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Abstract. Explicit examples of both hyperelliptic and non-hyperelliptic curves
which cannot be defined over their field of moduli are known in the literature. In this
paper, we construct a tower of explicit examples of such kind of curves. In that tower
there are both hyperelliptic curves and non-hyperelliptic curves.
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1. Introduction. The notion of field of moduli was first introduced by Matsusaka
in [17] for the case of polarized abelian varieties and generalized by Shimura in [18]
for polarized abelian varieties with further structure. Later, Koizumi in [12] gave a
more general definition of the field of moduli for general algebraic varieties (even
with extra structures) which coincides with Matsusaka’s and Shimura’s definitions for
polarized abelian varieties. In general, the field of moduli of a variety is not a field of
definition for it. Both the computation of the field of moduli and to determine if it
is a field of definition is a hard problem. Weil’s Galois descent theorem [20] provides
a sufficient condition for a variety X, defined over a finite Galois extension L/k, to
be definable over k. The sufficient condition is given by the existence of a birational
isomorphism f; : X — X7, for each o € Gal(L/k) (defined over L) satisfying some
co-cycle conditions (Weil’s datum). Weil’s theorem is still valid if we replace L with
the complex field C, £ with the field of rationals (2 and X with a non-singular and
irreducible complex algebraic curve (that is, a closed Riemann surface) of genus at least
two. If the variety has no non- trivial birational automorphisms, then the existence of
a Weil’s datum is clear. Unfortunately, if the variety has non-trivial automorphisms, to
check the existence of a Weil’s datum is not an easy task.

The first examples of explicit curves which cannot be defined over their field of
moduli were provided by Earle [4,5] and by Shimura [18] around 1972; these examples
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are hyperelliptic curves of even genus. Other explicit examples were constructed
by Huggins [11] for genus at least three. In [2] Bujalance-Turbek have provided a
characterization of those hyperelliptic curves whose field of moduli is real but not a
field of definition. This characterization was completed by Huggins in [10]. In the case
of non-hyperelliptic curves, such kind of examples were obtained by the third author
in [7,8] and by Kontogeorgis in [13].

In this paper, we produce a tower of examples of curves which cannot be defined
over their field of moduli. We start with the non-hyperelliptic curves as in [7, 8] and
construct quotients of it which turn out to be non-definable over their fields of moduli.
In such a tower, the lowest one is the hyperelliptic curve isomorphic to the one obtained
by Earle in [4,5].

THEOREM 1.1. Let 0€(0,m), O #m/2, and let re(l,+00), r¢
{x/l + cos26 + cos@}. Set

MN+x+x =0
2.2 72 0
—r°x;+x5+x; =0 5
Cro = 3 5., 3 cP.

re’xt +x3+x3 =0
—re’ex% + x% + xé =0

Then the following hold.

(1) Zg = H = (a1, a», az, as, as) = Aut(Cyp), where a; is multiplication by —1 of
the xj—coordinate. Furthermore Aut*C,y = (H, T) where T is an anti-conformal
automorphism of order 4 given by

T([X1 0 X2 1 X3 0 X4 X5 1 Xg]) = [X2 :ir X 1 Xa :ir X3 0 /e X 1 in/re?? X5).

(2) The conjugacy action of T on the elements of H is described in Table 1.
(3) Let N be a subgroup of H with the following conditions
@) aj ¢ N,Yi=1,...,6where as = aarazasas
(i) tNt'=N
(@) NNQy=10¢
(fv) NNQu =10
where Qg = {(at)? : a € K} with K < H. Then, N acts freely on Crg and C.o/N has
automorphism group isomorphic to H/N. Furthermore, C,o/N cannot be defined
over its field of moduli. The collection of subgroups N < H, satisfying (1), (i1), (iii),
and (iv) as above, are listed in Table 2. We shall call these subgroups admissible
subgroups of H. The lattice of these admissible subgroups is shown in Figure 1.

The family of curves C, 4 in Theorem 1.1 was obtained in [7, 8] to obtain genus 17
non-hyperelliptic curves not definable over the field of moduli.

