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Abstract
A common approach when studying the quality of representation involves comparing the latent prefer-

ences of voters and legislators, commonly obtained by fitting an item response theory (IRT) model to a

common set of stimuli. Despite being exposed to the same stimuli, voters and legislators may not share a

common understanding of how these stimuli map onto their latent preferences, leading to differential item

functioning (DIF) and incomparability of estimates. We explore the presence of DIF and incomparability of

latent preferences obtained through IRT models by reanalyzing an influential survey dataset, where survey

respondents expressed their preferences on roll call votes that U.S. legislators had previously voted on. To

do so, we propose defining a Dirichlet process prior over item response functions in standard IRT models. In

contrast to typicalmultistepapproaches todetectingDIF, our strategyallows researchers to fit a singlemodel,

automatically identifying incomparable subgroups with different mappings from latent traits onto observed

responses.We find that although there is a groupof voterswhoseestimatedpositions canbe safely compared

to thoseof legislators, a sizeable shareof surveyedvotersunderstandstimuli in fundamentallydifferentways.

Ignoring these issues can lead to incorrect conclusions about the quality of representation.

Keywords: item response theory, nonparametric Bayes, Dirichlet process, differential item functioning, joint

scaling

1 Introduction

Measurement models, such as the popular two-parameter item response theory (IRT) model,

are commonly used to measure latent social-scientific constructs like political ideology. Such

models use observed responses to a common set of stimuli (e.g., congressional bills to be voted

on) in order to estimate underlying traits of respondents and mappings from those traits to the

responses given (e.g., a “yea” or “nay” vote). Standard applications of these models typically

proceedon theassumption that the set of stimuli used tomeasure constructs of interest areunder-

stood equally by all respondents, thus making their answers (and anything we learn from them)

comparable. This assumption is commonly known as measurement invariance, or measurement
equivalence (King et al. 2004; Stegmueller 2011).
As early as 1980, however, researchers were aware that violations of this assumption were

possible. Today, violations of this assumption are commonly referred to as differential item

functioning (DIF). In the language of the time, Lord (1980, 212) defined DIF by stating that “if an

item has a different item response function for one group than for another, it is clear that the item

is biased.”

Since Lord’s description of the problem that DIF poses to measurement, a number of

researchers have developed and adopted various techniques to mitigate its effects. Lord (1980,

1977) proposed a general test of joint difference between the item parameters estimates for two

groups of respondents in the data. Thissen, Steinberg, and Wainer (1993) build on this work,
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proposing additional methods for fitting IRT models to a known reference and focal group and

then testing for the statistical differences in item parameters between the two groups. This work

in identifying DIF is complemented by work that attempts to correct DIF under very specific
circumstances and assumptions, including Aldrich and McKelvey (1977), Hare et al. (2015), Jessee
(2021), King et al. (2004), Poole (1998), and Stegmueller (2011).
In this paper, we propose a model designed to improve measurement when DIF is present. To

do so, we rely on Bayesian nonparametrics to flexibly estimate differences in the mappings used

by respondents when presented with a common set of items. While we are not the first scholars

to combine Bayesian nonparametric techniques (and specifically the Dirichlet process) with IRT

models (see, e.g., Jara et al. 2011; Miyazaki and Hoshino 2009), to the best of our knowledge, we
are the first to do so explicitly with the goal of diagnosing DIF. Ourmodel—whichwe refer to as the

multiple policy space (MPS) model—addresses one specific violation of measurement invariance

that is of particular importance in political methodology.

Ourmodel identifies subgroupsof respondentswhoshare common itemparameter values, and

whose positions in a shared latent space can thus safely be compared. Thus, while subgroups in

our model will not necessarily be distinct from each other, our model can estimate group-specific

latent traits by first learning a sorting of observations across unobserved groups of respondents

who share a common understanding of items, and conditioning on these group memberships

to carry out the measurement exercise. This is similar in spirit to work done by Lord (1980) and

Thissen et al. (1993), but a crucial difference in our work is that we do not require researchers to
a priori specify a set of groupmemberships of members before testing. Rather, our work offers an
automated,model-based approach to discover these groupmemberships from response patterns

alone,which in turnalso identifies groupsof respondents forwhomcommon latent traitmappings

can and cannot be validly compared. In discovering these latent groupmemberships, we can also

distinguish the set of respondents in our data that are comparable on a common latent score (i.e.,

a liberal-conservative ideological spectrum) from thosewho think on a different dimension (i.e., a

libertarian–authoritarian spectrum).1

To empirically illustrate our model, we apply it to the estimation of political ideology using a

dataset that contains both legislators and voters. Our application is based on the dataset analyzed

by Jessee (2016), which contains 32,800 respondents in a survey conducted in 2008 and 550 U.S.

Congress members who served in the same year. As we discussed above and will elaborate in the

next section, the aim of the MPS model in this application is to identify subsets of the voters and

legislators within which IRFs are shared and to measure latent traits within each subset, rather

than jointly scaling the actors into a common ideology space or determiningwhether joint scaling

disrupts ideal point estimates or not. In our analysis, we find that the 73% of the voters in the

dataset share item parameters with the legislators, whereas the 27% of the voters do not.

Our paper proceeds as follows. First, we introduce the substantive context and dataset of our

application, focusing on thework of Jessee (2016). Second, we discuss andmotivate the details of

our IRT model for dealing with measurement heterogeneity, discussing the role of the Dirichlet

process prior—the underlying technology that our proposed model uses to nonparametrically

separate respondents into groups. Third,weofferMonteCarlo simulationevidencedemonstrating

the ability of our model to recover the key parameters of interest. Fourth, we present a substan-

tive application of our model to the debate on the joint scaling of legislators and voters. This

debate focuses on the extent to which we can reasonably scale legislators and voters into the

1 Ideal points of people belonging to the same substantive cluster are comparable, assuming that we take the spatial model
of voting as our preferred model of political preferences. While it is possible to compare preferences on individual issues
of individuals in separate clusters (i.e., opinions on tax cuts), we see no straightforward way to standardize ideal points
of individuals in different ideological clusters (i.e., a 0.5 on a liberal-conservative scale versus a −0.5 on a libertarian–
authoritarian scale).
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same ideological space, which effectively can be reframed as a question regarding the extent to

which voters share the same item parameters as legislators. We conclude with some thoughts on

potential applications of our approach to dealing with heterogeneity in measurement.

