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REDFIELD'S THEOREMS AND MULTILINEAR ALGEBRA 

DENNIS E. W H I T E 

1. Introduction. The remarkable 1927 paper by J. H. Redfield [13] which 
anticipated many recent combinatorial results in Polya counting theory and, 
in fact, predated Polya's theorem by ten years has been discussed at length by 
Harary and Palmer [8], Foulkes [5; 6], Sheehan [15; 16] and Read [12], not to 
mention de Bruijn [3] and others. We shall, in this paper, demonstrate how 
multilinear techniques may be used in this context. The Redfield superposition 
theorem and decomposition theorem turn out to be statements about a group 
acting on finite function spaces, and may thus be dealt with in multilinear 
terms. We shall prove Redfield's results and an extension due to Foulkes [5]. 

2. Background. We shall first sketch results which have appeared elsewhere 
[19]. Let 5 be a finite set, G a finite group acting on S, La G-stable subset of S, 
A a system of distinct representatives, or transversal, on the orbits of the 
action of G on L. We let G : L mean the action of G on the set L. Let F be 
a field of characteristic zero. Then Fs is an algebra under pointwise addition, 
multiplication, and scalar multiplication. Let {es)sÇ.s be a basis for Fs, es(t) = 
x(s — t) where 

, v (l if statement is true, 
x ( s t a t e m e n t ) = | o if statement is false. 

We define operators TG and QG as follows and extend linearly: 

•*• G&S = = |/-r I / J €<TSJ 
M aÇG 

where Gs is the stabilizer subgroup of the point s (z S. Then we have 

THEOREM 2.1. 

TGQG = QGTG and TG
2 = TG. 

Proof. See [19]. 
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REDFIELD'S THEOREMS 705 

If G and H are subgroups of G, we define the operator PgH on the basis of 
Fs and extend linearly: 

Pfes = ~ £ xivHa-1 C Gs)es. 
\&s\ Tea 

Note that when G = G, PôHes = MGs(H)es where MK(H) is the mark of K at 
# (see [2; 17]). We then have 

PGHQG = 0*Pd*. 

In [19] we showed: 

THEOREM 2.2. r G J A = QGIL where IA = J2seAesfor ACS. 

Proof. See [19]. 

This theorem is a vector statement of Burnside's Lemma. The more classical 
versions may be obtained by applying appropriate linear functionals. 

We now specialize S = RD where R = {1, . . . , r] = [1, r] and D = 
{1, . . . , d) = [1, d\. Then we may summarize the additional structure on Fs 

as follows: 

THEOREM 2.3. If S = RD, then Fs is the algebra of tensors of rank d and 
dimension r. 

We define the correspondence v : MdtT(F) —» Fs where Md<T{F) = 
{d X r matrices with entries in F}, by 

d 

VA(J) = n aim, 
i = i 

where A = (a^) £ Md,r(F). Although v is not one-to-one, we note that vA = vB 

if and only if Ai = a^i and I I ^ IÛ :* = 1 where Ax and Bt are the ith rows of 
A and B respectively and at £ F. 

Furthermore, although v is not onto, vEj = ef where Ef G Md,r(F) is such that 
the ijth coordinate of Ef is 1 if f(i) = j and 0 otherwise. Thus, Im v spans Fs. 

Finally, we note that if A, B, C £ Md,r(F), A = (a^), B = (btj), C = (c^), 
then 

vc = VA + vB if Ai = Bt = C{ for all i ^ k and Ak + Bh = Ck, 

vc = otvA if Ai = Ci for all i ^ k and Ck = aAk, 

vc — vA - vB if Cij = dij - btj for all i, j . 

Proof. See [19]. 

We often let A G MdtT(F) represent vA. The matrices MdtT(F) are sometimes 
called pure or homogeneous tensors. 

