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ABSTRACT. A discrete-element model of sea ice is used to study how a 908 change in wind direction
alters the pattern of faults generated through mechanical failure of the ice. The sea-ice domain is 400 km
in size and consists of polygonal floes obtained through a Voronoi tessellation. Initially the floes are
frozen together through viscous–elastic joints that can break under sufficient compressive, tensile and
shear deformation. A constant wind-stress gradient is applied until the initially frozen ice pack is broken
into roughly diamond-shaped aggregates, with crack angles determined by wing-crack formation. Then
partial refreezing of the cracks delineating the aggregates is modelled through reduction of their length
by a particular fraction, the ice pack deformation is neglected and the wind stress is rotated by 908. New
cracks form, delineating aggregates with a different orientation. Our results show the new crack
orientation depends on the refrozen fraction of the initial faults: as this fraction increases, the new
cracks gradually rotate to the new wind direction, reaching 908 for fully refrozen faults. Such
reorientation is determined by a competition between new cracks forming at a preferential angle
determined by the wing-crack theory and at old cracks oriented at a less favourable angle but having
higher stresses due to shorter contacts across the joints.

INTRODUCTION
Sea ice is frozen ocean water that covers large areas of the
polar oceans, especially in winter, when it can reach
15� 106 km2 in the Arctic and 20� 106 km2 in the Ant-
arctic. As sea ice reflects up to 80% of incident solar
radiation, insulates the ocean from the atmosphere and
contributes to the oceanic energy and salt balance, it plays a
significant role in determining polar and global climate. Sea
ice is therefore an indispensable part of Global Climate
Models (GCMs). Although GCMs use continuum isotropic
sea-ice models, there is strong observational evidence of
discontinuous anisotropic sea-ice deformation, concentrated
not only in leads and ridges at the floe scale, but also in bands
extending from tens to thousands of kilometres (Kwok, 2001).
Such bands are usually referred to as slip lines (Erlingsson,
1991; Overland and others, 1998) or linear kinematic
features (Kwok, 2001). The slip lines frequently intersect at
acute angles apparently independent of the spatial scale
(Walter and others, 1995;Weiss, 2001) and delineate regions
of approximately diamond-shaped floe aggregates.

The floe aggregates, which we also refer to as blocks,
consist of floes frozen together. Hopkins and others (2004)
used a discrete-element model to study sea-ice fracture due
to different imposed patterns of wind stress, allowing only
compressive and tensile failure of inter-floe joints, and found
that the formed aggregates had a roughly rectangular shape.
This is in contrast to the observed diamond-shaped floe
aggregates. It has been argued (e.g. Schulson, 2001; Weiss
and Schulson, 2009), based upon a strong similarity
between sea-ice leads and wing cracks observed in the
laboratory, that slip lines form through a mechanism of shear
rupture, i.e. failure/crack formation once a sufficient shear
stress is reached. Wilchinsky and others (2010) incorporated

a Mohr–Coulomb shear failure mechanism into the discrete-
element model and found that such diamond-shaped
aggregates can indeed be formed under uniaxial compres-
sion if the tensile strength is an order of magnitude lower
than the compressive strength. This result provided an
insight into the physics of formation of anisotropic sea-ice
structures under a constant wind stress.

In more realistic situations the wind direction is expected
to change and the formed cracks will freeze over. Schulson
(2004) interpreted Landsat-7 images for the Beaufort Sea
near the Canadian Arctic Archipelago and identified two
separate sliding events along faults oriented in different
directions that have presumably been formed by different,
consecutive low-confinement compressive wind stresses. In
this case the faults formed during the first event seem to have
been inactive during the second event and therefore did not
affect fault formation and sea-ice deformation during the
latter event. Interpreting sea-ice images can provide only
limited information on the deformation process, and model-
ling sea-ice fault reorientation under changing wind direc-
tions can provide a more comprehensive picture of the
process. Moreover, understanding how changes in wind
direction could affect the ice-block shape and orientation is
important not only in terms of discrete models, but also for
anisotropic continuum models of sea ice that incorporate
the diamond-shaped structure of ice blocks (Wilchinsky and
Feltham, 2006), as they require an evolution equation for the
blocks’ orientation. Here we use the discrete-element model
of sea ice developed by Hopkins (1996) and Hopkins and
others (2004) with the incorporated shear rupture mech-
anism (Wilchinsky and others, 2010) to gain an insight into
how changing the wind direction by 90� affects the shape
and orientation of the sea-ice aggregates formed for different
degrees of existing crack refreezing.
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In the next section we introduce salient aspects of the
discrete-element model incorporating the shear rupture
mechanism, and in the following sections we present the
simulations of new crack formation for different degrees of
refreezing of cracks before changing the wind-stress dir-
ection, concentrating in particular upon the range of crack
angles and failure modes.