2 Application: Scaling Legislators and Voters

In recent years, a literature extending the canonical two-parameter IRT model to jointly scale

legislators and voters using bridging items has emerged (Bafumi and Herron 2010; Hirano et al.
2011; Jessee 2012; Saiegh 2015). In such applications, researchers begin with a set of items that

legislators have already provided responses to, such as a set of pre-existing roll call votes. Voters

on a survey are thenprovidedwith the same items andasked for their responses. The responses of

the voters and legislators are grouped together and jointly scaled into a common space, providing

estimated ideal points of voters and legislators that in theory can then be compared to one

another.

In an influential critique of this work, Jessee (2016) argued that this approach did not neces-

sarily guarantee that legislators and voters could jointly be scaled into a common space.2 Jessee’s

core critique was that legislators and voters potentially saw the items and the ideological space

differently, even if they were expressing preferences on the same items. Joint scaling effectively

constrains the item parameters for those items to be identical for both groups, but does not

guarantee that they are actually identical in reality. In the language of the MPS model, Jessee

claimed that there were potentially two separate clusters—one for legislators and another for

voters—through which DIF can occur.

For Jessee, thequestionofwhether votersand legislators couldbe jointly scaledwasessentially

a question of sensitivity analysis. He conceptualized the answer to this question as a binary one—

that is, either all voters and legislators could be jointly scaled together, or they could not be. His

proposed solution to answer this questionwas to estimate two separatemodels for legislators and

voters. Jessee then used the legislator item parameters to scale voters in “legislator space,” and

the voter item parameters to scale legislators into “voter space.” If these estimates were similar

to those obtained via joint scaling, then the results were robust and legislators and voters could

be scaled together. The Jessee approach essentially adopts Lord (1980) and Thissen et al. (1993)
approach for testing for DIF, and adds an extra step by reestimating latent traits for the reference

and focal groups conditional on the item parameters of the other group.

Our approach toanswering this questiondiffers substantially fromJessee, but it isworthnoting

that his conception of the problem is a special case of our approach. To answer this question

using our model, we can estimate an MPS model where we constrain all of the legislators to

share a common set of item parameters, but allow voters to move between clusters. Voters can

thus be estimated to share membership in the legislator cluster, or they can split-off into other

separate clustersoccupiedonlybyvoters. This highlights theprincipal differencebetween theMPS

model and Jessee’s approach. Jessee’s approach is a sensitivity analysis in the spirit of Lord (1980)

that provides a binary Yes/No answer to the question of whether jointly scaling legislators and

voters together will change the ideal points estimates meaningfully—that is, it scales voters using

the item parameters of the legislators, and legislators using the item parameters of the voters.

Substantial deviation in theestimated ideal pointsbetween theseapproaches suggests that voters

and legislators cannotbe scaled together ina commonspace. In contrast, theMPSmodel identifies

the subset of voters that can be jointly scaled with legislators, which the Jessee model does not.

While two special cases of the MPSmodel (i.e., either all voters lie share item parameters with the

legislators, or none of themdo) correspond to potential answers that Jessee’smodel can provide,

2 A critique of joint scaling by Lewis and Tausanovitch (2013) is conceptually similar to Jessee’s critique in sharing concern
that parameter values for different groups of respondents differ, but employs a different methodology.
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ourmodel canprovide intermediate answers—notably,we can identify the number and identity of

the voterswho share an ideological spacewith legislators, and voters neednot all share a common

ideological space with one another.

3 Model Description

Our modeling approach adopts the same group-based definition of DIF previously described by

Lord (1980) andThissen et al. (1993). Specifically, we assume that there are subsets of respondents
who share the same IRFs,which in turn aredifferent from thoseusedbymembers of other subsets.

If we knew a priori what these groups were (e.g., gender of legislators in legislative voting),
correcting/accounting for DIF would be relatively easy, and would amount to conditioning on

group membership during the scaling exercise. However, the subsets of respondents for whom

items are expected to function in different ways is often not immediately obvious. In such cases,

we can use response patterns across items to estimate membership into groups of respondents
definedby clusters of itemparameter values (i.e., of theparameters that definedifferent IRFs). This

is thekey insightbehindourapproach,which reliesonaDirichletprocessprior for itemparameters

that allows us to identify collections of individuals for whom IRFs operate similarly without the

need to fix memberships or the number of such groups a priori.
To this end, we propose a model that addresses DIF violations occurring across groups of

respondents. When group membership is held constant across items, we are able to identify sets

of respondents who are effectively mapped onto different spaces, but who are guaranteed to be

comparable within group assignment. Our approach, which we call the MPS model, is a latent-
variable generalization of the standard nonparametric Dirichlet processmixture regressionmodel

(e.g., Hannah, Blei, and Powell 2011).3

With these intuitions in place, we now present our DP-enhanced IRTmodel, including a discus-

sion of how the Dirichlet process prior can help us address the issue of heterogeneous IRFs, but

leave the details of our Bayesian simulation algorithm to the Appendix.