For certain group actions on RD (e.g., G acts on D and therefore on RD) 
if A is a pure tensor and / is a linear functional on F(RD) such that lE^f — lEf 
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706 DENNIS E. WHITE 

for all / G RD, for all a G G, then IQGA is an easily computed quantity [20]. 
We may then restate a version of the problem of rejecting isomorphs in a 
G-stable subset L of a finite function space as follows: Construct pure tensors 
Ai, . . . , Av such that IL = ^ ( ^ i + . . . -f Av). Then by Theorems 2.1 and 
2.2, TV* = ToQoiAx + . . . + Av). Since /T^E, = lEf, ITG = /. Thus, 
//A = ^2<^4i + . . . + /ÇG^Î;- For instance, if L — RD, we may let v = 1, 
^4i = / = the d X r matrix of all l's, and thus II& = IQGJ> For some subsets L, 
the principle of inclusion-exclusion may be used to construct Ai, . . . , Av 

[18]. We shall not deal with this construction problem in this paper. 
We may then extend this multilinear setting as follows. If 5 = R\Dl X 

. . . X RkDky then Fs is the tensor algebra of rank k of vectors from the tensor 
algebras F{RiDl) (see [19]). We may write a pure tensor of pure tensors as 
Ai ® . . . ® Afc where At Ç Mdiiri(F) and \Ri\ = rif \Dt\ = dt. 

We now let Sn be the symmetric group of order n\ acting on [1, n]. Let p be 
an integer partition of n. We write p = Vl2J2 . . . njn where j t denotes the 
number of times i appears in p. The following two results are well-known: 

THEOREM 2.4. There is a one-to-one correspondence between partitions of n 
and conjugate classes of Sn. This correspondence is as follows: 

p = P 1 . . . njn <-> all elements of Sn with j t cycles of length i for each i. 

Proof. See, for instance, [7]. 

We may discuss, then, Cp = conjugate class of Sn corresponding to the 
partition p. 

THEOREM 2.5. 

\CD I'Wjl. . . . njnjnl 7T 
nl 
—- where wp = lnjil . . . n jnl 

Proof. See [13]. 

3. Redfield's theorems . Let Un = {partitions of n\ and let s1} . . . , sn be 
n indeterminants. We now write the cycle index polynomials (see [4]) 
RG:[l,n](Sl, $2, • • • ) a s follows: 

PG.-ILH] (SI, s2, • • •) = 7777 X) \CP n G\sp 
1̂ 1 P€nn 

where sp = Sijls2
i2 . . . sn

jn. We observe that V = (sp )P^un forms a vector 
space of dimension |IIn|. We define * in F as follows: 

SPl « SP2 = X(P1 = P 2 ) î T P l 5 P l , 

and extend linearly, making V an algebra. We define a linear functional 
E : V —> F as follows: 

(3.1) E(sp) = 1 for all p 

and extend linearly. 
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In 1927 Redfield described and counted objects he called "superpositions" 
[13]. These have been further described in [6; 8; 12; 16]. We shall describe 
them in terms of function spaces as follows: 

Let {Gi}i£[itm\ be subgroups of Sn, Gt C Sn, each Gt acting on [1, ri\. Let 
G = Gx X . . . X Gm X S». Let R = 5n, D = [1, m\. (We shall later have Rx = 
R and D\ = D.) Then we define an action of G on RD as follows: 

(3.2) ((g, g„,<0/)(*) =g < /«<^- 1 

where the operation on the right hand side is function composition. Redfield's 
superpositions make up a system of orbit representatives A from G : RD. 

