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Abstract It is shown that a condition on the order of a meromorphic function in a result of A. A.
Gol’dberg cannot be relaxed.
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1. Introduction

Suppose that f is a meromorphic function in the plane and that

lim inf
r→∞

N(r, 0) + N(r, ∞)
(log r)2

� σ, (1.1)

for some positive number σ, where

N(r, a) =
∫ ∞

0

n(t, a)
t

dt,

n(t, a) being the number of a-points of f in {z : |z| � t}. (We assume that f has neither
a zero nor a pole at the origin, which ensures the existence of N(r, 0) and N(r, ∞); as
will be apparent, no loss of generality is entailed in doing so.) In response to a conjecture
of Barry [1, p. 485], Gol’dberg [2] showed that if in addition f has order 0, then

lim sup
r→∞

m(r)
M(r)

� C(σ), (1.2)

where

C(σ) =
( ∞∏

j=1

1 − e−(2k−1)/(4σ)

1 + e−(2k−1)/(4σ)

)2

(1.3)

and
m(r) = min

|z|=r
|f(z)|, M(r) = max

|z|=r
|f(z)|,

125

https://doi.org/10.1017/S0013091502000962 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000962


126 P. C. Fenton

the minimum and maximum moduli of f . The constant C(σ) is best possible, as Barry
showed [1, p. 484]. Gol’dberg commented [2, p. 434]:

It is likely that [in this theorem] it is possible to replace the requirement
that f has order 0 by the weaker restriction that f be a function of genus 0.
However, we have not been able to prove this.

The intention here is to show that order 0 cannot be replaced by genus 0 in the
hypotheses of the theorem.

2. An example

Given a number ρ, with 0 < ρ < 1, and a positive number σ, we will construct an entire
function f(z) of order ρ for which

lim inf
r→∞

N(r)
(log r)2

� σ (2.1)

(for brevity N(r) is used here and in what follows instead of N(r, 0)), while

lim sup
r→∞

m(r)
M(r)

< C(σ). (2.2)

Let mj , j = 1, 2, . . . , be an increasing sequence of positive integers which is sparse in the
sense that

j∑
l=1

eρml/(2σ′) = o(mj+1) (j → ∞), (2.3)

where
σ′ = σ/(1 − ρ2), (2.4)

and let Rj = emj/(2σ′). Let Kj be the largest positive integer such that RjeKj/(2σ′) �
R1−ρ

j+1 . In view of (2.3) and the definition of Rj ,

j∑
l=1

Rρ
l = o(log Rj+1); (2.5)

also,

Kj = [(1 − ρ)mj+1 − mj ] = (1 − ρ + o(1))mj+1

= 2σ′(1 − ρ + o(1)) log Rj+1, (2.6)

where [·] denotes the integral part. Finally, given a positive integer p, set

α = ep/(2σ) (2.7)

and define f(z) to be the entire function formed from its zeros using the simplest Weier-
strassian factors, with the zeros specified as follows: for each positive integer j, [αRρ

j ]
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zeros are placed at −Rj , and, again for each j, simple zeros are placed at −Rjek/(2σ′),
k = 1, 2, . . . , Kj . The zeros of f thus occur in blocks corresponding to the intervals
(−Rj+1,−Rj ], with a concentration of zeros at −Rj , a regular distribution of sim-
ple zeros from −Rj to about −R1−ρ

j+1 , and the remaining part of the interval free of
zeros.

The counting function, n(r), of the zeros of f satisfies, for each j,

n(r) = n(Rj) + [2σ′ log(r/Rj)], Rj � r � RjeKj/(2σ′), (2.8)

n(r) = n(Rj) + Kj , RjeKj/(2σ′) � r < Rj+1, (2.9)

n(Rj+1) = n(Rj) + Kj + αRρ
j+1. (2.10)

Let us first check that f has order ρ. From (2.10), n(Rj+1) � αRρ
j+1, so, from Jensen’s

Theorem, f has order at least ρ. On the other hand, from (2.8) and (2.9), for Rj � r <

Rj+1,

n(r) =
j∑

l=1

αRρ
j + O(log r)

= αRρ
j +

j−1∑
l=1

αRρ
j + O(log r)

= αRρ
j + O(log r), (2.11)

in view of (2.5), and so f has order at most ρ. Also, from (2.11) and (2.5), n(Rj) =
o(log Rj+1), and therefore, using (2.8), (2.9) and (2.6),