3.1 The Multiple Policy Space Model
Let yi ,j ∈ {0,1} be respondent i’s (i ∈ 1, . . . ,N ) response on item j ∈ 1, . . . , J . Our two-parameter

IRT model defines

yi ,j | θ,β,γ
i.i.d.
∼ B

(
Φ

(
β�
k [i ],j θ i −γk [i ],j

))
, �i , j

θ i
i.i.d.
∼ ND

(
0,Λ−1

)
, �i

(βk ,j ,γk )
i.i.d.
∼ ND+1

(
0,Ω−1

)
, �k , j ,

(1)

where k [i ] ∈ 1, . . . is a latent cluster to which respondent i belongs; θ i is a vector of latent respon-

dent positions on D-dimensional space; βk ,j is a vector of cluster-specific item-discrimination

parameters;γk ,j is a cluster-specific item-difficulty parameter.4 Substantively, cluster-specific item

parameters reflect the possibility that the IRF is shared by respondents belonging to the same

group k but heterogeneous across groups.
To aid in the substantive interpretation of this model, it is helpful to consider the case where

we only keep respondents in group k = k ′, and discard respondents belonging to all other

groups. Thus, we are only using the item parameters from the cluster k ′, which are common to all

respondents in that cluster. Since this is the case, we can discard the cluster indexing altogether,

3 As such, it differs fromother uses of the DP prior (DPP), such as that of Kyung, Gill, and Casella (2009) or Traunmüller, Murr,
and Gill (2015), where a DPP is defined as part of a semiparametric model.

4 Λ and Ω are prior precisions of ideal points and item parameters, respectively, with Λ ≡ ID for identification purposes.
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and the first line of Equation (1) reduces to

yi ,j | θ,β,γ
i.i.d.
∼ B

(
Φ

(
β�
j θ i −γj

))
,� i s.t. k [i ] = k ′.

This is the standard two-parameter IRTmodel. Thus,we can summarize ourmodel as follows: if

cluster memberships were known, the MPS model is equivalent to taking subsets of respondents

by cluster, and scaling each cluster separately using the standard two-parameter IRT model. This

implies that even though they are expressing preferences on the same items, respondents in

different clusters are mapping the same items onto different latent spaces. Thus, comparisons

of θ i are only meaningful when those θ i belong to the same cluster (i.e., would have been scaled

together in the same IRTmodel).5

Given thatwedonotobservewhichobservationsbelong towhich clusters, however,weneed to

define a probabilistic model for the cluster memberships that does not require a priori specifying
howmany clusters respondents can be sorted into. For this, we rely on the Dirichlet process prior.

3.2 Sampling Cluster Memberships Using a Dirichlet Process Mixture
TheDirichletprocess is apopularnonparametricBayesianprior (Ferguson 1973; seealsoTeh2010).

The basic idea of the Dirichlet process is that any sample of data for which one typically estimates

a set of parameters can be split into subgroups of units, letting the data guide discovery of those

groups instead of requiring users to pre-specify their number a priori. Technically, the Dirichlet
process prior allowsmixturemodels to have a potentially infinite number ofmixture components,

but in general it allows a small number of components to be occupied by observations by penaliz-

ing the total number of occupied components. It is known that thenumberofmixture components

is not consistently estimated. Nevertheless, when used for density estimation (Ghosal, Ghosh, and

Ramamoorthi 1999) and nonparametric generalized (mixed) linear models (Hannah et al. 2011;
Kyung et al. 2009), Dirichlet process mixture models consistently estimate the density and the
mean function, respectively.

Wenowdescribe theDirichletprocessmixtureofourMPSmodel.6 Letpk ′ denote theprobability

that each observation is assigned to cluster k ′, for k ′ = 1,2, . . . , that is, pk ′ ≡ Pr(k [i ] = k ′), and let

the last line of Equation (1) be the base distribution from which cluster-specific item parameters

are drawn. Then, under a DP-mixture model of cluster-specific IRT likelihoods, we have

k [i ]
i.i.d.
∼ Categorical

(
{pk ′ }

∞
k ′=1

)
, (2)

pk ′ = πk ′
k ′−1∏
l=1

(1−πl ), (3)

πk ′
i.i.d.
∼ Beta(1,α ). (4)

Equations (2)–(4) are the key to understanding how the Dirichlet process mixture makes non-

parametric estimation possible. At the first step in the data generating process, we assign each

observation to one of clusters k ′ = 1,2, . . . . The assignment probabilities are determined by

Equations (3) and (4), which is called the “stick-breaking” process. The origin of the name sheds

light onhow this processworks.Whendeciding the probability of the first cluster (k ′ = 1), a stick of

length1 is brokenat the locationdeterminedby theBeta randomvariable (π1). Theprobability that

each observation is assigned to the first cluster is set to be the length of the broken stick, π1. Next,

5 Item parameters follow a similar logic in the sense that they are only comparable within the same cluster, but not across
clusters.

6 The description of the Dirichlet process here is based on the stick-breaking construction developed by Sethuraman (1994).
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we break the remaining stick of length 1−π1 again at the place π2 within the remaining stick. The

length of the second broken stick (π2(1−π1)) is used as the probability of each observation being

assigned to the second cluster. After setting the assignment probability of the second cluster, we

continue to break the remaining stick following the same procedure an infinite number of times.

Theprobabilities producedby the stochastic process vanish as the cluster index increases because

the remaining stick becomes shorter every time it is broken. Althoughwe do not fix themaximum

number of clusters and allow the number to diverge in theory, the property of the stick-breaking

process that causes the probability to quickly shrink toward zero prevents the number of clusters

from diverging in practice.7

Accordingly, when clusters over which DIF occurs are unobserved (both in membership and in

number), we can rely on this probabilistic clustering process over a potentially infinite number of

groups. In this context, each cluster k ′ effectively defines a (potentially) different IRF,which in turn

allows us to automatically sort observations into equivalence classes within which measurement

invariance is expected to hold, without guaranteeing that observations sorted into different clus-
ters will be comparable. Hence, our model partitions respondents across a (potentially infinite)

set of multiple policy spaces.

