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A previous paper of the authors (Duck & Stephen, J. Fluid Mech., vol. 917, 2021, A56)
considered the effect of three-dimensional, temporally periodic, linear and incompressible
disturbances on a Blasius boundary layer, in particular when the disturbance wavelength
is both comparable to and longer than the boundary-layer thickness. This previous study
revealed that, unlike the two-dimensional counterpart, a mode exists that exhibits regimes
of downstream spatial growth. In this paper we extend the analysis to the compressible
regime, based on the boundary-region equations methodology. The aforementioned
unstable mode is seen to persist into the compressible regime, and is studied using a
combination of numerical and asymptotic methods. The paper adopts several approaches.
First is a numerical approach in which the spatial development of the disturbances is
assessed. This then leads to a consideration of the far-downstream behaviour, using
(several) asymptotic limits. Of some note, in addition to unstable modes found in
the incompressible case, is the existence of a further class of instability, not found
in the incompressible case (which is also analysed asymptotically), corresponding
to what amounts to an inviscid instability. The far-downstream analysis enables a
(sub-)classification into entropy and non-entropy modes. The former, according to this
analysis, are spatially damped, with one caveat, as revealed by our marching procedure,
which highlights how spatial development of disturbances can be important.
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1. Introduction

The drive to develop high-speed flight vehicles leads to the need to understand the
mechanisms involved in the laminar–turbulent transition process for wall-bounded
compressible flows. Of particular importance are instabilities developing in the boundary
layer due, for example, to surface imperfections or free-stream turbulence. Transition to
turbulence in compressible flows is accompanied by increased wall temperatures and
aerodynamic drag. These effects are of significance in many applications, for example,
the design of thermal protection systems. Thus, how these instabilities develop and how
they can be controlled (usually with the aim to delay transition to turbulence) have been
the focus of an immense number of studies, experimental, numerical and theoretical, over
the past several decades. Many of these investigations concerning the numerous different
structures occurring in transitional (incompressible and compressible) boundary layers are
reviewed by Lee & Jiang (2019).

The transition process from a laminar flow to a turbulent flow in supersonic and
hypersonic boundary layers is less well understood compared with incompressible flow
due to additional instability modes existing, which can be dominant for large Mach
numbers. Enhanced surface temperatures mean that the effect of wall cooling and the
thermal properties of the surface on transition mechanisms need to be understood. For
particular features associated with instabilities in hypersonic boundary layers, see the
review papers of Zhong & Wang (2012) for numerical studies and Fedorov (2011) for
theoretical investigations. Numerical and experimental studies are complemented by
asymptotic analysis, which has provided further insight into the transition process in
compressible boundary-layer flows. Recent studies have shown that coherent structures
can be described by asymptotic analysis of vortex–wave interaction for compressible flows.
See, for example Johnstone & Hall (2021) and Zhu & Wu (2022).

The current paper extends the incompressible study of Duck & Stephen (2021) (hereafter
referred to as DS), into the fully compressible regime. The focus of the investigation
of DS was in the development of three-dimensional (3-D) disturbances with spanwise
scales comparable to the boundary-layer thickness. The appropriate governing equations
are the boundary-region equations (BRE), which were solved numerically, revealing
unstable, unsteady solutions possible for three-dimensional disturbances, in contrast
to only stable solutions existing for corresponding two-dimensional disturbances. The
numerical and asymptotic analysis of DS links the solutions to two previously known
unsteady two-dimensional modes, namely the Lam & Rott (1960) and Ackerberg &
Phillips (1972) family of eigensolutions and the Brown & Stewartson (1973) eigenmodes.
See DS for more details.

The compressible BRE have been employed to study receptivity to free-stream vortical
disturbances. Ricco & Wu (2007) extended the incompressible study of Leib, Wundrow &
Goldstein (1999) to the compressible case. For low-frequency (long-wavelength) turbulent
fluctuations, the far-downstream region is governed by the unsteady BRE. Growing modes
were found below a critical spanwise wavenumber. This investigation has lead to many
subsequent studies of flows exhibiting streamwise streaks, so-called Klebanoff modes.
Klebanoff modes are formed by the entrainment of free-stream vortical disturbances into
a boundary layer. They develop in the boundary layer and are characterised by having
a streamwise velocity much larger than the normal and spanwise components. See for
example, Marensi, Ricco & Wu (2017). A further application of these equations is in
Ricco, Tran & Ye (2009), who studied wall heat transfer effects on Klebanoff modes and
Tollmien–Schlichting waves. Theoretical studies have been conducted which attempt to
explain observed experimental results on Klebanoff modes, for example, Ricco, Luo &
Wu (2011) and Ricco (2023).
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Eigensolutions of the unsteady boundary-region equations

The BRE have also been shown to be appropriate for describing Görtler vortices;
streamwise streaks due to streamwise curvature. Görtler vortices occur on turbine blades
and need to be considered in wind-tunnel nozzles, amongst other practical applications.
Hall (1983) showed that a unique neutral curve did not exist as a result of the non-parallel
nature of the flow. In fact, the governing parabolised Navier–Stokes equations presented in
Hall (1983) are precisely the BRE, although this terminology was not adopted until later.
Since the solutions depend on the initial conditions, receptivity, analyses are required
to determine the response of the boundary layer. Wu, Zhao & Luo (2011) and Xu,
Zhang & Wu (2017) were the first to treat streamwise streaks and Görtler vortices in
the same framework in analysing the receptivity to free-stream vortical disturbances
using the unsteady BRE. These studies have been extended to consider compressible
effects by Viaro & Ricco (2019a,b). For compressible flows the applications extend to
hypersonic flow, including for example the development of hypersonic vehicles and reentry
capsules. A comprehensive review on theoretical, computational and experimental studies
on compressible Görtler vortices is given by Xu, Ricco & Duan (2024), which identifies
the role of the linear and nonlinear BRE in the theoretical frameworks. These equations
were also considered in the study of Es-Sahli et al. (2023), where optimal conditions
using suction and blowing were sought for suppressing the growth of compressible Görtler
vortices. In this latter investigation the adjoint compressible BRE were solved. Overall, we
see the versatility of the BRE approach and theoretical studies.

The structure of this paper is as follows. In § 2 we present the derivation of the
compressible BRE, appropriate for large values of the Reynolds number, where the
spanwise length scales are generally comparable to the boundary-layer thickness. In § 3 we
present numerical solutions of these equations for small-amplitude, spatially developing,
time-periodic, spanwise perturbations about a steady compressible boundary-layer flow.
Solutions exhibiting downstream growth are presented. As in DS, a local stability analysis
based upon the parabolic-flow approximation is considered in § 4. The effect of Mach
number on the growth rates of unstable modes is determined for supersonic conditions.
The analysis for the far-downstream limit is presented in § 5. In the first instance, unstable
modes analogous to those in DS and stable Lam & Rott (1960) eigenmodes are considered.
For the unstable non-entropy modes we find that the effect of compressibility is in some
cases represented by one parameter. This allows for easy determination of the growth
rates for larger spanwise wavenumbers using the corresponding incompressible results
of DS. Further analysis suggests that an additional scaling of the spanwise wavenumber
is appropriate (even) further downstream. Consideration of this reveals new unstable
modes in the compressible case (not found in the incompressible case), described by an
inviscid analysis. Comparisons of the asymptotic results with the numerical solutions are
presented. Finally, the downstream development of entropy modes is considered for O(1)

spanwise wavenumbers, with a local analysis based upon a parallel-flow approximation
indicating that they are always stable. However, there is a slight caveat to this, since
the downstream, spatially developing approach employed in § 3 reveals that, if entropy
modes are initially triggered, through non-parallel interaction effects, these in turn trigger
non-entropy modes and hence instability. Our conclusions are presented in § 6.

