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An application of combinatorial

techniques to a topological problem

Ludvik Janos

The following statement is proved: Let J" be a set having at

most continuously many elements and f • X -*• X a mapping such

that each iteration / (n = 1, 2, ...) has a unique fixed

point. Then for every number c € (0, l) there exists a metric

p on X such that the metric space (X, p) is separable and

the mapping / is a.contraction with the Lipschitz constant a .

1. Introduction

In recent two decades different mathematicians asked the following

question: Given an abstract set X and a mapping f : X •* X , does there

exist a non- t r iv ia l topology on X which would render / continuous and

would satisfy at the same time some prescribed conditions (compactness,

separabi l i ty , metr izabil i ty, Hausdorff property, and so forth)? de Groot

and de Vries [3] proved that i f X has at most continuously many elements

then for every f : X ->• X there exists a non-discrete separable metric

topology on X rendering / continuous. Bessaga [2] obtained the

following resul t (a converse to the Banach fixed point theorem).

THEOREM 1 (Bessaga). Let X be a set and f : X •* X such that all

the iterates f1 have a unique fixed point. Assuming the weak (countable)

form of the axiom of choice, -then for any c € (0, l ) there exists a

complete metric on X rendering f a c-contraction.

The purpose of th is note i s to show that in case X has at most

continuously many elements then the separabil i ty of the metric in the above
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theorem can be claimed. In the construction of th i s metric we wi l l use the

following combinatorial theorem of Ramsey (see, for example, [ / ] ) .

THEOREM 2 (Ramsey). If the set of all unordered pairs bi, m) of

natural numbers N is decomposed in finite number of sets, say

R1, R2, . . . , Rk , that is,

\A \A\ = 2 and A c A = R u R u ... u R,

then there exists an infinite subset Me N and an index

i 6 {l , 2, . . . , k] such that all pairs {n, m] c M belong to R- .

Finally we wi l l need the following resul t of Meyers [4 ] .

THEOREM 3 (Meyers). If X is a metrizable topological space and

f : X •*• X a continuous mapping satisfying:

(i) f has a unique fixed point a , that is, f(a) = a ;

(ii) for every x € X the sequence of iterates

x, fix), fix), . . . converges to a ;

(Hi) "there exists a neighbourhood U of a such that for

any neighbourhood V of a there exists nQ such that

n > n implies

then for every e € (0, l ) there exists a metric on X which is

compatible with the topology of X and with respect to which f is a

c-contraction.

2. Proof of the theorem

Let AT be an abstract set with at most continuously many elements and

l e t f : X -*• X sat isfy the conditions of Theorem 1. Choosing c = % we

denote by p the corresponding metric on X existing by th is theorem. If

a i s the fixed point of / we define the sets An {n integer) by:

An = {x | x € X and 2"" 1 < p(a, x) £ 2n) .
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Thus we obtain a disjoint partition of X in the form X = ia) u U A^

s

satisfying the condition that the image /(i4 J of A under /' is

n-X
contained in {a} u U A, . Once this result is achieved, we disregard the

_oo K

metric p (since it is not separable in general) and proceed in the

following way.

+00

We consider the subset {o} u U C of the euclidean plane where 0
_00

is the origin and C is the circle with centre in 0 and of radius 2

Since each set A has at most continuously many elements one can identify

A with a certain subset B c C of C Doing this for every n and
yi YI ft YI

identifying a with the origin 0 , our set X can be thought of as the
+<x>

set {0} u U B . Denoting by d^ the euclidean metric we thus obtain a

separable metric space [X, d_J an<^ i* follows from the definition that

n
each subset {o} u U B, is totally bounded and invariant under / .

-co K

We now define a new metric d% on X with respect to which / will

be continuous as follows:

d*(x, y) = sup d {f{x), fiy)) ,
d n>D

for x, y € X and where j(x) stands for x . I t i s clear that d* i s

a metric and that / i s continuous with respect to d* , since from the

definition i t follows immediately that / i s non-expanding:

d*{f(x), f(y)) £d|(x, y) .

Since the circles C shrink to 0 i t follows that for each pair

x, y 6 X there is a number n = n(x, y) such that
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d*(x, y) = d2(/*(*), f'(y)) • In order to show that the sets {0} u U B,
—oo

are to t a l ly bounded also with respect to the metric d% we need the

following.

LEMMA. Let [Y, d) be a totally boimded metric space and let

f : Y -*• Y (not necessarily continuous) be such that the diameters 6 of

the iterated images j (7) converge to zero as n -*• °° . Then the metric

d* on Y defined by

d*(x, y) = sup
«>0

is also totally bounded.

Proof. F i r s t we observe that due to 6 -• 0 there is an integer

n = n(x, y) for each pair of points x, y € Y such that

d*[x, y) = dlj^ix), f'iy)) . Now i f d* were not to ta l ly bounded there

would be a number e > 0 and a sequence {x^} c Y such that

d*[x, , x-j] > E for a l l k t I .

But t h i s would mean that there is a function n(k, I) on the set of a l l

unordered pail {k, 1} of natural numbers such that

^ixj) > E for a l l pairs {k, 1} c N . Again due to

the shrinkage 6^ •*• 0 i t i s obvious that the function n(k, I) must be

bounded and so i t s range consists of f in i te numbers of values, say

n , n , ..., n . But Theorem 2 would then imply that for some

I n. n. -I
i € { l , 2, . . . , r} the inequality d\f % (xfe) , / % [x-Jl - e would hold for

some inf in i te subset of indices which would contradict the assumption that

d i s to t a l ly bounded. This proves that d* must be to ta l ly bounded as

well .

Observing tha t the res t r ic t ion of f • X •*• X to the invariant subset

n
X = {0} u U B, s a t i s f i e s the hypothesis of our lemma we arrive at the

—oo
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following conclusion.

As a countable union of totally bounded sets, [x, d*) is a separable

metric space and f : X •*• X a continuous mapping. Since d* t d it

follows that the topology generated by di is in general finer than the

Euclidean generated by d . Since each set X is <i?-open, it is also

<i*-open and observing that for each x € X we have d*(0, x) = dp(0, x)

it follows that each open neighbourhood of 0 with respect to d*

contains some set X . Since f\X J c X this implies that the

conditions of Theorem 3 are satisfied for the topology generated by d*

and our theorem follows from Theorem 3-

REMARK. It is so far not known if the space [x, d*} can be assumed

topologiaally complete. In this case the result of Meyers [4] would

furnish at the same time a separable and complete metric. So it appears

that the gain of separability was paid for by the loss of completeness.
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