2. Preliminaries.

2.1. Some preliminaries on cross ratios. A generalized circle in the Riemann
sphere C is either an Euclidian circle in C or the union of oo with an Euclidian line in C.
Given four different points a, b, ¢, d € C, the cross-ratio is defined [a, b, ¢, d] = T(d),
where 7T is the unique Mobius transformation satisfying that 7'(a) = oo, 7'(b) = 0 and
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a (at)? tlar a (at)? = lar
1 1 ajazas 1 2 aj aazas ap
3 a aasas ay 4 as ajagsas ay
5 ay ajasas as 6 as arasas ag
7 ag araras as 8 aya ajazas ajar
9 ajas arasds aray 10 ajag arasas aras
11 ayas ajagas arag 12 aras araqas ajag
13 aray arasas ajas 14 axas ajasas ayag
15 aszay ajasas asay 16 asas arazas asag
17 asas arazas asag 18 asag ajasas asag
19 asag arasas asas 20 aszag arasas asas
21 aas ajasas ayas 22 ajag ajasas aras
23 ayaras ajasas ajaray 24 ajaray ajasas ajaas
25 ajaxas arasas asasas 26 ajasay aasas arazay
27 ayaszas ajasas ajasas 28 ajasas ajazas ajasas
29 aazay arazas ajasay 30 arasas ajasas aasas
31 arasds ajasas arasas 32 aszagas araqas ajaras
Table 2. Admissible subgroups of H
order N N order N N
16 U = (a1ay, ;pa3, azay, a4as) 8 Ty = (@142, azas, asas)
8 = (aas, aras, azas) 8 T = (a1a4, a2a4, asae)
4 S7 = {1, a3a4, a\aza3, ajazas} 4 Ss = {1, a2, a1azas, ayazas}
4 So = {1, asag, a1azas, azasas} 4 S0 = {1, a1a2, azay, asas}
4 Su = {1, a1a2, azas, asae} 4 S12 = {1, a1a2, asas, azae}
4 S13 = {1, azas, a1as, azac} 4 S14 = {1, a3a4, wxas, ajag}
4 S15 = {1, asas, a1a3, aras} 4 Si6 = {1, asae, a1as, arasz}
2 Ry = (myaz) 2 Ry = (azas)
2 = (asag)

{1}

N
RN
//\/TX\\

Figure 1. Lattice of admissible subgroups.

T(c) = 1. By the definition, [q, b, ¢, d] € C — {0, 1}. If S'is any M&bius transformation,

then [S(a), S(b), S(c), S(d)] =

[a, b, c, d]. The points a, b, ¢, d belong to a common

generalized circle if and only if [a, b, ¢, d] € R. In particular, M&bius transformations
send generalized circles into generalized circles. Any permutation of the four points

changes the value of [a, b, c,d] to a value R([a, b, ¢, d]), were Re G =
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1/z, B(z) = z/(z — 1)) = G3. In particular, if [a, b, ¢, d] € {—1, 1/2, 2} then the cross-
ratio of any permutation of these four points is still in the same set. If a # 0, oo, then
[00, 0, @, —a] = —1. The only cross-ratios, obtained by permutation of oo, 0, a and —a,
producing the same value —1 are given by [o0, 0, a, —d], [00, 0, —a, 4], [0, co, a, —d],
[0, o0, —a, a], [a, —a, o0, 0], [—a, a, o0, 0], [a, —a, 0, oo] and [—a, «, 0, co].

2.2. An auxiliary lemma. Let 0 € (0, ). If we consider the points r(0) =

V1 +cos(@)? —cos(®) and r(0) = /1 + cos(6)? + cos(d), then r(0)r(#) =1 and
none of them is equal to £1. In particular, exactly one of these two points is bigger
than 1; we denote it by ry.

LEmMMA 2.1. Let 6€(0,m), 6#mn/2, and let re(l,400), r¢
{vl + cos?0 £ cos 6 } If T is a Mébius transformation so that
{c0,0, 1, —1’2, re —reie} II> {00,0,1, —r2, e, —reie},
then T = L.