2. Formulation

Here, we consider the effect of three-dimensional and temporally harmonic disturbances to
a compressible boundary-layer flow over a semi-infinite flat plate, where the spanwise scale
is generally comparable to the boundary-layer thickness. We define a Reynolds number
Re = U∞L/ν∞, which is taken to be asymptotically large, where U∞ is a free-stream
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(reference) flow speed, L is some reference length scale, notably the location of interest
downstream of the leading edge, and ν∞, μ∞ and ρ∞ are the free-stream kinematic
viscosity, viscosity and density, respectively. We write the velocity vector (to leading
order in powers of Reynolds number) as U∞(U, Re−1/2V, Re−1/2W), corresponding
to the coordinates L(x, Re−1/2Y, Re−1/2Z), where the plate lies along Y = 0, x > 0.
Correspondingly, the pressure takes the form

ρ∞U2
∞( p0 + Re−1/2p1(x) + Re−1p2(x, Y, Z, t) + · · · ), (2.1)

and dimensional time is Lt/U∞, and we are implicitly assuming a uniform free-stream
flow, and so we can assume that p0x = 0. Note that p1(x) is driven by the boundary-layer
displacement, and plays little role within the framework of the BRE. Additionally, the
temperature, density and viscosity are written as T∞T , ρ∞ρ and μ∞μ, respectively. To
leading order in powers of Re � 1 we find (see Stewartson 1964 for example)

ρt + (ρU)x + (ρV)Y + (ρW)Z = 0, (2.2)

ρUt + ρ(UUx + VUY + WUZ) = (μUY)Y + (μUZ)Z, (2.3)

ρVt + ρ(UVx + VVY + WVZ) + p2Y = 2(μVY)Y + [λ(Ux + VY + WZ)]Y

+ [μ(VZ + WY)]Z + (μUY)x, (2.4)

ρWt + ρ(UWx + VWY + WWZ) + p2Z = 2(μWZ)Z + [λ(Ux + VY + WZ)]Z

+ [μ(WY + VZ)]Y + (μUZ)x. (2.5)

The equation of state takes the form

ρT = 1, (2.6)

and correspondingly the energy equation takes the form

ρ(Tt + UTx + VTY + WTZ) =
(

μTY

σ

)
Y

+
(

μTZ

σ

)
Z

+ (γ − 1)M2
∞μ(U2

Y + U2
Z).

(2.7)

In the above, and throughout the paper, subscripts for time and spatially related variables
denote partial differentiation. Here, σ = μ∞cp/k is the Prandtl number (assumed to take
the value of 0.72), cp the specific heat at constant pressure, k the coefficient of thermal
diffusivity and γ the ratio of specific heats (assumed to take the value of 1.4) and
λ = −2

3μ. Then differentiating the Y momentum equation with respect to Z and the Z
momentum equation with respect to Y usefully eliminates the third-order pressure term
( p2) leading to

− ρΘt + ρZ(Vt + UVx + VVY + WVZ) − ρY(Wt + UWx + VWY + WWZ)

− ρ [UΘx + VΘY + WΘZ + Θ(VY + WZ) − UZVx + UYWx]

+ 2μYZ(WZ − VY) + μZ(−2∇2V − UxY) + μY(2∇2W + UZx)

+ (μYY − μZZ)(VZ + WY) − μZxUY + μYxUZ + μ∇2Θ = 0. (2.8)

Here, Θ = WY − VZ . The above system (2.2)–(2.8) is then at the heart of this paper,
and is generally referred to as the compressible form of the BRE and various (quite
disparate) aspects are studied. Indeed, because of their streamwise parabolic nature, the
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Eigensolutions of the unsteady boundary-region equations

BRE can be more efficient than direct numerical simulations of the full Navier–Stokes
equations, which are invariably computationally very time consuming. A further approach
that has gained much interest over the years is the use of the parabolised stability equations
(Bagheri & Hanifi 2007). In essence, these treat the full Navier–Stokes equations (with
the streamwise viscous diffusion terms discarded, but retaining the streamwise pressure
gradient) in a parabolic form. This approach has much similarity with the BRE, and has
the advantage of being able to handle finite (but large) Reynolds numbers, with disturbance
length scales shorter than the distance to the leading edge (unlike the BRE). However,
this approach can be regarded as ad hoc (the BRE are asymptotically rigorous), and can
manifest itself with numerical/computational anomalies.

We now go on to recast the above in terms of similarity-type variables, η and ζ , but
not assuming similarity in x, where η = Y/x1/2 and ζ = Z/x1/2, the advantage of this
approach being the solution (to be computed) is no longer singular at the leading edge
(x = 0).

We write

U = Û(η, ζ, x, t), (2.9)

V = x−1/2V̂(η, ζ, x, t), (2.10)

W = x−1/2Ŵ(η, ζ, x, t), (2.11)

Θ = x−1Θ̂(η, ζ, x, t), (2.12)

μ = μ̂(η, ζ, x, t), (2.13)

ρ = ρ̂(η, ζ, x, t), (2.14)

T = T̂(η, ζ, x, t). (2.15)

We then find the equation of state is

ρ̂T̂ = 1, (2.16)

whilst the continuity equation is

xρ̂t + Û
(
−1

2ηρ̂η − 1
2ζ ρ̂ζ + xρ̂x

)
+ ρ̂

(
−1

2ηÛη − 1
2ζ Ûζ + xÛx

)
+ ρ̂ηV̂ + ρ̂V̂η + ρ̂ζ Ŵ + ρ̂Ŵζ = 0, (2.17)

the x-momentum equation is

ρ̂
[
xÛt + Û

(
−1

2ηÛη − 1
2ζ Ûζ + xÛx

)
+ V̂Ûη + ŴÛζ

]
= μ̂ηÛη + μ̂Ûηη + μ̂ζ Ûζ + μ̂Ûζ ζ , (2.18)

whilst the amalgamation of the Y− and Z− momentum equations takes the form

− xρ̂Θ̂t + ρ̂ζ

[
xV̂t + Û

(
−1

2 V̂ − 1
2ηV̂η − 1

2ζ V̂ζ + xV̂x

)
+ V̂V̂η + ŴV̂ζ

]
− ρ̂η

[
xŴt + Û

(
−1

2 Ŵ − 1
2ηŴη − 1

2ζ Ŵζ + xŴx

)
+ V̂Ŵη + ŴŴζ

]
997 A4-5
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− ρ̂
[
Û
(
−Θ̂ − 1

2ηΘ̂η − 1
2ζ Θ̂ζ + xΘ̂x

)
+ V̂Θ̂η + ŴΘ̂ζ + Θ̂(V̂η + Ŵζ )

