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An application of combinatorial

techniques to a topological problem

Ludvik Janos

The following statement is proved: Let X be a set having at

most continuously many elements and f : X > X a mapping such

that each iteration fn (n=1,2, ...) has a unique fixed
point. Then for every number c € (0, 1) there exists a metric
p on X such that the metric space (X, p) is separable and

the mapping f is a.contraction with the Lipschitz constant ¢ .

1. Introduction

In recent two decades different mathematicians asked the following
question: Given an abstract set X and a mapping f : X > X , does there
exist a non-trivial topology on X which would render f continuous and
would satisfy at the same time some prescribed conditions (compactness,
separability, metrizability, Hausdorf? property, and so forth)? de Groot
and de Vries [3] proved that if X has at most continuously many elements
then for every f : X - X there exists a non~discrete separable metric
topology on X rendering f continuous. Bessaga [2] obtained the

following result (a converse to the Banach fixed point theorem).
THEOREM 1 (Bessaga). Let X be a set and f : X + X such that all

the iterates f  have a unique fixed point. Asswming the weak (countable)
form of the axiom of choice, then for awy ¢ € (0, 1) there exists a

complete metric on X rendering f a c-contraction.

The purpose of this note is to show that in case X has at most

continuously many elements then the separability of the metric in the above
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theorem can be claimed. In the construction of this metric we will use the

following combinatorial theorem of Ramsey (see, for example, [1]).

THEOREM 2 (Ramsey). If the set of all wnordered pairs {n, m} of
natural numbers N is decomposed in finite number of sets, say

Rl, R2, ces Rk » that is,

{A l lA] = 2 and ACN}=R1ul?2u...uRk

then there exists an infinite subset M < N and an index
i € {1, 2, ..., k} such that all pairs {n, m} € M belong to Ri .

Finally we will need the following result of Meyers [4].
THEOREM 3 (Meyers). If X is a metrizable topological space and
f: X+ X a continuous mapping satisfying:
(i) f has a wnique fixed point a , that is, fla) = a ;
(i7) for every x € X the sequence of iterates
x, flx), fz(x), ... converges to a ;
(iii) there exists a neighbourhood Ua of a such that for

any neighbourhood Va of a there exists n, such that

0

nzn, implies fn(Ua) CV.s

then for every c € (0, 1) there exists a metric on X which is
compatible with the topology of X and with respect to which f is a

c-contraction.

2. Proof of the theorem

Let X be an abstract set with at most continuously many elements and
let f: X > X satisfy the conditions of Theorem 1. Choosing ¢ = % we
denote by p the corresponding metric on X existing by this theorem. If

a 1is the fixed point of f we define the sets An (n integer) by:

1

A,={z| x€X ana 2" < pla, z) =2}
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400
Thus we obtain a disjoint partition of X in the form X = {a} v U An
o
satisfying the condition that the image fLAn) of An under f’/is
n-1
contained in {a} u U 4 - Once this result is achieved, we disregard the
-0
metric p (since it is not separable in geseral) and proceed in the
following way.
40
We consider the subset {0} u U €, of the euclideen plane where 0
-0

n
is the origin and Cn is the circle with centre in O and of radius 2 .
Since each set An has at most continuously many elements one can identify
An with a certain subset Bn < Cn of Cn . Doing this for every 7 and

identifying a with the origin 0 , our set X can be thought of as the

+00
set {0} v U Bn . Denoting by d2 the euclidean metric we thus obtain a

-0

separable metric space (X, d2) and it follows from the definition that

n
each subset {0} u U Bk is totally bounded and invariant under f .

-00

We now define a new metric dg on X with respect to which f will

be continuous as follows:

iz, y) = sup dz(fn(ac), 7)),
n=0

for z, y € X and vhere fo(x) stands for x . It is clear that ds is
a metric and that f is continuous with respect to dg , Since from the
definition it follows immediately that f 1is non-expanding:

a3 (), fly)) < djlz, y) .

Since the circles C% shrink to 0 it follows that for each pair

z, y € X there is a number n = n(x, y) such that
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n
dé(x, y) = dz(fn(x), fn(y)) . In order to show that the sets {0} u U B

-00

k
are totally bounded also with respect to the metric dé we need the
following.

LEMMA. Let (Y, d) be a totally bounded metric space and let

f: Y ~+Y (not necessarily continuous) be such that the diameters Gn of

the iterated images £ (¥) converge to zero as n > = . Then the metric
d* on Y defined by

d*(z, y) = sup d(f(x), ()

nz0
is also totally bounded.
Proof. First we observe that due to Gn + 0 there is an integer
n = n(x, y) for each pair of points x, ¥ € ¥ such that
d*(x, y) = d(fn (x), fn ) . Now if d* were not totally bounded there

would be a number € > 0 and a sequence {xk} C Y such that

d*(x

k,xz)ze for all k # 1 .

But this would mean that there is a function #n(k, 1) on the set of all
unordered pair  {k, I} of natural numbers such that

d(fn(k’z)(xk), fn(k’z)(xz)] > g for all pairs {k, 1} © N . Again due to
the shrinkage 6n + 0 it is obvious that the function n(k, 1) must be
bounded and so its range consists of finite numbers of values, say

.s n_ . But Theorem 2 would then imply that for some

nl, 7l2, P

n. n.
i € {1, 2, ..., r} the inequality d(f "(xk), f '“(xz) > € would hold for

some infinite subset of indices which would contradict the assumption that
d 1is totally bounded. This proves that d* must be totally bounded as
well.

Observing that the restriction of f : X =+ X +to the invariant subset

n
= {o}luvlU B

-0

satisfies the hypothesis of our lemma we arrive at the

k
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following conclusion.
As a countable union of totally bounded sets, (X, dé) is a separable

metric space and f : X + X a continuous mapping. Since dé > d2 it

follows that the topology generated by d§ is in general finer than the

Euclidean generated by d2 . Since each set Xn is dg—open, it is also

dé—open and observing that for each x € X we have dé(O, x) = dQ(O, x)
it follows that each open neighbourhood of 0 with respect to d;

contains some set Xh . Since f(Xn) = Xh_ this implies that the

1
conditions of Theorem 3 are satisfied for the topology generated by dé

and our theorem follows from Theorem 3.
REMARK. It is so far not known if the space (X, dg) can be assumed

topologically complete. In this case the result of Meyers (4] would

furnish at the same time a separasble and complete metric. So it appears

that the gain of separability was paid for by the loss of.completeness.
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