An application of combinatorial techniques to a topological problem

Ludvik Janos

The following statement is proved: Let X be a set having at most continuously many elements and $f:X\to X$ a mapping such that each iteration f^n $(n=1,\,2,\,\ldots)$ has a unique fixed point. Then for every number $c\in(0,\,1)$ there exists a metric ρ on X such that the metric space $(X,\,\rho)$ is separable and the mapping f is a contraction with the Lipschitz constant c.

1. Introduction

In recent two decades different mathematicians asked the following question: Given an abstract set X and a mapping $f:X\to X$, does there exist a non-trivial topology on X which would render f continuous and would satisfy at the same time some prescribed conditions (compactness, separability, metrizability, Hausdorff property, and so forth)? de Groot and de Vries [3] proved that if X has at most continuously many elements then for every $f:X\to X$ there exists a non-discrete separable metric topology on X rendering f continuous. Bessaga [2] obtained the following result (a converse to the Banach fixed point theorem).

THEOREM 1 (Bessaga). Let X be a set and $f: X \to X$ such that all the iterates f^n have a unique fixed point. Assuming the weak (countable) form of the axiom of choice, then for any $c \in (0, 1)$ there exists a complete metric on X rendering f a c-contraction.

The purpose of this note is to show that in case X has at most continuously many elements then the separability of the metric in the above

Received 9 July 1973.

theorem can be claimed. In the construction of this metric we will use the following combinatorial theorem of Ramsey (see, for example, [1]).

THEOREM 2 (Ramsey). If the set of all unordered pairs $\{n, m\}$ of natural numbers N is decomposed in finite number of sets, say R_1, R_2, \ldots, R_k , that is,

$${A \mid |A| = 2 \text{ and } A \subset N} = R_1 \cup R_2 \cup \ldots \cup R_k$$

then there exists an infinite subset $M \subseteq N$ and an index $i \in \{1, 2, ..., k\}$ such that all pairs $\{n, m\} \subseteq M$ belong to R_i .

Finally we will need the following result of Meyers [4].

THEOREM 3 (Meyers). If X is a metrizable topological space and $f: X \to X$ a continuous mapping satisfying:

- (i) f has a unique fixed point a, that is, f(a) = a;
- (ii) for every $x \in X$ the sequence of iterates x, f(x), $f^{2}(x)$, ... converges to a;
- (iii) there exists a neighbourhood V_a of a such that for any neighbourhood V_a of a there exists n_0 such that $n \geq n_0 \quad \text{implies} \quad f^n(V_a) \subset V_a \; ;$

then for every $c \in (0, 1)$ there exists a metric on X which is compatible with the topology of X and with respect to which f is a c-contraction.

2. Proof of the theorem

Let X be an abstract set with at most continuously many elements and let $f: X \to X$ satisfy the conditions of Theorem 1. Choosing $c = \frac{1}{X}$ we denote by ρ the corresponding metric on X existing by this theorem. If a is the fixed point of f we define the sets A_n (n integer) by:

$$A_n = \{x \mid x \in X \text{ and } 2^{n-1} < \rho(\alpha, x) \le 2^n\}$$
.

Thus we obtain a disjoint partition of X in the form $X = \{a\} \cup \bigcup_{-\infty}^{\infty} A_n$ satisfying the condition that the image $f(A_n)$ of A_n under f^{-1} is contained in $\{a\} \cup \bigcup_{-\infty}^{n-1} A_k$. Once this result is achieved, we disregard the metric ρ (since it is not separable in general) and proceed in the following way.

We consider the subset $\{0\} \cup \bigcup_{-\infty}^{+\infty} C_n$ of the euclidean plane where 0 is the origin and C_n is the circle with centre in 0 and of radius 2^n . Since each set A_n has at most continuously many elements one can identify A_n with a certain subset $B_n \subseteq C_n$ of C_n . Doing this for every n and identifying a with the origin 0, our set X can be thought of as the set $\{0\} \cup \bigcup_{-\infty}^{+\infty} B_n$. Denoting by d_2 the euclidean metric we thus obtain a separable metric space $\{X, d_2\}$ and it follows from the definition that each subset $\{0\} \cup \bigcup_{-\infty}^{n} B_k$ is totally bounded and invariant under f.