In general, the substantive interpretation of estimated clusters needs to be approached cau-

tiously. While our model is useful for identifying which respondents perceive a common latent

space with each other, it will generally overestimate the total number of actual (i.e., substantively
distinct) clusters in the data (Kyung et al. 2009; Womack, Gill, and Casella 2014).8 In the MPS
model, multiple DP clusters can be thought of as being part of the same substantive group—even

if their corresponding item parameters are not exactly the same. What ismore, this sub-clustering

phenomenon can exacerbate known pathologies of mixture modeling and IRT modeling, such as

label switching (i.e., invariance with respect to component label permutations) and additive and
multiplicative aliasing (i.e., invariance with respect to affine transformations of item parameters

and ideal points).

Thus, even if all respondents actually belonged to the same cluster k ′, we could estimatemore

than one cluster (denoted here by k ′′) with the other clusters recovering the transformed set of

item parameters βk′′r ,j
= (β�

k ′,j K ) (where K is an arbitrary rotationmatrix). However, wewould still
be able to see that clusters k ′ and k ′′ were similar by examining the correlation between βk ′ and

βk ′′ , as well as the patters of correlation between these and the item parameters associated with

other clusters. When sub-clustering is an issue, two sub-clusters can be thought of as being part of

the same substantive cluster if their itemsare highly correlated, or of they share similar correlation

patterns with parameters in other sub-clusters.9

Having presented the details of our model, we now present the results of a Monte Carlo simu-

lation that illustrates its ability to accurately partition respondents across clusters and recover the

associated item parameters within each cluster.

7 The value of the prior parameter α determines how quickly the probabilities to form a new cluster vanish. For α = 1, the
Beta distribution in Equation (4) turns out to be the uniform distribution. This is the standard choice in the literature (and
is our default option in all results presented here), whereas a smaller (larger) value of α leads to a faster (slower) decrease
in the cluster probabilities, depending on the total number of respondents in each cluster. Rather than experiment with
defining different values for this hyper-parameter for problems of different sizes, we adopt a fully Bayesian approach and
define an Gamma hyper-prior over α ,

α ∼ Gamma(a0,b0)

and learn a posterior distribution over α supported by the data.
8 In the context of DPmixtures, this issue arises as a result of multiple components having very similar (though not exactly
equal) item parameters. Accordingly, and in contrast to models that rely on DPPs to approximate arbitrary densities (as is
the case for DP random-effects models), clusters in DP mixtures can be thought of a proper sub-clusters—partitions that
are nested within actual, substantive groupings in the data.

9 Correlations, not being a proper metric, can violate the triangle inequality. Thus, high correlations between any two sets
of item parameters do not always guarantee similar patterns of association to the parameters of other clusters.
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4 Monte Carlo Simulations

As an initial test of our MPS model, we conduct a Monte Carlo simulation to test the ability of our

model to correctly recover our parameters of interest. We simulate a dataset in which N = 1,000

respondents provide responses to J = 200 binary items. Respondents are randomly assigned to

one of three separate clusters with probabilities 0.5, 0.2, and 0.3, respectively. In each cluster,

respondent ability parameters and itemdifficult anddiscriminationparameters are all drawn from

a standard normal distribution. For starting values, we use k-means clustering to generate initial
cluster assignments, and principal components analysis on subsets of the data matrix defined by

those cluster assignments for starting ability starting values. Item difficulty and discrimination

starting values were generated for each cluster and item by running probit regressions of the

observed data on the starting ability parameter values by cluster. We run 1,000 Markov Chain

Monte Carlo (MCMC) iterations, discarding the first 500 as burn-in, and keeping only the sample

that produces the highest posterior density as the maximum a posteriori (MAP) estimate of all
parameters and latent variables, to avoid issues associated with label switching.10

Table 1 shows a cross-tabulation of the simulated versus estimated cluster assignments. The

estimation procedure is able to separate the simulated clusters well, in the sense that none of

the estimated clusters span multiple simulated clusters. However, we see evidence of the sub-

clustering phenomenon discussed earlier. Members of simulated cluster 1, for instance, were split

into estimated clusters 3, 7, 9, and 10. Since members of simulated cluster 1 were all generated

using the same item parameters, the four estimated clusters that partition them are effectively

noisy affine transformations of each other. Thus, we expect that the four sets of estimated item

parameters for clusters 3, 7, 9, and 10 will be correlated. Simulated clusters 2 and 3 are similarly

split between multiple estimated clusters, and we could expect these parameters to be similarly

correlated.

In a real-case application, of course, access to the true underlying cluster memberships is

not available. And as we discussed earlier, Dirichlet process mixtures are ideal for capturing the

distribution of parameters by discretizing their support into an infinite number of sub-clusters. As
a result, many of these Dirichlet sub-clusters may share very similar parameter values, effectively

representing the same substantive groupings in terms of item functionings. Accordingly, using DP

mixtures fordiagnosingDIF requiresa formalprocedure for establishingwhich sub-clustersbelong

together by virtue of sharing similar item parameters, and which contain observations that truly

differ in their item functionings.