Redfield described them as m rows of n objects, each row having a group, 
Giy act on the objects in the row, and two of these arrays equivalent if they 
could be made equal, entry by entry, by some action of the G/s and some 
permutation of the columns. A moment's reflection will convince one that the 
action described in (3.2) yields the same objects. We shall no longer refer to 
Redfield's superpositions, but shall instead only use the action of G on RD 

described in (3.2). 
We shall use the following lemma (see Perlman [10]): 

LEMMA 3.3. If G acts on X and F, two finite sets, and Ai is a transversal on 
the orbits of G : X, A2(x) a transversal on the orbits of Gx : F, Â a transversal on 
the orbits of the induced action of G on X X Y(G : X X Y), W : Y —>s/, a 
commutative algebra over F, W constant on orbits of G : F, then 

£ Z W(y) = ZW(y). 
z€Ai 2/ÇA2(z) (x,y)ÇA 

Proof. Notice that A = {(x, y) Ç X X F: x Ç Ai, y Ç A2(x)} is a trans­
versal on the orbits of G : X X F, because 

(i) If (x, y), (xr, y') G A and there exists a G G such that ax = x' and 
ay = y , then x = x' because Ai is a transversal on the orbits of G : X and so 
a Ç G ,̂ which means y — y' since A2(x) is a transversal on the orbits of Gx : F. 
Thus, A is contained in a transversal on the orbits of G : X X F. 

(ii) If (x, y) Ç Â, then there exists x' G Ai and a Ç G such that crx' = x 
since Ai is a transversal on the orbits of G : X. Furthermore, there exists 
y' G A2(x') and r G GX' such that ryr = o--1^, since A2(x) is a transversal on 
the orbits of Gx : F. But then ar(xf, y') = (aTXf,aryr) = (ax', aa~ly) = (x,y). 
Thus, A contains a transversal on the orbits of G : X X F. 

But 

£ E ^CV)= H.W(y)= Z_W(y), 
x€Ai i/€A2(z) (z,V)€A (x,»)€A 

since PT is constant on the orbits of G : F and thus is constant on the orbits 
of G : X X F. 

We are now ready for Redfield's decomposition theorem (or, as Read [12] 
calls it, the Master Theorem). 
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Let R = Sn, D = [1, m], G = Gi X . . . X Gm X Sn, Gt C Sn. Then G acts 
on RD as denned by (3.2). Let Ai be a transversal on the orbits of G : RD. 
Note that G acts on [1, n] as follows: 

(gi> • • • » gm, <r)i = <ri (i-e., projection of G to Sn acts on [1, w]). 

THEOREM 3.4 (Redfield [13]). 

Z ^>Gf1:[l,n](^lj $2, • • •) = P Gi :[l,n] (sh s2, • . • ) 
/l€Ai 

* . . . * P o m : [ l , n ] ( ^ l i *2, • • • ) • 

Proof. There are a number of approaches to this theorem. We could use 
Theorem 6.3 in [19] which involves a homomorphism, X, of Sn. Here, we would 
set \(a) = sp where a G Cp. Or we could use Theorem 2.2 directly by letting 
6* = RD and defining a functional I where 

IE/ = PGf:[itn](Si, 52, • • . ) • 

The proof we give exploits the multilinear aspects of Fs where 5 = R\Dl X 
R2

D2, and seems, more directly, to contain the concept of summing cycle index 
polynomials of stabilizer subgroups over a system of orbit representatives. 

For brevity, we shall denote an element (gi, . . . , gm, a) G Gi X • • . X Gm X 
Snhya.LetRi = RaaidD! = D. The action of G on RiDl is described by (3.2). 
Define the linear functional h on F^R'Dl^ by hEn = 1 for all fx G RiDl. In 
particular, hEafl = l\Efl for all a G G. Let J\ = J2fi£RiDiE/i-

Define R2 = [1, r] and D2 = [1, n]. G acts on R2
D2 by (glf . . . , g w , cr)f2(i) = 

Î2(v~li)- Define the linear functional /2 on F(R2D2) by /2£ / 2 = ITj=i:x:/2(*) for all 
f2 G i^2£>2 where Xi, . . . , #r are indeterminants. In particular, l2Eaf2 = l2Ef2 

for all a; G G. Let 72 = Z/2eR2
D2Ef2. 

