HYPERCENTRAL INJECTORS IN INFINITE SOLUBLE GROUPS

by M. J. TOMKINSON (Received 15th February 1978)

The Carter subgroups of a finite soluble group may be characterised either as the self-normalising nilpotent subgroups or as the nilpotent projectors. Subgroups with properties analogous to both of these have been considered by Newell (2, 3) in the class of \mathfrak{S}_1 -groups. The results obtained are necessarily less satisfactory than in the finite case, the subgroups either being almost self-normalising (i.e. having finite index in their normaliser) or having an almost-covering property. Also the subgroups are not necessarily conjugate but lie in finitely many conjugacy classes.

Here we consider the dual concept of nilpotent injectors. A nilpotent subgroup V of a finite soluble group G is a nilpotent injector if, for each subnormal subgroup S of G, $V \cap S$ is a maximal nilpotent subgroup of S. These subgroups may also be characterised as the maximal nilpotent subgroups containing the Fitting subgroup. In \mathfrak{S}_{1} -groups, maximal hypercentral subgroups containing the hypercentral radical necessarily exist and one might therefore expect the nilpotent injectors to generalise to \mathfrak{S}_{1} -groups in a more satisfactory way than the nilpotent projectors.

We shall see that this is in fact the case, proving that in an \mathfrak{S}_1 -group the hypercentral injectors coincide with the maximal hypercentral subgroups containing the hypercentral radical and form a unique conjugacy class. The results depend heavily on the fact that \mathfrak{S}_1 -groups are nilpotent-by-abelian-by-finite and so the hypercentral subgroups containing the radical are all finite extensions of the radical. The definition and basic results concerning \mathfrak{S}_1 -groups may be found in (4).

The radical R of the \mathfrak{S}_1 -group G has a finite series

$$1=R_0\leqslant\cdots\leqslant R_n=R$$

of normal subgroups of G such that each factor R_i/R_{i-1} is either

- (1) torsion-free abelian and rationally irreducible (as a G-module)
- or (2) an abelian Černikov p-group.

The torsion-free factors in this series are central in R. If we define

$$N = \bigcap \{C_G(R_i/R_{i-1}); R_i/R_{i-1} \text{ is torsion-free}\}\$$

then $N \ge R$.

We write $\varpi(R)$ for the set of primes $\{p; R_i/R_{i-1} \text{ is a } p\text{-group for some } i\}$. For each $p \in \varpi(R)$, define

$$N_p = \bigcap \{C_N(\Omega_1(R_i/R_{i-1})); R_i/R_{i-1} \text{ is a } p\text{-group}\}.$$

Then N/N_p is finite and N_p centralises $\Omega_{n+1}(R_i/R_{i-1})/\Omega_n(R_i/R_{i-1})$. Thus each p-factor R_i/R_{i-1} is hypercentral in N_p .

For each $p \in w(R)$, let $C_p = \bigcap_{q \neq p} N_q$ and define

$$M = \bigcap_{p \in \varpi(R)} C_p = \bigcap_{p \in \varpi(R)} N_p;$$

then N/M is finite and $M \leq R$.

We relate the maximal hypercentral subgroups of G containing R to certain subgroups of N/M. The characterisation given in this result may be compared with a characterisation given by Fischer in the finite case (see (1) VI.7.18).

Theorem 1. V is a maximal hypercentral subgroup of G containing R if and only if $V \le N$ and each Sylow p-subgroup of V/M is a Sylow p-subgroup of C_p/M .

Proof. Let W_p/M be a p-subgroup of C_p/M and $W = \langle W_p; p \in \varpi(R) \rangle$. If p and q are distinct primes in $\varpi(R)$, then $[W_p, W_q] \leq C_p \cap C_q = M$ and so $W_p \triangleleft W$. Since each p'-factor and each torsion-free factor of M is hypercentral in W_p it follows that W_p is a hypercentral group. Thus W is a product of normal hypercentral subgroups and so is itself hypercentral.

Let U be a hypercentral subgroup of G containing R. Then U/R is finite and so U centralises each torsion-free factor R_i/R_{i-1} ; hence $U \leq N$. Let U_p/M be the Sylow p-subgroup of U/M; then U_p centralises each p'-factor of R. Thus if $p \not\in \varpi(R)$ then $U_p \leq M$ i.e. the Sylow p-subgroup of U/M is trivial, and if $p \in \varpi(R)$ then $U_p \leq C_p$.

A straightforward argument using the results of these two paragraphs yields the required result.

Theorem 2. The maximal hypercentral subgroups of G containing R are conjugate in G.

