Z(G) and so Γ(G) = (|G|/8)K2 + ∆, where ∆ is a
connected graph of diameter two as in (vii)(b). When |H| = 8, such elements provide
another |G|/8 isolated edges and so Γ(G) = (|G|/4)K2 + K|G|/2−2, as in (vii)(a).

Finally suppose that |H| = 8, v = a or a3, and that M1 = 〈a2, b〉 or 〈a2, ab〉. Then
elements of G\(N × M1) act on N by inversion and we obtain |G|/4 isolated edges.
Moreover, (N × M1)\〈z〉 is a clique, since M1 is abelian, so we are in case (vii)(a). �
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[4] J. Araújo, M. Kinyon and J. Konieczny, ‘Minimal paths in the commuting graphs of semigroups’,
European J. Combin. 32 (2011), 178–197.

[5] W. Bosma, J. Cannon and C. Playoust, ‘The Magma algebra system I. The user language’,
J. Symbolic Comput. 24 (1997), 235–265.

[6] R. Brauer and K. A. Fowler, ‘On groups of even order’, Ann. of Math. (2) 62 (1955), 565–583.
[7] A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups.

arXiv:1311.6342.
[8] W. Feit and J. G. Thompson, ‘Finite groups which contain a self-centralizing subgroup of order

3’, Nagoya Math. J. 21 (1962), 185–197.
[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.2; 2013,

(http://www.gap-system.org).
[10] M. Giudici and C. Parker, ‘There is no upper bound for the diameter of the commuting graph of

a finite group’, J. Combin. Theory Ser. A 120 (2013), 1600–1603.
[11] D. Gorenstein, Finite Groups (AMS Chelsea Publishing, 1968).
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