]
− ρ̂

[
Ûζ

(
1
2 V̂ + 1

2ηV̂η + 1
2ζ V̂ζ − xV̂x

)
+ Ûη

(
−1

2 Ŵ − 1
2ηŴη − 1

2ζ Ŵζ + xŴx

)]
+ (μ̂ηη − μ̂ζζ )(V̂ζ + Ŵη) + μ̂ζ

(
−2∇̂2V̂ + 1

2 Ûη + 1
2ηÛηη + 1

2ζ Ûηζ − xÛxη

)
+ μ̂η

(
2∇̂2Ŵ − 1

2 Ûζ − 1
2ζ Ûζ ζ − 1

2ηÛηζ + xÛxζ

)
+ Ûη

(
1
2 μ̂ζ + 1

2ημ̂ζη + 1
2ζ μ̂ζζ − xμ̂ζx

)
+ 2μ̂ηζ (Ŵζ − V̂η) − Ûζ

(
1
2 μ̂η + 1

2ημ̂ηη + 1
2ζ μ̂ζη − xμ̂ηx

)
+ μ̂∇̂2Θ̂ = 0, (2.19)

where ∇̂2 ≡ ∂2/∂η2 + ∂2/∂ζ 2 and

Θ̂ = Ŵη − V̂ζ . (2.20)

The energy equation becomes

ρ̂
[
xT̂t + Û

(
−1

2ηT̂η − 1
2ζ T̂ζ + xT̂x

)
+ V̂T̂η + ŴT̂ζ

]
=
(

μ̂T̂η

σ

)
η

+
(

μ̂T̂ζ

σ

)
ζ

+ (γ − 1)M2
∞μ̂(Û2

η + Û2
ζ ). (2.21)

In the case of Chapman’s law

μ̂ = T̂, (2.22)

whilst, for Sutherland’s law (which is the preferred relationship for this paper),

μ̂ = T̂3/2 1 + C

T̂ + C
, (2.23)

where our numerical computations shown later used the value C = 0.5. We have the usual
(no-slip and impermeability) boundary conditions on the wall, along with the adiabatic
condition T̂η(η = 0) = 0, or a specified wall temperature T̂(η = 0) = Tw (for example);
in this paper we focus on the adiabatic wall condition. Note, however, that wall temperature
can have a profound impact on velocity and temperature disturbances.

Note that the above follows quite closely the Weinberg & Rubin (1972, equations (2.8)),
but not assuming a Prandtl number σ = 1 or Chapman’s viscosity law (here, we formulate
the problem in the general form μ = μ(T), then subsequently Sutherland’s law will be
implemented in our numerical calculations). Note that, since p0x = 0, then p0 = 1/γ M2∞.

At the outer edge of the boundary layer (η → ∞) we require that free-stream conditions
are recovered, namely

Û → 1, Ŵ → 0, Θ̂ → 0, T̂ → 1. (2.24a–d)

The system of equations described above is considered, firstly through a fully numerical
study of spatially developing and time-periodic disturbances (described in the subsequent
section), followed by various asymptotic analyses, all based on this system.
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Eigensolutions of the unsteady boundary-region equations

3. Downstream development of small-amplitude, spanwise and temporally periodic
perturbations

We now consider the downstream development of small-amplitude (O(δ)) time-periodic,
spanwise (of fixed wavelength) perturbations about a steady, undisturbed boundary-layer
flow as follows (where subscript zero denotes the unperturbed state):

Û = Ū0(η) + δ
(

U∗(x, η)eit cos βZ + c.c.
)

+ · · · , (3.1)

V̂ = V̄0(η) + δ
(

V∗(x, η)eit cos βZ + c.c.
)

+ · · · , (3.2)

Ŵ = δ
(

W∗(x, η)eit sin βZ + c.c.
)

+ · · · , (3.3)

Θ̂ = δ
(
Θ∗(x, η)eit sin βZ + c.c.

)
+ · · · , (3.4)

T̂ = T̄0(η) + δ
(

T∗(x, η)eit cos βZ + c.c.
)

+ · · · , (3.5)

ρ̂ = ρ̄0(η) + δ
(
ρ∗(x, η)eit cos βZ + c.c.

)
+ · · · , (3.6)

μ̂ = μ̄0(η) + δ
(
μ∗(x, η)eit cos βZ + c.c.

)
+ · · · . (3.7)

For future reference, the base flow quantities satisfy the following equations and
boundary conditions:

ρ̄0T̄0 = 1, (3.8)

−1
2ηρ̄0ηŪ0 − 1

2ηρ̄0Ū0η + ρ̄0ηV̄0 + ρ̄0V̄0η = 0, (3.9)

−1
2ηρ̄0Ū0Ū0η + ρ̄0V̄0Ū0η = μ̄0ηŪ0η + μ̄0Ū0ηη, (3.10)

−1
2ηρ̄0Ū0T̄0η + ρ̄0V̄0T̄0η =

(
μ̄0T̄0η

σ

)
η

+ (γ − 1)M2
∞μ̄0Ū2

0η, (3.11)

these being the compressible Blasius equations. The dependence of viscosity on the
temperature yields μ̄0 = T̄0 for Chapman’s law and μ̄0 = T̄3/2

0 (1 + C)/(T̄0 + C) for
Sutherland’s law. The no-slip and impermeability boundary conditions at the wall give
Ū0 = V̄0 = 0 at η = 0. The adiabatic condition gives T̄0η = 0 at η = 0, while for a
specified wall temperature T̄0 = Tw at η = 0. Matching with the free-stream conditions
yields Ū0 → 1 and T̄0 → 1 as η → ∞.

Note here, since the (scaled) spanwise wavelength β is fixed (based on Re−1/2),
compared with the downstream-growing boundary-layer thickness this becomes relatively
shorter progressively downstream. Equations (2.2)–(2.8) then lead to the following set of
linearised equations:

ixρ∗ + Ū0

(
−1

2ηρ∗
η + xρ∗

x

)
− 1

2ηU∗ρ̄0η + ρ̄0

(
−1

2ηU∗
η + xU∗

x

)
− 1

2ηρ∗Ū0η

+ ρ∗V̄0η + ρ̄0ηV∗ + ρ∗
η V̄0 + ρ̄0V∗

η + xβρ̄0W∗ = 0, (3.12)

ρ̄0

[
ixU∗ + xŪ0U∗

x − 1
2 ηŪ0U∗

η − 1
2 ηU∗Ū0η + V̄0U∗

η + V∗Ū0η

]
+ ρ∗

(
− 1

2 ηŪ0Ū0η + V̄0Ū0η

)
= μ∗

ηŪ0η + μ̄0ηU∗
η + μ̄0U∗

ηη + μ∗Ū0ηη − xβ2μ̄0U∗, (3.13)
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− ixρ̄0Θ
∗ + βρ∗

[
1
2 Ū0(V̄0 + ηV̄0η) − V̄0V̄0η

]
− ρ̄0η

[
ixW∗ + Ū0

(
xW∗

x − 1
2 ηW∗

η

)
+ V̄0W∗

η

]
− ρ̄0

[
Ū0

(
xΘ∗

x − 1
2 Θ∗ − 1

2 ηΘ∗
η

)
+ V̄0Θ

∗
η + Θ∗V̄0η − 1

2 βU∗(V̄0 + ηV̄0η) + Ū0η

(
xW∗

x − 1
2 ηW∗

η

)]
+ μ̄0η(2W∗

ηη − 2xβ2W∗ − xβU∗
x + 1

2 βηU∗
η) + μ̄0ηη(−βV∗ + W∗

η )