We now define a new metric d_2^\star on X with respect to which f will be continuous as follows:

$$d_2^*(x, y) = \sup_{n \ge 0} d_2(f^n(x), f^n(y))$$
,

for $x, y \in X$ and where $f^0(x)$ stands for x. It is clear that d_2^* is a metric and that f is continuous with respect to d_2^* , since from the definition it follows immediately that f is non-expanding:

$$d_2^*(f(x), f(y)) \leq d_2^*(x, y)$$
.

Since the circles C_n shrink to 0 it follows that for each pair $x, y \in X$ there is a number n = n(x, y) such that

 $d_2^\star(x,\,y) = d_2\big(f^n(x),\,f^n(y)\big) \ . \ \text{In order to show that the sets} \ \{0\} \cup \bigcup_{-\infty}^n B_k$ are totally bounded also with respect to the metric d_2^\star we need the following.

LEMMA. Let (Y, d) be a totally bounded metric space and let $f: Y \to Y$ (not necessarily continuous) be such that the diameters δ_n of the iterated images $f^n(Y)$ converge to zero as $n \to \infty$. Then the metric d^* on Y defined by

$$d^*(x, y) = \sup_{n \ge 0} d(f^n(x), f^n(y))$$

is also totally bounded.

Proof. First we observe that due to $\delta_n \to 0$ there is an integer $n=n(x,\,y)$ for each pair of points $x,\,y\in Y$ such that $d^*(x,\,y)=d\big(f^n(x),\,f^n(y)\big)$. Now if d^* were not totally bounded there would be a number $\varepsilon>0$ and a sequence $\{x_k\}\subseteq Y$ such that

$$d^*(x_k, x_l) \ge \varepsilon$$
 for all $k \ne l$.

But this would mean that there is a function n(k, l) on the set of all unordered pair $\{k, l\}$ of natural numbers such that $d\Big(f^{n(k,l)}(x_k), f^{n(k,l)}(x_l)\Big) \geq \varepsilon$ for all pairs $\{k, l\} \subset \mathbb{N}$. Again due to the shrinkage $\delta_n \to 0$ it is obvious that the function n(k, l) must be bounded and so its range consists of finite numbers of values, say n_1, n_2, \ldots, n_n . But Theorem 2 would then imply that for some

 $i \in \{1, 2, ..., r\}$ the inequality $d\binom{n}{f}i(x_k), f^{i}(x_l) \ge \varepsilon$ would hold for some infinite subset of indices which would contradict the assumption that d is totally bounded. This proves that d^* must be totally bounded as well.

Observing that the restriction of $f:X\to X$ to the invariant subset $X_n=\{0\}\cup\bigcup_{-\infty}^n B_k$ satisfies the hypothesis of our lemma we arrive at the

following conclusion.

As a countable union of totally bounded sets, (X, d_2^*) is a separable metric space and $f: X \to X$ a continuous mapping. Since $d_2^* \ge d_2$ it follows that the topology generated by d_2^* is in general finer than the Euclidean generated by d_2 . Since each set X_n is d_2 -open, it is also d_2^* -open and observing that for each $x \in X$ we have $d_2^*(0, x) = d_2(0, x)$ it follows that each open neighbourhood of 0 with respect to d_2^* contains some set X_n . Since $f(X_n) \subseteq X_{n-1}$ this implies that the conditions of Theorem 3 are satisfied for the topology generated by d_2^* and our theorem follows from Theorem 3.

REMARK. It is so far not known if the space (X, d_2^*) can be assumed topologically complete. In this case the result of Meyers [4] would furnish at the same time a separable and complete metric. So it appears that the gain of separability was paid for by the loss of completeness.

References

- [1] Philip Bacon, "Extending a complete metric", Amer. Math. Monthly 75 (1968), 642-643.
- [2] C. Bessaga, "On the converse of the Banach 'fixed-point principle'", Colloq. Math. 7 (1959), 41-43.
- [3] J. de Groot and H. de Vries, "Metrization of a set which is mapped into itself", Quart. J. Math. Oxford (2) 9 (1958), 144-148.
- [4] Philip R. Meyers, "A converse to Banach's contraction theorem", J. Res. Nat. Bur. Standards Sect. B 71 (1967), 73-76.

Department of Mathematics, University of Newcastle, Newcastle, New South Wales.