N(Rj+1) =
{∫ Rj

0
+

∫ R1−ρ
j+1

Rj

+
∫ Rj+1

R1−ρ
j+1

}
n(t)

t
dt

� n(Rj) log Rj +
∫ R1−ρ

j+1

Rj

(n(Rj) + 2σ′ log(t/Rj))
dt

t
+ ρ(n(Rj) + Kj) log Rj+1

= (1 − ρ)n(Rj) log Rj+1 + σ′(log(R1−ρ
j+1/Rj))2 + ρ(n(Rj) + Kj) log Rj+1

= σ′(1 − ρ)2(log Rj+1)2 + 2σ′ρ(1 − ρ + o(1))(log Rj+1)2 + o(log Rj+1)2

= σ′(1 − ρ2 + o(1))(log Rj+1)2 = (σ + o(1))(log Rj+1)2, (2.12)

from (2.4), so that (2.1) is satisfied.
It remains to verify (2.2), and to do so we consider three subcases for r in any of the

intervals [Rj , Rj+1):

(i) Rj � r � βRj ;

(ii) β−1R1−ρ
j+1 � r < Rj+1;

(iii) βRj � r � β−1R1−ρ
j+1 .
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Here
β = ep/(2σ′), (2.13)

p being the positive integer introduced earlier (cf. (2.7)).

(i) Rj � r � βRj :

m(r)
M(r)

�
∣∣∣∣1 − r/Rj

1 + r/Rj

∣∣∣∣
αRρ

j

�
(

β − 1
β + 1

)αRρ
j

= o(1), (2.14)

as j → ∞.

(ii) β−1R1−ρ
j+1 � r < Rj+1:

m(r)
M(r)

�
(

1 − r

Rj+1

)αRρ
j+1

�
(

1 − β−1

Rρ
j+1

)αRρ
j+1

= (1 + o(1))e−αβ−1

= (1 + o(1))e−ep(σ′−σ)/(2σσ′)
, (2.15)

from (2.7) and (2.13).

(iii) βRj � r � β−1R1−ρ
j+1 (i.e. e(mj+p)/(2σ′) � r � e((1−ρ)mj+1−p)/(2σ′)):

m(r)
M(r)

�
Kj∏
k=1

∣∣∣∣1 − (r/Rj)e−k/(2σ′)

1 + (r/Rj)e−k/(2σ′)

∣∣∣∣

=
Kj∏
k=1

∣∣∣∣1 − re−(k+mj)/(2σ′)

1 + re−(k+mj)/(2σ′)

∣∣∣∣

= Π−1
1 Π−1

2

∞∏
k=1

∣∣∣∣1 − re−k/(2σ′)

1 + re−k/(2σ′)

∣∣∣∣, (2.16)

where

Π1 =
∞∏

k=mj+Kj+1

∣∣∣∣1 − re−k/(2σ′)

1 + re−k/(2σ′)

∣∣∣∣, Π2 =
mj∏
k=1

∣∣∣∣1 − re−k/(2σ′)

1 + re−k/(2σ′)

∣∣∣∣.

Since r � e((1−ρ)mj+1−p)/(2σ′) and, from (2.6), mj + Kj + 1 � (1 − ρ)mj+1,

Π1 �
∞∏

k=p

(
1 − e−k/(2σ′)

1 + e−k/(2σ′)

)
= π(p),
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say, where π(p) → 1 as p → ∞. Similarly, but using r � e(mj+p)/(2σ′),

Π2 � π(p),

and we conclude that

m(r)
M(r)

� π(p)−2
∞∏

k=1

∣∣∣∣1 − re−k/(2σ′)

1 + re−k/(2σ′)

∣∣∣∣.

Barry [1, p. 484] has shown that

lim sup
r→∞

∞∏
k=1

∣∣∣∣1 − re−k/(2σ′)

1 + re−k/(2σ′)

∣∣∣∣ = C(σ′),

and therefore, for all large j, for βRj � r � β−1R1−ρ
j+1 ,

m(r)
M(r)

� (1 + o(1))π(p)−2C(σ′).

Combining the results from (i), (ii) and (iii), we obtain

lim sup
r→∞

m(r)
M(r)

� max{e−ep(σ′−σ)/(2σσ′)
, π(p)−2C(σ′)}.

Since p may be arbitrarily large,

lim sup
r→∞

m(r)
M(r)

� C(σ′),

which establishes (2.2), C(σ′) being less than C(σ) since σ′ > σ.
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