Proof. Set u = re®” and A = —r?. By direct inspection at the cross-ratios, with the
restrictions > 1 and ¢? # 41, we may notice that the only subsets of cardinality 4 of
{o00,0, 1, A, u, —u} contained in a generalized circle are given by

{OO, 07 17)"}7 {O0,0, M, _M}’ {13)"7 o, _//L}~

The respective cross-ratios are given by

[00,0,1,2] = ¢ {—1,1/2,2}

[OO, 07 M, —,bL] =-1

r* 4+ 2(2sin(0)? — D2 + 1)
(r2 4+ 2 cos(0)r + 1)

[19)"’ My _M]: ¢{_131/272}

Let 6 and R € G be fixed. The equation [1, A, u, —u] = R(X) is equivalent to
a polynomial equation Py g(r) =0, where Py r(x) € R[x] is a non-constant real
polynomial of degree either 2 or 4. These polynomials Py z(x) are given by the following
ones:

x4+ 2cos(@)x — 1; x*> —2cos()x — 1; 2x* 4+ 3x> — 2cos(9)x + 1;

2x% 4 3x2 + 2cos(@)x + 1; x* +2cos(@)x® + 3x% + 2; x* — 2cos(0)x® + 3x% + 2.
The degree four polynomials have no real zeroes greater than 1. The degree two

polynomials have real zeroes greater than 1 only at ry. It follows that if r # ry, then all
the above three cross-ratios are non-equivalent under the action of G. In particular, if
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T is a Mobius transformation so that
{00,0, 1, A, u, —pt} B (00,0, 1, A, s, —puh,
then
T T
{OO, 07 1’)\'} = {OO, Oy 1’)\'}7 {OO, 0’ M, _IJ’} = {OO, 09 M, _M}

In this way,

(00,0} 5> (00,0}, {1,A) > (LA},  {—p ) ©> {—p. ).

If T # I, then, from the above first two properties, we see that the only possibilities
for T are given by T'(z) = Az or T(z) = 1/z or T(z) = A/z. The possibility T(z) = Az
asserts that 1 = T(,) = A% = r*, a contradiction. The possibility 7(z) = 1/z asserts A =
T(X) = 1/x, again a contradiction. The possibility 7(z) = A/z then asserts that -y =
T(w) = A/, from which one obtains that > = —x = u? = r?¢*?, a contradiction to
the assumption that e ¢ {£1, %i}. O

2.3. Genus 17 non-hyperelliptic curves. Let6 € (0,7),0 £ 7n/2,r e (1,400),r ¢
{\/ 1 + cos?6 £ cos 6 } In [3, 6] it was noticed that

MN+x+x3 =0
2.2 52 0
—r°x;+x5+x; =0 5
Cro = O N cP

re’xt +x3+x2 =0
—re’ex% +x§ + xé =0

is an irreducible and non-singular projective algebraic curve of genus 17 so that
H = (a1, a0, a3, a4,0a5) = 73

is a normal subgroup of Aut(C, ), where a; is multiplication by —1 to the x;-coordinate.
The holomorphic map

2
T[:C"ﬂ_)[:;[xl:"':XG]I—)—<E)

X1

defines a branched regular covering with H as deck group of covering maps. The
branch values of 7, each one of order two, are given by
00,0, 1, —2,re?, —re.

It can be seen from [9] that C, is a non-hyperelliptic Riemann surface.
Moreover, the curve C,y admits the anti-conformal automorphism of order 4

T([X1 0 X2 1 X3 0 X4 1 X5 0 Xg]) = [X2 1 ir X7 1 Xg 0 ir X3 0 /1€ X 1 in/re?? X5).

So the field of moduli of C, 4 is a subfield of R.
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Let us notice that

'L’2 = ayazds
Ta) = a7, Td) = A1T,
Td3z = daT, Tdg = A3T,

Tds = deT, Tde = A5T.

In [7], as a direct consequence of Lemma 2.1, the following result is obtained.

THEOREM 2.2 [7]. Let 60 €(0,7m), 0 #m/2, and let re(l,400), r¢
{«/l + cos?0 + COSG}. Then C,q is a non-hyperelliptic Riemann surface of genus 17

which cannot be defined over R but whose field of moduli is a subfield of R. In particular,
C, ¢ is not definable over its field of moduli. Moreover, Aut(C,y) = H.

It should be said that the statement provided in [7] is slightly different than the
one provided above and also in the same paper it is missing the restriction that r # ry
(see the correction provided in [8]).