Proof. Let V_1 and V_2 be maximal hypercentral subgroups of G containing R. For i=1,2, there is a Sylow basis $S_i=\{S_p^{(i)}/M\}$ of N/M reducing into V_i/M . Thus the Sylow p-subgroup of V_i/M is $(V_i\cap S_p^{(i)})/M=(C_p\cap S_p^{(i)})/M$. Since N/M is a finite soluble group there is an element $x\in N$ such that $x^{-1}S_p^{(i)}x=S_p^{(2)}$ for each prime p. Hence $x^{-1}(V_1\cap S_p^{(i)})x=x^{-1}(C_p\cap S_p^{(i)})x=C_p\cap S_p^{(2)}=V_2\cap S_p^{(2)}$ and so $x^{-1}V_1x=V_2$.

We define injectors in \mathfrak{S}_1 -groups to have a rather stronger condition than in the finite definition. A hypercentral subgroup V of the \mathfrak{S}_1 -group G is a hypercentral injector of G if, for each ascendant subgroup A of G, $V \cap A$ is a maximal hypercentral subgroup of A.

Theorem 3. V is a hypercentral injector of G if and only if V is a maximal hypercentral subgroup of G containing R.

Proof. In one direction the result is obvious and so we have to prove that if V is a maximal hypercentral subgroup of G containing R and if A is an ascendant subgroup of G, then V is a maximal hypercentral subgroup of A.

Consideration of the subgroups $A \le AR \le G$ shows that we may consider the separate cases $A \ge R$ and AR = G.

(1)
$$A \ge R$$
.

The Sylow p-subgroup of V/M is a Sylow p-subgroup of C_p/M and hence the Sylow p-subgroup of $(V \cap A)/M$ is a Sylow p-subgroup of $(C_p \cap A)/M$, since $C_p \cap A$ is a subnormal subgroup of C_p . Also $C_p \cap A = C_p(A)$ and so Theorem 1 shows that $V \cap A$ is a maximal hypercentral subgroup of A.

(2)
$$AR = G$$
.

There is an ascending series

$$A = A_0 \triangleleft \cdots \triangleleft A_\alpha \triangleleft \cdots \triangleleft A_\gamma = G.$$

If W is a hypercentral subgroup of A containing $V \cap A$, then $[W, R \cap A_{\alpha+1}] \leq R \cap A_{\alpha}$ and so $WR \cap A_{\alpha} \triangleleft WR \cap A_{\alpha+1}$. Thus $W(=WR \cap A)$ is an ascendant subgroup of WR which, being a product of two ascendant hypercentral subgroups, is itself hypercentral. But $WR \geq (V \cap A)R = V$ and so WR = V. Hence $W = V \cap A$, as required.

In the characterisation given in Theorem 1, a hypercentral injector V of G corresponds to a subgroup V/M of a finite soluble section of G. In the case of polycyclic groups we can determine a different finite soluble section K/L such that the subgroups V/L are the nilpotent injectors of K/L. The simple example of $C_{3^{\infty}}$ extended by its involution automorphism shows that no similar result can be obtained for \mathfrak{S}_{1} -groups.

Letting R_i denote the *i*th term of the upper central series of R and using the residual finiteness of polycyclic groups there is an integer n such that

$$(R^n \cap R_i)/(R^n \cap R_{i-1})$$

is torsion-free. We put $L = R^n$ so that R/L is finite and L has a central series

$$1 = L \cap R_0 \leqslant \cdots \leqslant L \cap R_k = L$$

with torsion-free factors. We define

$$K = \bigcap_{i=1}^{\infty} C_G((L \cap R_i)/(L \cap R_{i-1})).$$

Theorem 4. Let G be a polycyclic group. With the above notation, K/L is a finite soluble group and R/L is its radical.

V is a maximal nilpotent subgroup of G containing R if and only if V/L is a maximal nilpotent subgroup of K/L containing R/L.

Proof. G/L is finite-by-abelian-by-finite and is also residually finite; hence G/L is abelian-by-finite.

Let F/L be the radical of K/L. Then F is nilpotent and normal in G and so $F \leq R$. Hence the radical of K/L is the finite subgroup R/L. But K/L is abelian-by-finite and so if K/L is infinite, then its radical is infinite. Hence K/L is a finite soluble group.

If V is a nilpotent subgroup of G containing R, then V/R is finite and hence V/L is finite. Thus V centralises each of the torsion-free factors $(L \cap R_i)/(L \cap R_{i-1})$ and so $V \leq N$.

If W/L is a nilpotent subgroup of K/L, then W is nilpotent. The result now follows easily.

REFERENCES

- (1) B. HUPPERT, Endliche Gruppen I (Grundlehren der math. Wiss. 134, Springer, 1967).
- (2) M. L. NEWELL, Supplements in abelian-by-nilpotent groups, J. London Math. Soc. (2), 11 (1975), 74-80.
- (3) M. L. NEWELL, Nilpotent projectors in S₁-groups, *Proc. Royal Irish Acad.* (Section A) 75 (1975), 107-114.
- (4) D. J. S. ROBINSON, Finiteness conditions and generalized soluble groups (Ergebnisse der Math. 62, 63, Springer, 1972).

University of Glasgow