+ μ̄0(Θ
∗
ηη − xβ2Θ∗) − Ū0η

(
−xβμ∗

x + 1
2 βημ∗

η

)
+ β

(
1
2 μ̄0η + 1

2 ημ̄0ηη

)
U∗

− 2βμ∗
ηV̄0η − βμ∗

(
−2V̄0ηη + 1

2 Ū0η + 1
2 ηŪ0ηη

)
= 0, (3.14)

ρ̄0

[
ixT∗ + Ū0

(
xT∗

x − 1
2 ηT∗

η

)
− 1

2 ηT̄0ηU∗ + V̄0T∗
η + V∗T̄0η

]
+ ρ∗

(
− 1

2 ηŪ0T̄0η + V̄0T̄0η

)
= 1

σ

[
μ̄0ηT∗

η + μ∗
ηT̄0η + μ̄0T∗

ηη + μ∗T̄0ηη − xβ2μ̄0T∗
]

+ (γ − 1)M2
∞
(

2μ̄0Ū0ηU∗
η + μ∗Ū2

0η

)
,

(3.15)

Θ∗ = W∗
η + βV∗, (3.16)

ρ∗T̄0 + ρ̄0T∗ = 0. (3.17)

A similar approach was adopted in the incompressible study of DS, although the
computations here are inevitably rather more challenging because of compressibility,
but nonetheless still appropriate for a routine downstream-marching (Crank–Nicolson)
methodology. As in the previous (incompressible) study, sparseness was exploited in
solving the discretised (algebraic) system, thereby eliminating the need for any form
of iteration. Flow triggering was accomplished in a manner similar to that adopted
in DS, namely, by one of the following three means, applied on the plate surface:
(i) by introducing streamwise flow forcing by setting V∗(η = 0, x) = F(x); (ii) by
introducing a cross-flow forcing by setting W∗(η = 0, x) = F(x); (iii) by introducing a
thermal forcing by setting T∗(η = 0, x) = F(x). In all cases, we generally chose F(x) =
exp(1/x2) exp(−x2), corresponding to a localised (close to the leading edge of the plate)
impulsive triggering of the disturbance field. Generally, all three triggering means yielded
the same (key) behaviour sufficiently far downstream (although later in the paper, § 5.4
does highlight an interesting subtlety (with regard to forcing of the form (iii)).

Figure 1 illustrates results (obtained by means (ii) above) for the downstream
development of the disturbance streamwise wall shear stress, U∗

η(η = 0), for two choices
of spanwise wavenumber, namely β = 0.01 and 0.02, for free-stream Mach numbers
M∞ = 0, 1, 2, 5. Note that these distributions are quite representative of the other flow
disturbance quantities. All eight distributions shown indicate an initial growth of the flow
response (the distance over which this occurs is apparently quite sensitive to the choice of
β and M∞). Note that similar growth was observed by Ricco & Wu (2007). For the smaller
wavenumber, β = 0.01, this is then followed by an ultimate disturbance decay, and so this
strongly suggests the existence of a lower and upper neutral point (in the context of stability
analysis). For the larger choice of β, the results for the two higher Mach numbers suggest
that, although the initial growth is indeed followed by a decay, this is then followed by a
second period of growth followed by decay. (In the case of M∞ = 1, β = 0.02 the initial
response as seen may well be caused as a direct response to the flow triggering near the
leading edge.) It does appear, therefore, that the flow disturbance response is somewhat
more complicated, at least at the larger spanwise wavenumbers, than in the incompressible
case. Later sections of this paper help to shed light on this observation.

Although these results are undoubtedly mathematically ‘rigorous’, properly taking
into account non-parallel-flow effects, nonetheless, it is often (including in DS) useful
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Figure 1. Downstream development of U∗
η(η = 0) for M∞ = 0, 1, 2, 5, β = 0.01 and 0.02. Panels show

(a) β = 0.01, M∞ = 0, (b) β = 0.02, M∞ = 0, (c) β = 0.01, M∞ = 1, (d) β = 0.02, M∞ = 1, (e) β = 0.01,
M∞ = 2, ( f ) β = 0.02, M∞ = 2, (g) β = 0.01, M∞ = 5, (h) β = 0.02, M∞ = 5.
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to consider local stability analysis based upon a parallel-flow approximation, which is
expected to become increasingly accurate/less heuristic further downstream. This is the
theme of the following section.

4. Local stability analysis based upon a parallel-flow approximation

The previous section clearly indicates the strong potential for downstream growth
(followed by decay) of disturbances. To elucidate this phenomenon further, we adopt a
locally parallel approach (which is ad hoc in nature, with x serving as a parameter) to the
(spatial) stability analysis. In particular, we write (where Re{ν} > 0 indicates downstream
growth of disturbances)

(U∗(x, η), V∗(x, η), W∗(x, η), Θ∗(x, η), T∗(x, η), ρ∗(x, η), μ∗(x, η))

= eνx(U∗∗(η), V∗∗(η), W∗∗(η), Θ∗∗(η), T∗∗(η), ρ∗∗(η), μ∗∗(η)), (4.1)

and so leading on from (3.12)–(3.17)

ixρ∗∗ + Ū0

(
−1

2ηρ∗∗
η + xνρ∗∗

)
− 1

2ηU∗∗ρ̄0η + ρ̄0

(
−1

2ηU∗∗
η + xνU∗∗

)
− 1

2ηρ∗∗Ū0η

+ ρ∗∗V̄0η + ρ̄0ηV∗∗ + ρ∗∗
η V̄0 + ρ̄0V∗∗

η + βxρ̄0W∗∗ = 0, (4.2)

ρ̄0

[
ixU∗∗ + xνŪ0U∗∗ − 1

2ηŪ0U∗∗
η − 1

2ηU∗∗Ū0η + V̄0U∗∗
η + V∗∗Ū0η

]
+ ρ∗∗

(
−1

2ηŪ0Ū0η + V̄0Ū0η

)
= μ∗∗

η Ū0η + μ̄0ηU∗∗
η + μ̄0U∗∗

ηη + μ∗∗Ū0ηη − xβ2μ̄0U∗∗, (4.3)

− ixρ̄0Θ
∗∗ + βρ∗∗

[
1
2 Ū0(V̄0 + ηV̄0η) − V̄0V̄0η

]
− ρ̄0η

[
ixW∗∗ + Ū0(xνW∗∗ − 1

2ηW∗∗
η ) + V̄0W∗∗

η

]
− ρ̄0

[
Ū0

(
xνΘ∗∗ − 1

2Θ∗∗ − 1
2ηΘ∗∗

η

)
+ V̄0Θ

∗∗
η

+Θ∗∗V̄0η − 1
2βU∗∗(V̄0 + ηV̄0η) + Ū0η

(
xνW∗∗ − 1

2ηW∗∗
η

)]
+ μ̄0η(2W∗∗

ηη − 2xβ2W∗∗ − xβνU∗∗ + 1
2βηU∗∗

η ) + μ̄0ηη(−βV∗∗ + W∗∗
η )

+ μ̄0(Θ
∗∗
ηη − xβ2Θ∗∗) − Ū0η(−βxνμ∗∗ + 1

2βημ∗∗
η ) + β

(
1
2 μ̄0η + 1

2ημ̄0ηη

)
U∗∗

− 2βμ∗∗
η V̄0η − βμ∗∗

(
−2V̄0ηη + 1

2 Ū0η + 1
2ηŪ0ηη

)
= 0, (4.4)

ρ̄0

[
ixT∗∗ + Ū0(xνT∗∗ − 1

2ηT∗∗
η ) − 1

2ηT̄0ηU∗∗ + V̄0T∗∗
η + T̄0ηV∗∗

]
+ ρ∗∗

(
−1

2ηT̄0ηŪ0 + V̄0T̄0η

)
= 1

σ

[
μ̄0ηT∗∗

η + μ∗∗
η T̄0η + μ̄0T∗∗

ηη + μ∗∗T̄0ηη − xβ2μ̄0T∗∗
]

+ (γ − 1)M2
∞
(

2μ̄0Ū0ηU∗∗
η + μ∗∗Ū2

0η

)
, (4.5)
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Figure 2. Locally parallel variation of spatial growth rates Re{ν} for M∞ = 0, 1, 2, 5 with spanwise
wavenumber β at x = 100 (blue), x = 200 (green), x = 400 (red); unstable regimes only shown. Panels show
(a) M∞ = 0, (b) M∞ = 1, (c) M∞ = 2, (d) M∞ = 5.