The practical issue of establishing equivalence across groups can be approached from a

number of perspectives. For example, researchers could employ pair-wise equivalence tests

on the item parameters (see, e.g., Hartman and Hidalgo 2018; Rainey 2014, for illustrations

in Political Science), being careful to account for the problems raised by conducting multiple

comparisons (e.g., using a Bonferroni-style correction, or the Benjamini–Hochberg procedure

to control the false discovery rate). Given the potentially large number of pairings, however, we

rely on an alternative approach that studies the second and third order information contained in

the item parameter correlation matrix. Specifically, we study the graph induced by correlations

across entire vectors of estimated item parameters to reconstruct substantive clusters from the

10 An anonymous reviewer pointed out that it would be useful to obtain information about uncertainty by keepingMCMC iter-
ations rather than using one iteration as the MAP estimate. While we agree with this, there are some technical difficulties.
First, keeping cluster assignments for all MCMC iterations requires a largememory size, especially because recent datasets
for ideal point estimation contain a massive number of respondents (Imai, Lo, and Olmsted 2016). Moreover, since our
model is a mixture model, label switching across iterations may mislead uncertainty measures. By contrast, since cluster
assignments are discrete random variables, getting uncertaintymight not providemuch additional information. However,
we are aware of the possibility that for some summary statistics of cluster assignments, for example, the minimum
proportion of voters who are in the same cluster as the legislators, uncertainty can be computed as an interval on the
continuous scale. While we did not use suchmeasures in our application, these could be of interest in other contexts.
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Table 1. Simulated versus estimated clusters, MPS model. The estimated clusters recover the simulated
clusters, but the sub-clustering phenomenon results in multiple estimated versions of the same cluster. For
example, estimated clusters 2 and 4 represent two different ways to identify the simulated cluster 2.

Simulated cluster

Estimated cluster 1 2 3

1 0 0 74

2 0 110 0

3 99 0 0

4 0 99 0

5 0 0 79

6 0 0 63

7 139 0 0

8 0 93 0

9 118 0 0

10 126 0 0

sub-clusters identified through the DP mixture, and encourage applied researchers to follow the

same approach.

To do so, we treat correlations among parameters as the adjacency matrix of a weighted,

undirected graph defined on the set of sub-clusters. The problem of finding substantive clusters

can then be cast as the problem of finding the optimal number of communities of sub-clusters on
this graph—a problem for which a number of approximate solutions exist (for a succinct review,

see Sinclair 2016).

For instance, a simple tool for identifying the optimal number of communities in a network

is given by the Gap Statistic (Tibshirani, Walther, and Hastie 2001), which compares an average
measure of dissimilarity among community members relative to the dissimilarity that would be

expected under a null distribution of edge weights emerging from a no-heterogeneity scenario11

Gap(k ) = �H0

[
log(D̄k )

]
− log(D̄k ).

The optimal number of communities (i.e., of substantive clusters) can then be established by

finding the k� that maximizes Gap(k ). Figure 1 shows the value of gap statistic for different values

of k, suggesting that the correct number of substantive clusters is 3 or 4.
Indeed, Figure 2 shows the result of applying a simple community detection algorithm12 to the

graphs formed by using correlations across discriminations (left panel) and correlations across

difficulties (rightpanel). Inboth instances, the true simulatedclusters aredenotedusing shapes for

thegraphnodes, and the substantivegroupingsdiscoveredby thecommunitydetectionalgorithm

are denoted using shaded areas. In all instances, the communities identified map perfectly onto

the known simulation clusters.

While our previous analyses tested the correspondence between the true and estimated clus-

ters, they say little about the recovery of the correct item parameters. In Figure 3, we explore

the item discrimination parameters in a series of plots, where each panel plots two sets of item

11 Implementations can vary with respect to the way dissimilarity is operationalized and with respect to how the null
distribution is defined.

12 Given the small number of sub-clusters in our estimation, we use a greedy procedure that starts by assigning each sub-
cluster to its own community, and then proceeds to bind them togetherwhile locally optimizing ameasure ofmodularity—
the extent to which edge density is higher within communities than it is between them (Newman 2003).
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Figure 1. Gap statistic over different numbers of substantive clusters, defined as communities in a graph
of item parameter correlations. High values of the gap statistic indicate a grouping with high within-cluster
similarity relative to a null model (in which edges are drawn uniformly at random) with no heterogeneity.
Thus, the k that maximizes the gap statistic is a reasonable estimate for the number of substantive clusters
in the data.
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Figure 2. Graphs defined on nodes given by DPmixture sub-clusters. The graph has weighted edges defined
using pair-wise correlations between discrimination parameters (left panel) and difficulty parameters (right
panel). True simulation clusters are denoted with different node shapes, and communities detected by a
modularity-maximizing algorithmare denotedwith shaded regions. Recovery is of simulated clusters is exact
in both instances.

discrimination parameters against each other. Along the main diagonal, we plot combinations of

the simulated item discrimination parameters (columns) for each cluster against the estimated

parameters (rows) for the corresponding known cluster. In all three cases, the item parameters

are well recovered and estimates are highly correlated with truth, with correlations of r = 0.99,

r = 0.97, and r = 0.97 for the three plots.13

13 In all cases, and because of the identification problems discussed earlier, estimates are only identified to an affine
transformation of the true parameters. We therefore rotate all estimated parameters so that theymatch their known signs
under the correspondence in Table 1.
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Figure 3. Correlation of item discrimination parameters. Main diagonal plots estimated versus simulated
parameters for each cluster and show that the item discrimination parameters are correctly recovered to
an affine transformation. Off-diagonal plots show cross-cluster correlation between estimated and true item
parameters, which is expected (under the simulation) to be zero.

In turn, the off-diagonal panels present each combination of the simulated item discrimination

parameters versus their (mis-matched) counterparts in other clusters. Since parameters in each

clusterweregenerated from independentdraws, the itemsareuncorrelated in reality. As expected,

this independence is reflected in the estimated item parameters, which appear similarly uncorre-

lated with one another and with parameters in other known clusters.