2.4. Connection to Earle’s genus 2 example. Earle’s example in [5] may be written
as follows:

E.,: y2 = x(x — D(x + ) (x — re”)(x + re)

and it can be seen as the quotient of C.y by the subgroup of H, isomorphic to
Z‘21 and acting freely, generated by ¢} = a1ar, ¢ = aras, ¢3 = azas, ¢4 = asas. In
terms of Fuchsian groups, this covering may be seen as follows. Let j: E,g — E, ¢
be the hyperelliptic involution. The quotient orbifold O = E,4/{j) has signature
(0;2,2,2,2,2,2). Let T be a Fuchsian group acting on the hyperbolic plane H? so
that O = H?/T. If T denotes the derived subgroup of I, then it turns out that I'’
is torsion free and C,» = H?/T". In this case, H =T/’ = Zg. There is an index 2
torsion-free normal subgroup F of T' so that E,y = H?/F. Clearly, I'" <1 F. It is not
difficult to see that I'" is exactly the subgroup of F generated by the squares of the
elements of F [1].

3. Proof of Theorem 1.1. Let 6 € (0,7), 6 #7/2, and let r e (1,4+00), r ¢
{\/ 1 + cos20 + cos@}. We keep the notations of the previous section. Part (1) was

already stated in [7,8] and Part (2) is a direct check. Next, we proceed to prove Part (3)
of the Theorem.
Let us consider the subgroup N = {I} of H with the conditions

(i) a; ¢ N,Vj=1,---,6 where ag = ajarazasas
() tNt'=N
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(ii)) NN Qy =0
(iv) NN Qy =9.

By (i) there exist an unbranched regular covering f*: C,p — C.9/N with N as
deck group and a branched regular covering P: C,y/N — C whose deck group is
Hy = H/N.

Either Hy is a 2-Sylow subgroup of Aut(C.,/N) or there is a subgroup
K < Aut(C,y/N) containing Hy as an index 2 subgroup. In the last situation, K
will induce a Mobius transformation of order two keeping invariant the collection
{00,0, 1, =1, re®, —re®} which is not possible by Lemma 2.1. So, Hy is a 2-Sylow’s
subgroup of Aut(C,4/N).

Next we claim Aut(C,g/N) = Hy.

e |N| = 8: By Riemann-Hurwitz formula and condition (i) it follows that the genus
of C.p/N is 3. Furthermore C,y/N is hyperelliptic. Looking at the table of
automorphisms of hyperelliptic Riemann surfaces [15], we may see that in the
case that Aut(C,4/N) is different from Hy = Z%, there is some order two element
of Aut(C,9/N)— Hy keeping Hy invariant. Such element will provide a non-
trivial Mobius transformation keeping the set {co, 0, 1, —r2, re??, —re?} invariant, a
contradiction. We have proved Aut(C,o/N) = Hy.

e |N| = 4: By Riemann-Hurwitz formula and condition (i) it follows that the genus
of Cp/N is 5.

Checking at the list of automorphism groups of compact Riemann surfaces of
genus five [14], one can see that Hy is contained in an abelian subgroup H) with
index 2. Thus Hj, induces a Mdbius transformation of order two keeping the set
{00,0,1, —r%, re®, —re} invariant, a contradiction. We have proved Aut(C,,/N) =

Hy.
e |N| = 2: By Riemann—-Hurwitz formula and condition (i) it follows that the genus
of Cr.o/N is 9.

In [16] there is a list of the automorphism groups of Riemann surfaces with
genus 9. These automorphism groups have order greater than 2°. We proved Hy
is a 2-Sylow subgroup. If Aut(C,y/N)) # Hy it follows [Aut(C,.s/N): Hy] > 2
hence |Aut(C,4/N)| > 2°. Next, by checking at the list of automorphism groups
of compact Riemann surfaces of genus nine [16], one can see that, they do not
contain a 2-Sylow subgroup isomorphic to Hy. Therefore Aut(C,o/N) = Hy.
By (ii) t induces an anti-conformal automorphism tx on C,4/N. Further by (iii)
Ty has order 4. As a consequence, the field of moduli of C, 4 /N is a subfield of R.
Let us now assume that C,y/N admits an anti-conformal involution ®. Then
Ty '® € Hy, that is, © € Ty Hy. This will ensure that some of (ran)? (automorphism
of C.p) must belong to N for ae H,ne N. By condition (iv) we obtain a
contradiction.