Define 

/ ( £ A ® £ / 2 ) = (/*£,, ) X (/2£ /2) 

and write / = h ® l2. Thus, l(Eafl ® Eaf2) = / (£/! ® Ef2) and therefore 
/ r G = /. Let A be a transversal on the orbits of G : RiDl X R2

D2. By Theorem 
2.2, 

(3.5) ITGIA = IQG(A ® / 2 ) . 

We evaluate the right hand side of (3.5) first. 

lQG(Ji® J2) =T^ Z E x(«/i = A) 
/O ^ \ 1^1 a=(gi,...,gm,<r)€G fl£R\Dl 

X Z x(«/2 =/2) I l */2«). 
f2€R2D2 i=l 

To evaluate the right hand side of (3.6) we first characterize all /1 g i?iDl 

such that (glf . . . , gm, a)f, = flm By (3.2), g ^ ^ r 1 = M ) orh{i)^gtfS) = 
a. Thus, we must have that gt G Cp for all i where Cp is the conjugate class of 
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Sn containing a. Fur thermore, the number of possible values iorfi(i) for each i 
is jus t the cardinality of the normalizer of a in Sn, i.e., irp. Thus , the number of 
possible / i fixed by (gu . . . , gm, <J) is 7rp

m. 
Continuing with our evaluation of the right hand side of (3.G) we compute 

n 

]C x(q/2 = h) I I xMi) where a = (gh . . . , gm, a) Ç G. 

This is easily seen to be sp = YLn
i=iSi3i where st = X\l + . . . + xr* and j t is 

the number of cycles of cr of length i. 
Therefore, the right hand side of (3.5) is 

TTTT X) ^ i ( p ) • • • • - An(p)\Cp\Trp
msp 

where At(p) = \CPC\ Gt\ and this is 

Pai.-ll.n] (Si, S2, . . . ) * . . . * PGrTO.-[l>w] (sU S2, . . . ) • 

We next evaluate the left hand side (3.5). 

n 

ITGIA = UA = 2_J | | %/2(i)' 
(/l,/2)ÇA i=l 

We let A2(/ i) be a transversal on the orbits of G/! : i ^ 2 and apply Lemma 3.3 
to get 

n 

IT0IA = s n n */2(«-
/16A1 /2€A2(/i) i=l 

We now apply Polya's Theorem (see [4]) to the action of Gfl on R2°
2 to obtain 

/l€Ai 

COROLLARY 3.7. 

| A l | = £ ( P G i ; [ i > n ] ( 5 i , 5 2 , . . . ) * . . . *PGm:[l,n](Sl, S2, . . . ) ) 

wftere £ is defined in (3.1). 

Proof. Apply £ to both sides of Theorem 3.4 and note tha t E(PG:s(si, s2, . . .)) 
= 1. 

The idea of summing cycle index polynomials of stabilizer subgroups over a 
transversal was developed a t length by deBruijn [3]. DeBruijn 's results in 
tha t paper (Redfield's Superposition Theorem was one of them) may be 
achieved from the multilinear s tandpoint of a cartesian product of two func­
tion spaces, with the connecting relationship described in Lemma 3.3. Lemma 
3.3, of course, may be extended as follows: 

COROLLARY 3.8. Suppose G acts on Xi, . . . , Xn and thus G acts on 
X\ X . . • X Xn. Let A be a transversal on the orbits of G : X\ X . . . X Xn} 
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710 DENNIS E. WHITE 

Ai(xiy . . . , Xt-i) be a transversal on the orbits of Gxl C\ . . . C\ Gxi-1 : Xt. Let 
W : Xn —*S$, an algebra, W constant on orbits of G : Xn. Then 

E E • • • E w(Xn) = E _ w(Xn). 
z i £ A i Z2eA2(zi) xn£&n(xi,... ,xn-i) (xi » • • • ,Xn)£à 

Proof. Use repeated applications of Lemma 3.3. 