Θ∗∗ = W∗∗
η + βV∗∗, (4.6)

ρ∗∗T̄0 + ρ̄0T∗∗ = 0. (4.7)

The above system was then discretised and initial estimates for the eigenvalues ν were
determined using a QZ algorithm, before being refined using a local search procedure.
Here, as in DS, we focus our attention on what appears to be the single unstable mode.
Our results are presented in figure 2. It should be pointed out that there was no evidence
of unstable thermally driven (i.e. entropy) modes (although § 5.4 does indicate a slight
caveat to this statement). Results are presented for growth rates Re{ν} for free-stream Mach
numbers 0, 1, 2 and 5 at downstream locations x = 100, 200 and 400; these results are
represented by the unstable regions of parameter space. As the free-stream Mach number
increases, it can be observed that the peak growth rate occurs at progressively lower values
of the wavenumber β, and the same trend is clear with increasing downstream location,
together with an increasingly higher peak (although this can be anticipated from DS).
Certainly, there is an indication of an increasingly intricate structure to the parameter
space as compressibility effects are increased.

Figure 3 shows the wall-normal distributions of the amplitude of the disturbance
streamwise and cross-flow velocity components and of the temperature distributions for
the case of M∞ = 5 at x = 100, 200 and 400 corresponding to the cross-flow wavelengths
yielding the maximum streamwise growth rates (as indicated).
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Figure 3. Wall-normal disturbance distributions at x = 100 (β = 0.0004, blue), x = 200 (β = 0.00025,
green), x = 400 (β = 0.00015, red), M∞ = 5. Panels show (a) |U∗∗|, (b) |W∗∗|, (c) |T∗∗|.

An alternative perspective of growth rates is presented in figure 4, which shows the
downstream development for two selected values of β, namely 0.005 and 0.01. Figures 2
and 4 suggest quite a complicated variation in parameter space (x, β and M∞). However,
it is quite clear that compressibility has a significant effect on growth rates, especially
downstream. Taken together, figures 2–4 provide the motivation for the following section.

5. The far-downstream limit

5.1. The case β = O(1/x)
We now consider the far-downstream (x → ∞) limit to the system (4.2)–(4.5), using an
asymptotically rigorous approach. We take Y = O(1) to be the key transverse scale, and
we assume β = β̂/x, β̂ = O(1), in line with the incompressible two-dimensional (2-D)
analysis of Lam & Rott (1960) and Ackerberg & Phillips (1972) and the corresponding
3-D analysis of DS

U = Ū0η(0)Y/
√

x + δx−1/2
(

e−λ̂x3/2
eit cos(β̂Z/x)ũ(Y) + c.c.

)
+ · · · , (5.1)

V = 1
2 Ū0η(0)Y2/x3/2 + δ

(
e−λ̂x3/2

eit cos(β̂Z/x)ṽ(Y) + c.c.
)

+ · · · , (5.2)
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Eigensolutions of the unsteady boundary-region equations
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Figure 4. Downstream variation of growth rates, β = 0.005 and 0.01. Panels show (a) β = 0.005,
(b) β = 0.01.

W = δx
(

e−λ̂x3/2
eit sin(β̂Z/x)w̃(Y) + c.c.

)
+ · · · , (5.3)

p2 = δx2
(

e−λ̂x3/2
eit cos(β̂Z/x)p̃2(Y) + c.c.

)
+ · · · , (5.4)

T = T̄0(0) + δ
(

e−λ̂x3/2
eit cos(β̂Z/x)T̃(Y) + c.c.

)
+ · · · , (5.5)

ρ = ρ̄0(0) + δ
(

e−λ̂x3/2
eit cos(β̂Z/x)ρ̃(Y) + c.c.

)
+ · · · , (5.6)

μ = μ̄0(0) + δ
(

e−λ̂x3/2
eit cos(β̂Z/x)μ̃(Y) + c.c.

)
+ · · · . (5.7)

In the above, we have chosen notation analogous to that used in DS, with λ̂ = −x−1/2ν

(note that, in DS, the link between these two quantities had the incorrect factor 2
3 , although

the ensuing results are correct and consistent with this paper). We then find that the O(δ)

terms (at leading order in x) are

iρ̃ − 3
2 λ̂ρ̄0(0)ũ − 3

2 λ̂Ū0η(0)Yρ̃ + ρ̄0(0)ṽY + β̂ρ̄0(0)w̃ = 0, (5.8)

iρ̄0(0)ũ − 3
2 λ̂ρ̄0(0)Ū0η(0)Yũ + Ū0η(0)ρ̄0(0)ṽ − μ̃YŪ0η(0) − μ̄0(0)ũYY = 0, (5.9)

iρ̄0(0)T̃ − 3
2 λ̂ρ̄0(0)Ū0η(0)YT̃ − 1

σ
μ̄0(0)T̃YY = 0, (5.10)

p̃2Y = 0, (5.11)

iρ̄0(0)w̃ − 3
2 λ̂ρ̄0(0)Ū0η(0)Yw̃ − β̂p̃2 − μ̄0(0)w̃YY = 0, (5.12)

ρ̄0(0)T̃ + T̄0(0)ρ̃ = 0. (5.13)

Note that, just as in DS, algebraic terms of the form xτ multiply the exponential terms
above, as described by Goldstein (1983) and Hammerton & Kerschen (1996), but these are
only important at higher order, beyond that considered in this paper, and are omitted in the
interests of brevity.

Before we discuss the solutions of (5.8)–(5.13) it is worth noting that the corresponding
incompressible equations considered in DS, obtained by setting μ̃ = T̃ = ρ̃ = 0, admit
analytical quasi-3-D solutions in terms of Airy functions. As pointed out by two referees,
these were also discussed in Ricco & Wu (2007).
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It is useful to introduce Θ̃ = w̃Y , and then to differentiate (5.12) with respect to Y , taking
note of (5.11), yielding

iρ̄0(0)Θ̃ − 3
2 λ̂ρ̄0(0)Ū0η(0)w̃ − 3

2 λ̂ρ̄0(0)Ū0η(0)YΘ̃ − μ̄0(0)Θ̃YY = 0. (5.14)

Note that the above eigenmodes can be loosely (sub-)classified into non-entropy and
entropy modes. In the case of the former, T̄ ≡ ρ̄ ≡ 0, whilst in the case of the latter, all
components can in principle be triggered; we consider these non-entropy modes first, and
defer a discussion of the entropy modes until § 5.4.