4. Equations for curves.

4.1. Subgroup of order 8. First, we compute the equations for N = Ty =
(a1az, azasasas).
A generating set for the N—invariant algebra C[x;, x», x3, x4, X5]V is given by

2 2 2 2 2
Y1 =X1, V2 =X5,V3 =X3,)4 = Xy,)5 = X5, V6 = X1X2, V7 = X3X4X5.
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SO, if®d = (Vl,yz, V3, V4,)s5, )6, J/7)> then
o:C% - @ ()

is a regular unbranched covering with N as its deck group. In particular,
<I>(C29) is an affine model for C,y/N. This curve is given by the following
equations:

n+y+y; =0
—?yi+y2+ys =0
i0
oy _ ) re’yi+y2+ys =0 7
D (Cy) = —re®y F 4 1=0 cC.
ye—yiy2 =0
V2 —yapays =0

The above equations imply that

V= —1+re?y
y3=1—=(+re)y
ya =1+ =)y,
ys=1—"2re"y,.

So, if we consider the projection
W:C = C (71,52, 3. ¥4, 5. Y6, y1) > (01, V6. 1) = (wi, wa, w3),
then
U d(C) > W (D(C)) = Cro/N
is an isomorphism. In particular,
f=@o0V:C)y— Cy/N

is an unbranched regular covering with N as deck group. The curve C,% /N is given by
the following equations:

w% = w (reiﬁwl — 1) ' ' c G:3
w% = (1 — wy (1 + re’g)) (1 —wy (re’9 — 1‘2)) (l — 2re’9w1) )

In the following table, we resume these computations for each group in our
list.
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Subgroup N (1,32, Y3, Y4, Vs, Y6, Y1) (wi, wa, w3)
T3 (7, X3, X3, X3, X2, X1X2, X3X4X5) | (V1. Ve, 7)

yity+y3=0
—yi+y+ya=0
re®yi+y2 +ys =0
—rey;+y+1=0

y3=1-yi(1+re”)
s =1—yi(re® —r?)
ys =1—2re?y,
y2=re’y —1

2)/2 —yi2=0 w% = wi(re”w; — 1),9 0 ”
Y5 —¥3yays =0 w; =1 —wi(1+re”)1 —wi(re” — r))(1 = 2re”wy)
To (x7, X3, X3, X3, X2, X3X4, X1X2%5) | (V1, Ve, y7)

yi+ty+y3=0
Py +ya=0
re®yi+y1+ys=0
—rey;+ 2 +1=0
ye—yiya=0

¥ = yiy2ys =0

y3=1=yi(1+re?)
ya=1—y(re” —r?)
ys =1—2re?y,
ya=re’y —1

w} = (1 —wi(l + re?)(1 — w(re” — r?))
w% = wi(re®w; — 1)(1 — 2re®wy)

Ty

2 2 2 2
(X5, X7, X3, X3, X, X1 X2X3X4)

(2,71, Y6)

+yitya=0
—y+y3+ys =0
re®yy+y3+y1=0
—re®y, +y3+1=0
Vi — yay3yays =0

va=1—=py(1 4 re?)
ys =1 —pa(re” —r?)
yi=1-2rey,
yi=rey, —1

w3 = (1 —2re®wy)

w3 = wi(re?w; — 1)(1 — wi(1 + re?))(1 — wi(re? — r?))

SHOVAINS NNVINATT 4O 4dMO0.L

L8E
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4.2 Subgroup of order 4

Subgroup N

(ylay27 V3,4, V5, V6, V7, y8)

(wr, wa, w3, wa, Ws)

S7

2 2 2 2
(X5, X7, X3, X3, Xj, X1 X2, X X3X4, X2X3X4)

(72, y1, Y6, ¥7, ¥8)

m+y3+ya=0
—?y+y3+ys=0
re®yy +ys +y1 =0
—rePyy +y34+1=0
ve—y3=0

V2 — y2yays =0

Vs — y3yays =0
y1y8 — yeyays =0

ya=1=y(l +re?)
ys =1 — py(re® —r?)
yi=1-2re"y,
yi=rey; —1

w} =1-2re?w,

w3 = wi(re?w; — 1)

wi = wi(1 — w(1 4+ re?))(1 — wi(re? —r?))