4. Fou lkes ' e x t e n s i o n . Redfield notes two problems which he left unsolved. 
First , he observed t h a t the cycle index polynomial is not unique, i.e., two non-
conjugate subgroups of Sn may have the same cycle index polynomial. Second, 
the decomposition of Theorem 3.4 is not unique, i.e., we may be able to find 
another collection of groups Hi, . . . , Ht such t h a t 

t 

PGi:[l,nl(Sl, S2, . . . ) * . . . * P Gm :[l,nl frl» * 2 , . . . ) = ^ PHi :[l,n] (si, S2, . . . ) 
i=l 

where Hi, . . . , Ht are not conjugate to {Gfi}fi^Al in any order. 
These problems may be overcome in the following manner (see [2; 5]) . 

T H E O R E M 4.1 . (Foulkes [5]). For all subgroups H C Sn, Y^f^iMGf(H) = 
117=1^6- (H) where the marks are marks in Sn. 

Proof. Merely apply the trivial functional to PSn
HTGlA1 = PsnHQoIs. 

(See [17].) 

This overcomes Redfield's difficulties since marks are constant on conjugate 
subgroups and tables of marks form non-singular matrices. Thus , if we consider 
the free vector space over the non-conjugate subgroups of Sn, we observe t h a t 
the marks , (MK ), form a basis of this vector space. Then , whereas in Theorem 
3.4 we were unable to decompose uniquely PGi:[i>n] (si, s2, . . . ) * . . . * P<?m.-[i,n]-
(si, 52, . . . ) , in Theorem 4.1 the decomposition of Tl™=iMGi in terms of this 
basis must be unique. 

Fur thermore , even if we were to discover the correct decomposition in 
Theorem 3.4, we could not in general recover the stabilizer subgroups {G/Î/ÇAI 
from this decomposition. However, since the marks , (MK ) , form a basis of 
the free vector space over the non-conjugate subgroups, we can recover these 
stabilizer subgroups from the decomposition in Theorem 4.1 . In fact, we have 
seen in [17] t ha t the decomposition into marks and subsequent reconstruction 
of stabilizer subgroups in Theorem 4.1 is merely an example of the general 
problem of enumerat ing orbits with a given automorphism group. 

Finally, we shall note the in t imate connection between marks , permuta t ion 
characters , and cycle index polynomials. If aK is the permuta t ion representa­
tion of Sn induced by K, then we have 

^K.'tl.nl (^h S2, • • •) = ~1 Z2 \CP\XaK{p)Sp, 
n . p^TTn 

where XaK is the character of aK. This formula follows from the s tandard fact 
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(see [9; 14]) that 

, \Sn[ \cPnc\ 

Thus we see that knowledge of the permutation character x<*K of Sn is 
equivalent to knowledge of the cycle index polynomial PK.[i,n]- In fact, 
Theorem 3.4 may be restated as 

m 

(4.2) E x (a) = I l 7C*0.(*) for all cr € Sn. 

This formula may be obtained from Theorem 4.1 by observing that 

MK{{a)) =XaK(<r) 

where a Ç Sn, (a ) is the cyclic subgroup generated by a and the marks are 
marks in Sn. 

5. Example. Applications of Redfield's theorems to graph theory abound 
[6; 8; 12; 13; 15]. We shall address ourselves to a simple example here and then 
indicate how these theorems might be further used. 

Suppose we wish to know how many octagons we may construct with 
exactly 5 red balls and 3 blue balls at the vertices, up to the action of the 
dihedral group on the octagon. Suppose, further, that we wish to know, for 
each such pattern, the largest subgroup of the dihedral group which fixes that 
pattern. 

Let Gi = dihedral group on the octagon, G2 = S5 X -S3,
 a n d n = 8, m = 2. 