Now consider the overall compressible system, (5.8)–(5.13). Then, as discussed in
the incompressible study of DS, when β̂ /= 0 it is necessary to consider two additional
transverse scales in order to close the problem. A (further) useful point to note is that
because of the homogeneous nature of (5.10), then for all non-entropy modes T̃ ≡ μ̃ ≡
ρ̃ ≡ 0, and so these outer regions assume very similar structure to the incompressible case
with a relatively trivial adjustment to take account of the compressible nature of the base
flow.

Note that as Y → ∞, in general

ũ = O(1), w̃ = O(1/Y), (5.15a,b)

which is consistent with (5.8)–(5.12), and with connecting correctly to outer transverse
regions, as described below. (We remark that these behaviours apply to the incompressible
problem – there was a typographical error for w̃ in (5.10) of DS.) A consideration of these
outer regions is necessary to close the problem. In particular, we first consider the regime
η = Y/

√
x = O(1) (i.e. a longer wall-normal scale, indeed one that is comparable to the

boundary-layer thickness itself). We then expect that (to leading order)

U = Ū0(η) + δx−1/2eite−λ̂x3/2
ũ(η) cos

β̂Z
x

, (5.16)

V = x−1/2V̄0(η) + δx1/2eite−λ̂x3/2
ṽ(η) cos

β̂Z
x

, (5.17)

p2 = δx2eite−λ̂x3/2
p̃2(η) cos

β̂Z
x

, (5.18)

W = δx1/2eite−λ̂x3/2
w̃(η) sin

β̂Z
x

. (5.19)

These lead to the following set of equations:

O(1) : −3
2
λ̂ũ + ṽ′ = 0, (5.20)

O(1) : −3
2
λ̂Ū0ũ + Ū′

0ṽ = 0, (5.21)

O(x3/2) : p̃′
2 = 0, (5.22)

O(x) : −3
2
ρ̄0λ̂Ū0w̃ = β̂p̃2. (5.23)

These only differ in form from the corresponding incompressible analysis of DS, with the
factor ρ̄0 in the last equation. Thus, the solution of this system is

ũ = AŪ′
0(η), (5.24)
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ṽ = 3
2
λ̂AŪ0(η), (5.25)

w̃ = − 2β̂p̃2

3λ̂Ū0(η)ρ̄0(η)
, (5.26)

which matches to the wall-layer solution as Y → ∞, where A is a constant and clearly p̃2
is a constant across this region.

If we now consider the region where η � 1 (alternatively this can be regarded as the
region wherein η = O(

√
x)) then it is straightforward to see that the V and W perturbations

are linked through the Cauchy–Riemann equations to yield

U = 1 + o(δ
√

xe−λ̂x3/2
) + · · · , (5.27)

V = x−1/2V̄0(∞) + δx1/2Ceite−λ̂x3/2
e−(ηβ̂/

√
x) cos

β̂Z
x

+ · · · , (5.28)

W = δx1/2Ceite−λ̂x3/2
e−(ηβ̂/

√
x) sin

β̂Z
x

+ · · · , (5.29)

p2 = −3δC

2β̂
λ̂x2eite−λ̂x3/2

e−(ηβ̂/
√

x) cos
β̂Z
x

+ · · · . (5.30)

Here, C is a constant. The above implies that

C = 3
2
λ̂A, (5.31)

w̃(Y → ∞) → 3λ̂û(Y → ∞)

2(U0η(0))2ρ̄0(0)Y
, (5.32)

and this (now) works as a key boundary condition, which closes the problem, by
augmenting (5.15a,b). This is another eigenvalue problem, for which standard numerical
(finite-difference) methods were employed. Note that even when β̂ = 0, (5.32) indicates
that the cross-flow (w̃, Θ̃) is still triggered by the 2-D mode. Note that the above system
was ‘triggered’ in three distinct ways: (i) by forcing ūY(Y = 0) = 1; (ii) by forcing Θ̄(Y =
0) = 1 (effectively 3-D non-entropy modes); (iii) by forcing T̄Y(Y = 0) or T̄(Y = 0) = 1
(entropy modes).

Usefully, in the case of non-entropy modes (which of course captures the all-important
unstable mode), the key system (5.8)–(5.14) can be scaled, resulting in (just) one parameter
dependent on the Mach number (here, we therefore set T̃ = ρ̃ = μ̃ = 0 and implicitly
assume that for Y = O(1), generally ũ = O(1)). We write

ũ = ˜̃u, ṽ =
√

μ̄0(0)

ρ̄0(0)
˜̃v, w̃ =

√
μ̄0(0)

ρ̄0(0)3/2
˜̃w, Θ̃ = 1

ρ̄0(0)

˜̃
Θ,

Y =
√

μ̄0(0)

ρ̄0(0)
Ŷ, β̂ =

√
ρ̄0(0)μ̄0(0)

˜̃
β, p̃2 = 1

ρ̄0(0)
˜̃p2,

Ū0η(0) =
√

ρ̄0(0)

μ̄0(0)
U′

00.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.33)
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Figure 5. Spatial growth rate results in unstable regions (β = O(1/x), β̂ = O(1)) using (5.8)–(5.13) and a
comparison with the corresponding asymptotic β̂ → ∞ results using (5.39); Mach numbers as indicated.

The net result arising from (5.8)–(5.13) is the following (simplified) eigen-system:

˜̃vŶ − 3
2 λ̂

˜̃u + ˜̃
β ˜̃w = 0, (5.34)

i ˜̃u − 3
2 λ̂U

′
00Ŷ ˜̃u + U′

00
˜̃v − ˜̃uŶŶ = 0, (5.35)

i ˜̃
Θ − 3

2 λ̂U
′
00

˜̃w − 3
2 λ̂U

′
00Ŷ ˜̃

Θ − ˜̃
ΘŶŶ = 0, (5.36)

˜̃
Θ = ˜̃wŶ , (5.37)

whilst the all-important far-field boundary condition (5.32) is now

˜̃w(Ŷ → ∞) → 3λ̂ ˜̃u
2U′2

00Ŷ
. (5.38)

The results shown in figure 5 are confined to unstable regions, and correspondingly show
the existence of a lower neutral point at lower values of the (scaled) spanwise wavenumber,
whilst at higher wavenumbers, the modes remain unstable, but less so. Usefully, this
system is precisely that found in the incompressible case of DS, but with one trivial
difference, namely that Ū0η(0) is merely replaced by U′

00, and so we can immediately

write (using these previously published results) that in the limit as ˜̃
β → ∞

λ̂ = i ˜̃
β−1λ̂0 + ˜̃

β−2λ̂1 + · · · , (5.39)

where

λ̂0 = 2
3 U′

00, λ̂1 = −9λ̂3
0(1 + i)

4
√

2
. (5.40a,b)

Notice that, here, the effect of compressibility for these non-entropy modes is represented
by just the one parameter, namely U′

00, whose value varies from circa 0.332 in the case
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Figure 6. Variation of the compressibility parameter U′

00 with free-stream Mach number M∞ (adiabatic wall
conditions).

of incompressible flows to circa 0.376 in the case of Sutherland’s law with C = 0.5, in
particular, as M∞ → ∞ (adiabatic wall conditions). This benign behaviour is clearly seen
in figure 6, and implies that λ̂, for fixed ˜̃

β, is a relatively weak function of free-stream Mach
number. In figure 7 there is a comparison between the (downstream-marching) numerical
results for β̂ = O(1) and the corresponding results as β̂ → ∞, translating (5.39) into the
corresponding variables for figure 5. For quite small values of the scaled wavenumber β̂

there is some suggestion of the locally parallel results approaching the asymptotic results
as x increases), the agreement is frankly poor for larger values of β̂. This discrepancy leads
us on to the analysis of the following subsection, for the regime β̂ = O(x1/2).