MODEL CONFIGURATION
Sea-ice fracture is studied here using a two-dimensional
discrete-element model (Hopkins, 1996; Hopkins and
others, 2004) that has been extended by Wilchinsky and
others (2010) to account for sea-ice shear failure, in addition
to compressive and tensile failure used in the original
version. Detailed descriptions of the model can be found in
the above papers. The model parameters we use here are
given in Table 1.

We consider an ice pack 400 km in size that consists of
polygonal floes typically 4 km wide, whose shape is
produced by a Voronoi tessellation of the domain in
Cartesian coordinates x and y describing zonal and
meridional directions, respectively. Initially the floes are
connected by frozen joints. The mean thickness of the floes
is 3m and the new ice thickness determining the compres-
sive strength of the joints between the floes is 0.25m. The
floes are considered to be rigid and any deformation at the
joints is determined by mutual motion of the adjacent edges
of neighbouring floes. The joints can sustain compressive,

tensile and shear forces. If they break up, the edges can slide
with the ice kinetic sliding friction coefficient taken as 0.32,
as was shown by rafting experiments (Hopkins and Tuhkuri,
1999), which also falls into the observed range determined
by edge-to-edge sliding of several metre-long floes when no
stick and slip behaviour occurs (Lishman and others, 2009).
Hopkins and Thorndike (2006) showed little sensitivity of
the model to the kinetic sliding coefficient values. In the
model the mutual floe displacement, ��, is split into
components �n and �s, normal and tangential to the joint,
respectively (Fig. 1). The displacement is distributed over the
whole floe average length, L, so the depth-integrated normal
and shear stresses at a joint are given by

�n ¼ hE�n
L

� kn�n, ð1Þ

�s ¼ hG�s
L

� ks�s, ð2Þ
where E i s the compress ive elas t ic modulus ,
G ¼ E=½2ð1þ �Þ� is the shear modulus where � is the
Poisson ratio, and h is the mean ice thickness. This also
determines kn=ks ¼ 2ð1þ �Þ. In the model, the elastic
modulus is 1GPa and the Poisson ratio is 0.3, taken around
the values given by Evans and Untersteiner (1971). The
elastic stress is combined with a viscous stress as a parallelly
connected spring and dashpot, included to damp elastic
waves and model inelasticity of the ice (Hopkins and others,
2004). The model allows for compressive, tensile and shear
failure of the joints with the yield curve presented in
Figure 2. The compressive failure stress (strength), �c, is
based on unconfined buckling (Kovacs and Sodhi, 1980)
integrated over ice thickness,

�c ¼ �1285h3=2
min kPam ¼ �160:625 kPam, ð3Þ

for hmin ¼ 0:25m. The tensile strength of the joints, �t, is a
natural consequence of the assumed cohesion of the joints
and linearity of the assumed Coulomb failure curve. It
describes collapsing of tensile failure mode I range onto only
one point of zero shear stress. Weiss and others (2007)
considered stresses recorded during the Surface Heat Budget
of the Arctic Ocean (SHEBA) expedition and found only a
relatively narrow range of shear stresses at mode I tensile
failure at �50 kPa, determining �t ¼ 12:5 kPa m for
hmin ¼ 0:25m here. Experiments have shown that the value
for sea-ice tensile strength is highly sensitive to temperature
and porosity (Richter-Menge and Jones, 1993), as well as the
specimen width associated with the crack (Dempsey and
others, 1999), which are uncertain in our model. In this
modelling study we choose the tensile failure stress

Table 1. Model parameters

Parameter Symbol Value

Average floe thickness h 3m
Minimum ice thickness hmin 0.25m
Average floe size L 4 km
Pack width Ld 400 km
Elastic modulus E 1GPa
Poisson ratio � 0.3
Ice compressive strength �c �1285h3=2

min kPam
Ice tensile strength �t ��c=10
Ice density �i 920 kgm�3

Air density �a 1.2 kgm�3

Sea-water density �w 1010 kgm�3

Air and water drag coefficients 0.0012, 0.0055
Shear rupture coefficient � 0.6
Ice kinetic sliding friction coefficient k 0.32