Then the number of ways to construct such an octagon is 

E(Poi:[l,n](Si, 5 2 , . . . ) * ^ W l l . n ] ($1, $2, • • • ) ) 

where G2 acts on [1, n] by the action of Sb on [1, 5] and the action of 53 on 
[6, 8]. This is because 

E(Poi:[l,n](Sl, S2, • • •) *PGi:[l,n](Su *2, • • • ) ) = H 

where A is a transversal on the orbits of Gi X G2 X Sn : Sn
[l'2] by (gi, g2, <r)f(i) 

••= gif(i)a~~l (Corollary 3.5). If we write the eight nodes in one row and the 
symbols {r, b}, repeating r five times and b three times, in the second row, 
we have Gi acting on the first row, S-0 X «53 acting on the second row (where 
S5 acts in the 5 r's and 53 acts in the 3 b's), e.g., 

[ " 1 2 3 4 5 6 7 8 " ] 
\_b b r b Y r r r J ' 

then the patterns we wish to count are all these, up to the actions of G\ and G2 
on the rows and up to whole permutations of columns. 
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Thus, 

Z^t PG/:ll,n](Sl, s2, • • •) = P G\ :[l,n] (Si, ^2, • • •) 

*Po2:[i.n](sh S2, • • •) = ô ( ^ i 8 + SS^Sz*) and |A| = 5. 

Generally speaking, we cannot decompose an arbitrary * -product of the 
cycle index polynomials into the cycle index polynomials of the stabilizer sub­
groups. We must, instead, use marks. However, in this case, we easily see that 

2Z Po/:[l,nl(slf S2, • • •) = Ô C?l8 + Sl2S23) 

, 1 / 8 , 2 3\ . 1 / 8 , 2 3 \ , 8 , 8 
+ - (Si + Si S2 ) + ~ (Si + Si S2 ) + Si + Si . 

Again, generally speaking, we cannot say exactly to which subgroup an 
arbitrary cycle index polynomial is associated. But in this case, it is the cycle 
index polynomial of the subgroup consisting of just a reflection through a line 
through opposite vertices. Figure 1 lists the five figures and the dotted lines 
indicate the axes of reflection for the stabilizer subgroups. Note that two of 
the figures have trivial stabilizer subgroups and therefore cycle index poly­
nomials equal to si8. 

We must remark that the result |A| = 5 can be obtained from Polya's 
theorem directly by merely looking at the coefficient of w(r)5w(b)3 in the 
resulting polynomial, where w is the Polya weight function. 

As was stated earlier, Theorem 2.2 may be applied to a G-invariant subset 
L of 5. When S is a finite function space, this involves the construction of a list 
of pure tensors Ai, . . . , Av which, up to the operator TG, represent L. In the 
case at hand, we may wish to enumerate orbits from the action of Gi X . . . X 
Gm X Sn on some useful subset, L, of Sn

[1,m]. Certain boundary conditions 
might be considered (for example, no isolated red balls), or restrictions in­
volving the unusual nature of the group action (perhaps involving the con-
jugacy classes of the G/s). 

We shall now indicate one approach to a graph counting problem (see 

[12; 15]). Consider graphs with n nodes and k lines. We let m = I l where 

m corresponds to all possible lines in the graph. Then the action of Sn on [1, n] 
induces an action on [1, m\. Furthermore, G2 = Sk X Sm-k acts on [1, m] as 
before. Then if A is a transversal on the orbits of G\ X G2 X Sm : 5m

t l , 2 ] , A is 
also a transversal from the graphs with n nodes and k lines, up to the action 
of Sn on the m pairs of points. 

Thus, the problem of computing |A| reduces to that of computing two cycle 
index polynomials for the special group actions above. If we also want to 
compute the groups under wThich the graphs in the transversal are stable 
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FIGURE 1. Transversal from octagons under the dihedral group of order 16 with five vertices 
labeled "r" and three vertices labeled "6". 

(called the automorphism groups), we must, in the general case, also be able 
to compute the marks of the subgroups of Sm. 

As before, useful restrictions on the set RD may also be considered in this 
multilinear context. 
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