We repeat the same exercise in Figure 4, but this time for the latent traits. In all cases, the latent

traits are highly correlated, again demonstrating correct recovery of the traits of interest. The

figuresalsohighlight the fact that, in theMPSmodel, estimated latent traits areonly comparable to

other respondents belonging to the same cluster. If theMPSmodel facilitated comparisons across

clusters, then at a minimum all of the figures shown here would consistently either be positively

or negatively correlatedwith the simulated true ideal point. However, this is not the case. This is of

course not surprising—the MPS model effectively estimates a separate two-parameter IRT model

for each cluster of legislators, allowing the same items to assume different item parameters for

eachgroup. Thus, ideal points across groupswouldnotbe comparable, anymore than ideal points

from separate IRT models would be comparable. Of course, the MPS model makes a significant

innovation in this regard—it allowsus to use thedata itself to sort respondents into clusters, rather

than forcing the researcher to split the sample a priori.
Notably, standard measures of model fit also suggests that the MPS model fits the data better

in the Monte Carlo. The MPS model produced a log-likelihood of −85,776.71, but when we fit the
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Figure 4. Correlation of latent traits parameters. Plots show simulated against estimated latent traits for all
10 estimated clusters.

standard IRT model on the data that constrains all legislators to share the same single cluster,

the log-likelihood drops significantly to −117,477.2. This improvement in fit is not surprising—

compared to standard two-parameter IRT, MPS fits a much more flexible model. Whereas the

standard, single cluster model involves estimating 1,000 respondent and 400 item parameters

for a total of 1,400 parameters, the MPS model estimates 1,000 respondent parameters and 400

item parameters per cluster. Since the maximum number of clusters in the estimation is set to 10,

effectively the MPS model estimates 5,000 total parameters. Thus, a better measure of fit would

penalize MPS for the added flexibility afforded by the substantial increase in parameters. The

Bayesian Information Criterion (BIC) offers one such measure. It is equal to 252,043 for the single

cluster model and for 232,604.7 the MPS model, which confirms that the MPS model fits the data

better—even after accounting for the substantial increase in model flexibility. Note that this BIC

test is essentially a test of DIF across the identified clusters usingmethods similar in spirit to those

proposed by Lord (1980) and Thissen et al. (1993).
Finally, it is important to note that while MPSwill partition observations into sub-clusters even

when there is no underlying heterogeneity (i.e., even when the standard IRT model is correct),

the similarity of item parameters across sub-clusters will immediately suggest that the resulting

partition is substantively spurious. To see this, consider Figure 5, which depicts the values of the

gap statistic as computed on a graph defined as those in Figure 3, but resulting from a model

estimatedondata thathasnounderlyingheterogeneity in IRFs. Thegap statistic correctly suggests

that the correct number of substantive clusters is, in fact, 1. The idea that there is no heterogeneity

is further supported by the fact, under such a data-generating process, the standard IRT model
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Figure 5. Gap statistic. Statistic defined over different numbers of substantive clusters, when true Data
Generating Process (DGP) has no heterogeneity. In this case, the gap statistic again recommends the correct
number of clusters—one, in this case.

with a single cluster fits thedata better,withBICIDEAL = 168,430.8 versusBICMPS = 173,686.3. Thus,

there is little evidence that MPS will overfit data when there is no heterogeneity to be identified.

We now turn to our original motivating application: evaluating whether (or rather which) U.S.
voters can be scaled on the same space as their legislators.

5 Empirical Results

Weapply theMPSmodel to oneof themain examples used in Jessee (2016)—the2008Cooperative

Congressional Election Study (CCES). This is an online sample of 32,8000 survey respondents

from the YouGov/Polimetrix panel administered during October and November 2008. In total,

the CCES included eight bridging items that directly corresponded to votes taken during the

110th House and Senate, which can be matched to 550 legislators.14 The policy items included

withdrawing troops from Iraq within 180 days, increasing the minimum wage, federal funding

of stem cell research, warrantless eavesdropping of terrorist suspects, health insurance for low

earners, foreclosure assistance, extension of free trade to Peru and Colombia, and the 2008 bank

bailout bill.15 In this example, Jessee found that joint scaling appeared to work relatively well for

this dataset—that is, the ideal points from the groupedmodel look relatively similar regardless of

whether one uses item parameters derived from respondents, the House, or the Senate.

We run 110,000 MCMC iterations, discarding the first 10,000 as burn-in, and keeping only the

MAP estimate of the parameters of interest. The maximum number of clusters is constrained

to be 10. Similar to the Monte Carlo, we generate starting ideal point values using principal

components analysiswithin each cluster, andprobit regression for starting itemparameter values.

However, rather than generating initial cluster assignments using k-means clustering, we instead
start all legislators in one cluster, and all voters in a second cluster. Legislators are constrained to

remain in the same cluster throughout each iteration, but voters are permitted to change cluster

memberships.16

Table 2 shows a cross-tabulation of the final estimated clusters on the rows against the two

separate starting clusters for the legislators and voters. All 550 legislators start in the same cluster,

and are constrained to remain so (although their ideal points within the cluster are permitted to

change). In turn, the 32,800 surveyed voters divide themselves across six different clusters, with

15,732 respondents remaining in the same cluster as the legislators.

14 We lose two legislators who recorded no votes on any of the items under study.
15 The example here makes the same assumption that all joint scaling papers make—that legislators and voters understand

the roll call item in a consistentmanner. This is known tonot literally be true—seeHill andHuber (2019) for researchonhow
legislators and voters may understand even the same roll call vote differently. However, for the purpose of detecting DIF
with our model, we adopt and focus on the “common understanding of items” assumption that is prevalent throughout
this literature.

16 This constraint fits the substantive question (i.e., identifying which voters move into a cluster occupied by all legislators),
but we acknowledge that for other substantive questions, it may be appropriate to set other constraints. For example,
one could separate Southern and Northern Democrat legislators into separate fixed clusters and allow voters tomove into
those clusters.
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Table2. Estimatedversus starting clusters. Legislators all started in cluster 1, and remained there throughout
estimation.

Estimated cluster Legislator starting cluster Voter starting cluster

1 550 15,732

2 0 8,256

3 0 7,469

4 0 17

5 0 114

6 0 964

Table 3. Correlations of item discrimination parameters between estimated CCES 2008 clusters. Standard
errors in parenthesis.