5.2. Higher spanwise wavenumber disturbances – β = O(x−1/2)

The above strongly suggests the existence of an upper neutral point as the spanwise
wavenumber is increased. This is also seen in the incompressible case of DS, but was
not addressed in detail. Here, we go on to consider this aspect in rather more detail, and
indeed reveal details about the instability of the flow in the compressible regime, not found
in the incompressible regime. Although the β̂ → ∞ results indicate what amounts to
neutral spatial stability, these shed no light on the behaviour of perturbations at (even)
shorter wavelengths downstream. Partly guided by these results, we set β = β∗/x1/2, with
β∗ = O(1), and we expect when Y = O(1)

U = Ū0η(0)Y/
√

x + δx−1/2
(

eνxeit cos(β∗Z/x1/2)ũ(Y) + c.c.
)

+ · · · , (5.41)

V = 1
2 Ū0η(0)Y2/x3/2 + δ

(
eνxeit cos(β∗Z/x1/2)ṽ(Y) + c.c.

)
+ · · · , (5.42)

W = δx1/2
(

eνxeit sin(β∗Z/x1/2)w̃(Y) + c.c.
)

+ · · · , (5.43)

p2 = δx
(

eνxeit cos(β∗Z/x1/2)p̃2(Y) + c.c.
)

+ · · · , (5.44)
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Figure 7. Variation of Re{λ̂} with (scaled) spanwise wavenumber β̂ for M∞ = 5 at x = 100 (blue), x = 200
(green), x = 400 (red), all obtained using the locally parallel approach described in § 4. The dashed line
corresponds to the x → ∞ results obtained from (5.8)–(5.13).

T = T̄0(0) + δ
(

eiteνxT̃(Y) cos(β∗Z/x1/2) + c.c.
)

+ · · · , (5.45)

ρ = ρ̄0(0) + δ
(

eiteνxρ̃(Y) cos(β∗Z/x1/2) + c.c.
)

+ · · · , (5.46)

μ = μ̄0(0) + δ
(

eiteνxμ̃(Y) cos(β∗Z/x1/2) + c.c.
)

+ · · · . (5.47)

The leading-order governing system (in δ) is then

ṽY + β∗w̃ = 0, (5.48)

ρ̄0(0)(iũ + Ū
′
0(0)ṽ) − μ̄0(0)ũYY = 0, (5.49)

p̃′
2 = 0, (5.50)

ρ̄0(0)iw̃ − β∗p̃2 − μ̄0(0)w̃YY = 0, (5.51)

ρ̄0(0)iT̃ + T̄0η(0)ṽ − μ̄0(0)

σ
T̃YY = 0. (5.52)

The main points to glean from this system are the behaviours as Y → ∞. We find that

w̃ → − iβ∗p̃2

ρ̄0(0)
, ṽ → iβ∗2Yp̃2

ρ̄0(0)
− (1 + i)β∗2(μ̄0(0))1/2p̃2√

2(ρ̄0(0))3/2
,

ũ → −β∗2YŪ′
0(0)p̃2

ρ̄0(0)
+ (1 − i)β∗2(μ̄0(0))1/2p̃2Ū′

0(0)√
2(ρ̄0(0))3/2

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.53)

The primary region is when η = O(1), as strongly suggested by our β̂ → ∞ results.
The resulting scalings are then

U = Ū0(η) + δ

(
eiteνxũ(η) cos

β∗Z
x1/2 + c.c.

)
+ · · · , (5.54)
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V = x−1/2V̄0(η) + δx1/2
(

eiteνxṽ(η) cos
β∗Z
x1/2 + c.c.

)
+ · · · , (5.55)

p2 = δx
(

eiteνxp̃2(η) cos
β∗Z
x1/2 + c.c.

)
+ · · · , (5.56)

W = δx1/2
(

eiteνxw̃(η) sin
β∗Z
x1/2 + c.c.

)
+ · · · , (5.57)

T = T̄0(η) + δ

(
eiteνxT̃(η) cos

β∗Z
x1/2 + c.c.

)
+ · · · , (5.58)

ρ = ρ̄0(η) + δ

(
eiteνxρ̃(η) cos

β∗Z
x1/2 + c.c.

)
+ · · · . (5.59)

The resulting (key) system as x → ∞ is then

(i + νŪ0)ρ̃ + ρ̄0νũ + ρ̄0ηṽ + ρ̄0ṽη + β∗ρ̄0w̃ = 0, (5.60)

(i + νŪ0)ũ + Ū0ηṽ = 0, (5.61)

ρ̄0(i + νŪ0)ṽ + p̃′
2 = 0, (5.62)

ρ̄0(i + νŪ0)w̃ − β∗p̃2 = 0, (5.63)

(i + νŪ0)T̃ + T̄0ηṽ = 0. (5.64)

Putting everything together, then the above may be combined to yield

p̃2ηη − β∗2p̃2 +
(

T̄0η

T̄0
− 2νŪ0η

i + νŪ0

)
p̃2η = 0, (5.65)

which is basically the compressible Rayleigh equation, with zero streamwise wavenumber.
In order to match on to the Y = O(1) region correctly, we must have

p̃2η(η = 0) = 0, (5.66)

along with, as η → ∞
p̃2η + β∗p̃2 → 0. (5.67)

Although computations exclusively confined to the real η-axis can yield reasonably
accurate results for unstable modes, this is not the case for damped and neutral modes.
This issue was overcome by diverting the computations into the complex η-plane.
Specifically we took integration paths of the following form: starting at the origin
η = 0, the computations headed towards η = (ξ0, 0), then up to η = (ξ0, ζ0), then along
to η = (ξ1, ζ0), back down to η = (ξ1, 0), then along to η = (ξmax, 0). Typically, we
took ξ0 = 0.05, ζ0 = 2 and ξ1 = 40, although our results were confirmed by adjusting
these values. Of course the base (compressible Blasius-type) flow requires evaluation
in complex η space, but this is straightforward. This procedure yielded results for ν in
good agreement with the finite x calculations, as illustrated in the next subsection. This
technique is reminiscent of the Mack (1984) procedure for tackling Rayleigh’s equation
for compressible boundary-layer stability calculations (for example). The effects of the
Mach number on the solutions for Re(ν) are shown in figure 8. The incompressible case is
stable, (a result that may be anticipated from DS) while at higher Mach numbers instability
is found, with growth rates that increase as the Mach number increases, and with maximum
growth rates moving towards smaller values of β∗. These results also indicate the existence
of an upper (with respect to β∗) neutral point.
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Figure 8. Results from inviscid stability analysis (5.65)–(5.67) for Re(ν) as a function of β∗.