w? = (re’w; — 1)(1 — wi(1 + re®)(1 — wi(re? —r?))
waws = wi(l — wi(1 + re®))(1 — wi(re” — 1))

Sg

2 .2 2 2
(X5, X7, X3, X3, X, X3X4, X X2X3, X X2X4)

(72, y1, Y6, ¥7, ¥8)

m+y3+ya=0
—ry+y3+ys =0
re®yy +ys+y1 =0
—rePyy +y34+1=0
ve—yays=0

V2 —y2y3y4 =0

ys —y2y3ys =0
y7y8 — y2¥3)6 =0

ya=1=y(1 +re?)
ys=1—yare” —1?)
yi=1-2re"y,
y3=rely, — 1

w} =1-2rew,

w3 = (1+re?))(1 —wi(re” —r?))

w3 = wi(re®w; — 1)(1 — wi(1 + re?))
w2 = wi(re?w; — 1)(1 — wy(re? — r?))
waws = wi(re®w; — Dws

83¢

"IV LA INVEA LAY VTdHODIN
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So

D R R )
(x7, X3, X3, X3, X5, X1X2, X3X4,
X1X3X5, X1X4X5, X20X3X5, X2X4X5)

1, ¥6, Y7, ¥8, Y9, Y10, Y11)

yl +y24+y3=0
—ry1+yz+y4—0
yi+y24+ys=0
—re’gyl +y+1=0
Ye— vy =0

V3 —y3pa=0

Vi —yyays =0

Vs — y1yays =0
Vio— y2y3ys =0

Vi — yoyays =0

y3=1=y1(1+re”)
Y4 = 1— yl(reiG _ }’2)
Vs = 1— 21'e’9y1
y2=refy —1

w% = wi(re’w; — 1)

w3 = (1 —wi(1+re?)(1 — wi(re —r?))

wi = wi(1 — wi(1+re?)(1 — Zre’ewl)

wg = wi(l — wi(re? — )1 — 2rew))

wg = (re®w; — 1)(1 — wi(1 + re®))(1 — 2re”wy)
w2 = (re®w; — 1)(1 — wi(re® — r?))(1 — 2re?wy)

S1o

2 2 2 2
(x5, X7, X35, X5, X3, X| X2, X3X4)

(32, ¥1, Y6, ¥7)

J/2+yz +y4=0
—r y2+y3 +y5—0
ey, +ys+y1 =0

ya=1-yl +re”)
ys=1—=y(re” — 1)
yi=1=2re"y;

w3 =1 —2rew,

—re®yy +y34+1=0 | y3=re¥y, — 1
Ve =123 =0 wi = wy(re®w; — 1)
¥~ yrs =0 wi = (1= w1+ re)(1 = wi(re? — 1)
S (x4, X7, X3, X3, X3, X1X2, X3%5) | (2, V1. Y6, V1)

Y+ +ys=0
—r?y 4y +yi =0
rey, + y3+ys =0
—re’yr+y3+1=0

—»y3=0
y3 — yays =0

vy = 1= ya(1 + re)
yi=1- yz(re'9 —r?)

w3 =1— w(re” —?)

w% = wi(re’w; — 1)
wi = (1 — wi(1 +re”))(1 = 2rey,)
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Si

2 .2 2 2
(X3, X7, X35, X1, X5, X| X2, X4X5)

2, y1, Y6, ¥7)

yz+y3+y1—0
—r yz+y3 +y4=0

7 =1=y(l +re?)
vy =1—pr(re® —r?)

w3 =1—w(l + re?)

ré’y, +y3+ys =0 —1—216i0y2
—ré%y, +y;+1=0 y—re Oy — 1 ‘
Ye—y3=0 wy = wi(re®wy — 1) A
y5—yays =0 wy = (1 —wi(re” — r))(1 = 2re?y,)
NE (32, X7, X3, X3, X2, X1X5, X3X4) (2, Y1, Y6, ¥7)