Estimated cluster

Estimated cluster 1 2 3 4 5 6

1

2 0.76 (0.27)

3 −0.43 (0.37) −0.14 (0.40)

4 0.13 (0.40) −0.10 (0.41) −0.80 (0.25)

5 −0.75 (0.27) −0.62 (0.32) 0.37 (0.38) −0.41 (0.37)

6 −0.13 (0.40) −0.00 (0.41) −0.49 (0.36) 0.32 (0.39) 0.33 (0.39)

The 15,732 respondents estimated to share the same cluster with the legislators are almost cer-

tainly underestimated, due to the fact that different clusters in DP-prior models may nevertheless

share similarparameter values. Table3explores this further, tabulating thecorrelationsof the item

discrimination parameters between each of the six populated estimated clusters. Fromexamining

this table, we see that estimated clusters 2 and 5 have item parameters that are highly correlated

with those in the constrained legislator cluster. Combining respondents from clusters 1, 2, and

5 together, 24,102 of the 32,800 respondents in the CCES sample, or approximately 73% of the

sample, lie in the same ideological space as legislators.

With this largenumberof observations falling in a single cluster, it is not surprising thatdifferent

model selection criteria provide different indications as to whether a standard IRT or MPS fits the

data better. For instance, while the comparison between the BIC produced by our model (viz.,

408,016.4) and the BIC produced by a standard IRTmodel (viz., 407,033.7) would suggest the latter

offers a better fit to these data, the evidence is reversed when we consider Akaike Information

Criterion (AIC) as a selection criterion (with values of 355,419.4 and 370,214.8 for MPS and the

regular IRT, respectively.). Nevertheless, an evaluation of the extent to which communities of sub-

clusters emerge from these pair-wise correlations suggests the importance of separating between

two sets of voters.

The right panel of Figure 6 depicts this correlation-weighted graph, along with the substantive

clusters identified by the samegreedy algorithmused in theprevious section (indicatedusing gray

shaded areas). In this case, both the greedy community-detection procedure and the gap statistic

(depicted on the left panel of Figure 6) identify two communities—one containing all legislators

and a large number of voters, and another composed of the remaining voters who do not share
the same policy space as legislators.
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Figure 6. (Left) Gap statistic. (Right) Graph on nodes given by DP mixture sub-cluster. Left panel shows
two substantive clusters appear to fit the data best. Right panel graph has weighted edges defined using
pairwise correlations between discrimination parameters in a model estimated on the 2008 CCES data.
Shaded regionsdenote communitiesdetectedbyamodularity-maximizingalgorithm.Again, twosubstantive
clusters appear summarize the data best, with a “legislator cluster” formed by sub-clusters 1, 2, and 5.

To further validate this sorting, we study the extent to which a model that forces all voters in

sub-clusters 1, 2, and 5 to remain fixed in the cluster containing all legislators results in a better fit

to the observed responses. Such amodel results in an unequivocally better fit versus amodel that

allows all voters to be freely allocated to clusters, with a BIC of 407,426.8 and an AIC of 365,820.8.17

In addition, and to explore the question of what characterizes the 24,102 survey respondents

who “think like a legislator” (i.e., whoare sorted into estimated clusters 1, 2, and5),wegroup these

respondents together and predict membership in this pseudo-legislator group with a Bayesian

binomial probit regression (with vague, uniform priors), using a range of standard covariates—

including education, gender, age, income, race, party identification, political interest, and church

attendance. We report these results in Figure 7.18

We find that older voters and people who express more interest in politics tend to map their

latent traits onto observed responses similarly to the way legislators do, while Black and Hispanic

voters are less likely than their white counterparts to share an ideological space with legislators.

And while the coefficients associated with education, income and gender all fail to attain our

chosen level of significance, their signs do indicate thatmore educated and richer voters also tend

to think more like legislators, while women appear less likely to share the policy space of their

(mostly male) legislative counterparts.

Overall, our findings are largely consistent with Jessee, who found that latent trait estimates

from this dataset were consistent regardless of whether one used the item parameters estimated

from legislators or voters. However, the key difference from our approach is that we not only

identify the 73% of survey respondents who follow this pattern, but also the 27% of survey

respondents that do not share an ideological space with legislators. Furthermore, our improved

fit statistics suggests that the improvement in model fit for this subset of respondents is quite

significant, even for a dataset where the recovered ideal points would be somewhat similar

regardless ofwhether one used only the voter, House, or Senate itemparameters to generate ideal

points.

17 In turn, a model that only fixes the membership of the 15,732 voters who are estimated to be in cluster 1 results in a BIC of
407,623.5 and an AIC of 368,304.6, again indicating a worse fit than a model in which everyone in clusters 1, 2, and 5 are
fixed from the beginning.

18 We fit our model using R function MCMCPack::BayesProbit(), in package version 1.6-3. We take 9,000 samples from the
posterior, having discarded the first 1,000 samples as burn-in.
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Figure 7. Point estimates and 90% credible intervals for coefficients in Bayesian probit regression of mem-
bership into estimated legislator cluster. A reference line is added at zero. We find that “political interest,”
“race,” and “age” are likely to be characteristic of voters in the legislator cluster.

6 Conclusion

When implementing commonly usedmeasurementmodels,most researchers implicitly subscribe

to the idea that all individuals share a common understanding of how their latent traits map onto

the set of observed responses: legislators are believed to have shared sense ofwhere the cut-point

between voting alternatives lies, survey respondents are assumed to ascribe a commonmeaning

to the scales presented in the questions they confront, and voters are understood to perceive the

same candidates and parties as taking on similar ideological positions.

When this assumption is violated by the real data-generating process, however, adopting this

widespread strategy canbea costly over-simplification that results in invalidmeasures of the char-

acteristics of interest. By assuming that units can be separated into groups for whom comparable

item functioning holds, we propose a modeling strategy that relaxes the stringent measurement

invariance assumption, allowing researchers to identify sets of incomparable units who can be

mapped onto multiple latent spaces. The distinctive feature of our proposed approach is that it

does not require a priori identification of groupmemberships—or even a prior specification of the
number of heterogeneous groups present in the sample.