5.3. Comparison of asymptotic results with streamwise developing results
As a particularly stringent test of the asymptotic results described in the previous
subsection, we compare these with the (notional) spatial growth rates as computed
from the downstream-marching procedure, as described in § 3. Specifically, we took
the local wall shear stress results as shown in figure 1(h), for β = 0.02, M∞ = 5 and
evaluated U∗

ηx(η = 0)/U∗
η(η = 0) (numerically). The results for the effective growth

rate, based on the streamwise perturbation wall shear (Re{ν}) are shown in green in
figure 9. (Note that the corresponding distribution for the wall temperature clearly
indicated damping.) For comparison, results corresponding to figure 5 are shown in
blue, where results for varying values of β̂ have been translated into varying values
of downstream location x, corresponding to fixed β. Similarly, results corresponding to
figure 8 are shown in purple, where results for varying values of β∗ have been translated
into varying values of downstream location x, corresponding to fixed β. Taking the
downstream-marching/spatially developing results of § 3 as a benchmark, we see that there
is reasonable agreement with the β = O(1/x) results from § 3, but this deteriorates further
downstream. On the other hand, comparison of this benchmark with the β = O(1/

√
x)

of § 5.2 is poor for smaller values of downstream location x, but this improves further
downstream. In some ways, this result is not unexpected given the different regimes
considered in the first two subsections of this section, but nonetheless is encouraging.

5.4. Entropy modes
Computations using both the locally parallel approach of § 3 and the far-downstream
approach of § 5.1 strongly suggested that entropy modes, i.e. those initiated by triggering
the temperature field, were all stable, decaying downstream. Indeed, it is noteworthy
that with the scaling of β, not only is (5.10) homogeneous, it is also independent of
scaled spanwise wavenumber. Closer inspection of the energy equation (4.5) in particular
highlights that for entropy modes, in the far-downstream limit, the original β = O(1)

remains the key spanwise scaling, with Y = O(1) being the important transverse scaling.
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Figure 9. Downstream variation of growth rates for M∞ = 5 and β = 0.02. Purple/solid:
downstream-marching results (§ 3); blue/dashed: β = O(1/x) results (§ 5.1); green/dot-dashed: β = O(1/

√
x)

results (§ 5.2).

The leading terms are notionally O(x), and lead to the homogeneous form

ρ̄0(0)
(

i − 3
2 λ̂Ū0η(0)Y

)
T∗∗ − μ̄0(0)

σ

(
T∗∗

YY − β2T∗∗
)

= 0, (5.68)

the solution of which is
T∗∗ = κ̂1Ai(Y∗), (5.69)

where

Y∗ =
(

−3σ λ̂ρ̄0(0)Ū0η(0)

2μ̄0(0)

)1/3 (
Y − iρ̄0(0) + β2μ̄0(0)/σ

3
2 ρ̄0(0)λ̂Ū0η(0)

)
. (5.70)

In the adiabatic case

λ̂ =
√

2σ(1 + i)
3ρ̄0(0)Ū0η(0)(μ̄0(0))1/2(ρ′

n)
3/2

(
ρ̄0(0) − iβ2μ̄0(0)/σ

)3/2
, (5.71)

where the ρ′
n corresponds to the nth zero of the derivative of the Airy function, viz.

Ai′(−ρ′
n) = 0, (5.72)

which replicates the incompressible 2-D eigenvalues with no cross-flow and zero spanwise
wavenumber, as discussed in DS.

On the other hand, for specified wall temperature flows

λ̂ =
√

2σ(1 + i)
3ρ̄0(0)Ū0η(0)(μ̄0(0))1/2(ρn)3/2

(
ρ̄0(0) − iβ2μ̄0(0)/σ

)3/2
, (5.73)

where the ρn corresponds to the nth zero of the Airy function per se, viz.

Ai(−ρn) = 0. (5.74)

Note that this also replicates the incompressible modes with cross-flow and with zero
spanwise wavenumber, also discussed by DS. These can be regarded as entropy modes,
and these are present, even as M∞ → 0.
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Figure 10. Downstream development of streamwise perturbation wall shear U∗
η(η = 0) triggered by wall

temperature forcing for M∞ = 0 and β = 0.01.

Close inspection of the real part of λ̂ from above indicates that these modes are always
damped modes, in line with our remarks above. However, as a caveat, reverting to the
downstream development approach of § 3, now triggering the perturbation through wall
forcing of the temperature field (in particular by specifying a wall-normal temperature
gradient for the perturbation flow) leads to an interesting possibility. Figure 10 shows
the resulting downstream development of the perturbation wall shear for the zero Mach
number case, with β = 0.01. Note that upstream of x ≈ 120, there was little flow response,
but thereafter there is a significant response. Intriguingly, in the regime of significant flow
field response, the temperature field response (not shown) is insignificant, and rapidly
diminishes downstream. In this case, however, the non-parallel nature of the flow leads to
full interaction between the temperature and flow fields, the latter being triggered by the
former, which then leads to downstream growth. This does highlight the fact that whilst
local stability analyses based upon a parallel-flow approximation can be useful, they can
also overlook important effects of non-parallelism.

6. Conclusions

We have considered solutions of the unsteady, compressible BRE, following on from the
incompressible study of DS. Our focus has been on disturbances with spanwise wavelength
comparable to the boundary-layer thickness (and on adiabatic wall conditions, although
it would be a simple matter to change the analysis to other wall conditions). Thus, the
resulting governing equations are the unsteady (time-periodic), compressible BRE. These
are solved using several approaches. In the first, the flow field develops downstream (for
fixed spanwise wavenumbers). These results show that growth, followed by decay of
disturbances can occur (similar to the results of DS). However, particularly at higher Mach
numbers, results suggest that after one regime of decay, a second regime exists, wherein
growth is observed, followed by decay again. A local stability analysis based upon a
parallel-flow approximation is undertaken, and this confirms the potential for downstream
growth. This leads on to asymptotic analyses of the stability modes, far downstream, which
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confirm the presence of instabilities. A further wavenumber regime is also considered,
wherein the spanwise wavenumber is O(x−1/2) and this suggests that a further regime
of instability (inviscid in nature) can occur as the free-stream Mach number increases.
This could account for the aforementioned second growth regime, found at higher Mach
numbers.

One interesting observation, found in the case of entropy modes is that although the
locally parallel approaches predict stability, when non-parallelism is properly taken into
account as in § 3, the interaction between thermal and non-thermal effects can trigger the
latter, and as a consequence instabilities.

Our numerical and asymptotic results suggest that the effects of compressibility
should not be ignored in future studies of unsteady three-dimensional eigensolutions in
boundary-layer flow. The importance of entropy modes can be significant; although in the
context of locally parallel-flow approximations these are all damped, if non-parallelism is
taken into account, these damped modes can trigger downstream growth though coupling
between thermal and hydrodynamic fluctuations. In addition, as in the incompressible
case, consideration of a link with the unstable modes described here and compressible
Klebanoff modes should be investigated, although the latter modes are induced by
free-stream turbulence. The studies of Ricco & Wu (2007), Ricco et al. (2009) and Marensi
et al. (2017), amongst others, have investigated the effect of compressibility on these
low-frequency streaks in compressible boundary layers. These streaks are located at the
edge of the boundary layer while the unsteady eigensolutions considered in the current
study reside close to the wall in the boundary layer.

Finally, this paper does suggest the possibility of modes of instability, not reported
in the past. Asymptotic analysis, such as implemented in this paper, takes on what may
be regarded as a microscopic view of physical parameter space, that could perhaps be
overlooked by DNS studies, and as a consequence there is an interesting possibility for
such studies to search in the parameter regimes identified in this paper, for behaviours that
we have reported.
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