,V2+)/1 +y'i —0
—r y2+y1 +y4=0
yz—i—yl +y5—0

y3=1=y(1+4re”)
V4 = 1— yz(re’9 _ V2)
ys=1—2re?y,

—rely2 £y +1=0 | )i =refy—1 w? = (rew; — 1)
g =0 w? = wi(l — 2rePyy)
V1= V4= w? = (1 —wi(1+re®)(1 — w(re” —r?))
Si4 (x1, X3, X3, X3, X2, X2Xs, X3X4) (V25 Y1, Y6s ¥7)

y1+y2 +y3=0
—Pyi+y+y4=0

reyi +y,+ys =0
re"’y%—i—yz—i— 1=0
¢ — s =0

y% —y3ya=0

vy ==l -yl +rle)

V4 = —i0 —|—y2(}’€7"9 _ 1)
Vs = 1 — 2y
yi=rle (1 +1)

w3 =rte (1 4+ wy)
wg =w(1 —2wy)

wi = (—rte —wi(1+r e ) (re ™ + w(re ™

),
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Sis

2 2 2 2
(x5, X7, X35, X3, X3, X1 X3, X2X4)

(02, ¥1, Y6, ¥7)

y2+y3+ys=0
4y +ys=0
reé’y, +y3+y1 =0

va =1—=p(1 4 re?)

wj =1-2re"w;

—réyy+y3+1=0 | y3=rey, — 1 A
Ve —yya=0 w}=wi(l —wi(l+re?)
y5—y3ys =0 w? = (rew; — 1)(1 — wi(re — 1))
S'16 (xs, X2, X3, X3, X3, X1X4, X2X3) | (2, V1, Ve, ¥7)

N+y3+ya=0
—r2y2 +y34+ys=0
ey, +y3 4+ =0
—re’yy +y34+1=0

ve—ys=0
y5—yiva=0

ya=1-=y(1+4re”)
ys=1—pa(re? —r?)
yi=1-2re%,
y3=refy, — 1

w3 =1 —2re®w,

w? = wi(l — wi(re? —r?))
w? = (re®w; — 1)(1 — wy(1 + re®?))
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4.3 Subgroup of order 2

Subgroup N

1,2, 3, Y4, Y5, V6)

(w1, wa, w3, w4, ws)

R

(3, X4, X5, X3, X3, X1X2)

V4, y1, ¥2, ¥3, V6)

y4+y5 +y1 =0
- y4+ys +y2—0
re’ys+ys+y3=0
—reys+ys+1=0

¥ =1=pa(l+re)
¥ = 1= yare” = )

wi=1-—w(l + re')
w% =1- wl(lre’e —?)
wﬁ =1—2réw

ve—yays =0 w? = wi(re®w; — 1)
Ry (x1, X2, X5, X3, X3, X3X4) (Y4, Y1, 3, Y2, V6)

h+h+m—0
_V yl +y2 +y5—0

ya=1- 31 +re”)
ys=1=yie" =)

w% =1 +re”)" 11 +w)

reys + y3 +y3 0 y3 =1-—2re?y? wi=1-2re?(1 4 re”) Y(w; — 1)
re’gy% +y34+1=0 | y3=re¥l - 1 wi = re® (1 + refe)_l(wl -D-1
v —yays =0 wi = wi(l — (re” — )1+ re”)~'(1 + wy))
(xs, x%, x%, x%, xi, X1X2, X1X3,
R3 X1X4, X2X3, X2X4, X3X4) (2, Y1, Y65 V7, Y85 Y9, Y105 V11)

o+ 13+ya=0
—Py+y3+ys =0
rey, +y3+y1 =0
—rey; +y34+1=0

y2—y3 =0

—12y4=0
v — s =0
Vo —ya=0
Yo —y3ys=0

yi, — yays =0

ya=1—=y(14re”)
ys=1-— yz(re’9 —?)

w} =1-2rew,

; = wi(re’y, = 1)

1= wi(l —wi(l+re?))

2= wi(1— wi(re” — 1)

w? = (re®wy — 1)(1 — wi(1 + re?))
% (re?w; — (A1 — wi(re” — 1))
% =1 —wi(1+re?)1 — w(re? — ;'2))
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