On this note, it is important to reiterate that the clusters we obtain from our Dirichlet process

prior models are not distinct groups, in the sense that theymay share parameters that are similar

enough to be considered part of the same sub-population. Ourmodels, therefore, are designed to

account for the existence of these heterogeneous groups without directly identifying a posteriori
memberships into them. In so doing, our models assume that the target of inference is the latent

traits, rather than the group memberships. And while it is sometimes possible to tease out sub-

populations from estimated Dirichlet process clusters, we generally discourage users from trying

to ascribe substantive meaning to the clusters directly identified by our nonparametric model—

except to say that observations that are estimated to be in the same Dirichlet process cluster have

latent traits that can be safely compared to one another. If a more thorough interpretation of

which sub-clusters are, in fact, substantively equivalent is of interest, we encourage researchers
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to post-process the Dirichlet mixture clusters in order to identify the more substantive groupings

defined by item parameters that are similar enough, as we did through the use of the gap statistic

on the graphof itemparameter correlations in our illustration of theMPSmodel.19 Having done so,

researchers can then make data-driven decisions about the presence and pervasiveness of DIF in

their data. Alternatively, design-based solutions (such as anchoring vignettes) can help ascribe

meaning to different subgroups, while other model-based approaches—such as the product

partition DP-prior model proposed by Womack et al. (2014), or the repulsive DP-mixture model
proposed by Xie and Xu (2020)—may offer potential analytical avenues, if adapted to the IRT

framework. We leave these possibilities for future research.

Despite these caveats, we believe our proposed model can offer researchers a simple alterna-

tive to the standard modeling approach and its strong invariance assumptions. If heterogeneity

in item functioning is a possibility—as we suspect is often the case in the social science contexts

in which probabilistic measurement tools are usually deployed—our approach offers applied

researchers the opportunity to assess that possibility and identify differences across units if said

differences are supported by the data, rather than simply assuming those differences across sub-

populations away.

A broader substantive question that this paper does not address directly is whether our empir-

ical results hold for joint scaling of legislators and voters using different datasets and/or in other

contexts. While we found that most voters share an ideological space with legislators in the CCES

dataset, it is still an open question whether most voters and legislators can be jointly scaled

particularly when there are a greater number of bridging items that provide more information

about how similar their IRFs are. Having presented the methodology that allows researchers to

address this question, we leave it for future research.

A. Computational Details

Gibbs Sampler.
Truncate the stick-breaking process at some constant K. Define

1. Update the stick-breaking weight πk ′ for k
′ = 1, . . . ,K −1 by sampling from a Beta distribu-

tion s.t.

πk ′ ∼ Beta

(
1+Nk ′,α +

K∑
l=k ′+1

Nl

)
,

where Nk is the number of observations assigned to cluster k under the current state.
2. Update k [i ] ∈ {1, . . . ,K } for i = 1, . . . ,N bymultinomial sampling with

Pr(k [i ] = k ′ | y i , θ,β,γ) ∝ pk ′ Pr(y i | θ i ,βk ′,γk ′) ,

where

pk ′ ≡ πk ′
k ′−1∏
l=1

(1−πl ),

Pr(y i | θ i ,βk ′,γk ′) =
(
Φ

(
βk ′,j θ i −γk ′,j

)) yi j (
1−Φ

(
βk ′,j θ i −γk ′,j

))1−yi j
.

19 The meaning of “similar enough” is, of course, a matter of researcher discretion. In our illustration, we relied on the gap
statistic and community detection tools defined on the correlation graph of item discriminations. Alternative approaches
that make the notion of sufficient similarity more explicit could rely on equivalence tests, as they require the definition of
a clear equivalence range.
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In practice, we augment the latent variable y ∗
i ,j , so that we have

Pr(k [i ] = k ′ | y ∗
i , θ i ,βk ′,γk ′) ∝ pk ′ N

(
y ∗
i ,j | β

�
k ′,j θ i −γk ′,j , 1

)
.

3. Conditional on θ, β , γ, and k , sample

y ∗
i ,j ∼

⎧⎪⎪⎨⎪⎪⎩
N (θi βk ′,j −γk ′,j ,1)I(y

∗
i ,j < 0), if yi ,j = 0,

N (θi βk ′,j −γk ′,j ,1)I(y
∗
i ,j ≥ 0), if yi ,j = 1,

which can be parallelized over respondents and items, for dramatic speedups.

4. Conditional on θ, y ∗, and k , sample

(βk ′,j ,γk ′,j ) ∼ ND+1

(
μk ′,j ,M

−1
k ′,j

)
,

whereM k ′,j = (X
�
k ′X k ′ +Ω); μk ′,j =M −1

k ′,jX
�
k ′y

∗
k ′,j ;X k ′ is a matrix with typical row given by

x i = [θ i ,−1] for i s.t. k [i ] = k ′, and y ∗
k ′,j is a vector with typical element y

∗
i ,j , again restricted

to i s.t. k [i ] = k ′.

Once again, this can be parallelized over items and clusters, reducing user computation

times.

5. Conditional on β , γ, and k , and for each i s.t. k [i ] = k ′, sample

θ i ∼ ND (ν k ′,N
−1
k ′ ),

where N k ′ =
(
B�

k ′B k ′ +Λ
)
; νk ′ = N −1

k ′ B
�
k ′wi ; B k ′ = [βk ′,1, . . . ,βk ′,J ]

� is a J ×D matrix, and

w i = y ∗
i +γk ′ is a J ×1 vector. We parallelize these computations over respondents.

6. Finally, conditional on cluster assignments and stick-breaking weights, sample

α ∼ Gamma(a0 +N −1,b0−
N−1∑
k ′=1

log(1−πk ′)).
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