Fig. 1. Adjacent floe interaction. Fig. 2. Failure criterion for the joints.
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(strength), �t, to be ten times smaller than the compressive
strength, �c. While the tensile and compressive strengths are
not generally tied to each other, such a ratio between them is
crucial for determining formation of diamond-shaped sea-
ice aggregates under uniaxial compression (Wilchinsky and
others, 2010), which corresponds to observations. Moreover
this ratio is of the same order as those observed during the
SHEBA experiment (Weiss and others, 2007).

The floes in our model are connected by joints modelling
the presence of thin ice whose fracture failure mechanism
must be prescribed. Generally, laboratory experiments on
fracture failure (Schulson and Nickolayev, 1995; Schulson,
2001; Schulson and others, 2006) provide nearly linear yield
surfaces of ice in terms of the standard first and second stress
invariants (pressure and maximum shear stress). However,
our model does not determine depth-integrated stresses
acting on the line parallel to the joint. We therefore assume
a Coulomb failure law for the joints that describes a similar
linear relationship, but in terms of shear and normal
tractions at the joint rather than the stress invariants. In this
case, shear rupture occurs when the tangential (shear)
component, �s, of the traction at a joint reaches the
Coulomb limit,

j�sj ¼ �ð�t � �nÞ, �n > �c, ð4Þ
where �n is the normal component of the traction at the
joint, and � is the shear rupture coefficient taken to be 0.6,
which is within the observed failure envelope slope range.
Note that since this failure mechanism describes fractural
failure of sea ice and not friction between ice surfaces, �
may differ from the ice friction coefficient (Schulson and
others, 2006).

The shear failure criterion (Equation (4)) can be
rewritten as

�n ¼ �t � 1
�
j�sj � ��t , ð5Þ

or in terms of displacements as

�n ¼ ��t ¼
�t
kn

� ks
�kn

j�sj, ��t > �c ¼ �c=kn, ð6Þ

where �c is the compressive failure displacement. As the
pure tensile failure is included in Equation (4) for �s, for a
given shear traction an inter-floe crack forms in a region of a
joint where the normal traction reaches either �c or ��t , with
only the latter being dependent on the shear traction. These
strengths can be reached when the mutual floe displacement
increases sufficiently, leading to a proportional increase of
the elastic stress at joints (Fig. 1). When a crack extends
beyond 95% of the joint length (edge length), the joint fails.
After this the floe edges can separate, forming a lead or
overlap making a ridge with the vertically integrated ridging
stress determined by Hopkins (1994) as

F ¼ 928h2
minl þ 26126hmin Pam, ð7Þ

where l is the length of ice pushed into the ridge.
Sea-ice deformation in the model occurs under the action

of a gradient of wind stress, �� , with stress varying linearly in
the x (eastward) or y (northward) directions,

r�� ¼ 0:0012�a
2U2

wind

Ld
e Pam�1, ð8Þ

where �a is the air density, Uwind is the eastward (north-
ward) speed of wind blowing at the western (southern) end
of the model pack, while an equal but opposite wind blows

at the eastern (northern) end, Ld is the domain size, and the
tensor e determines the wind-stress direction, with only one
nonzero component: either exx ¼ �1 for the initial stage of
the experiment where the wind blows zonally along x, or
eyy ¼ �1 after it rotates by 908 into a meridional direction.
Here we use a constant wind speed, Uwind ¼ 4m s�1,
which corresponds to the wind-stress gradient of
1.15�10�7 Pam�1, as it produces floe aggregates larger
than the floe scale. The wind drag applied to a floe is

Fwind ¼ Ar�� 	 x � 1
2
1Ld

� �
, ð9Þ

where A is the floe area and x is its position. The effect of
subtracting 1

2 Ld from the position vector is to make the
wind drag symmetrical about the centre of the domain. The
action of the wind drag force gives rise to a momentum
contribution aligned with the force. If the ice pack is
homogeneous, the linear variation of the wind force leads
to the same mutual displacement of all the floes and to a
homogeneous stress distribution. Boundary effects are
minimized by calculating the average stress in the central
region and applying it to the boundaries every 10 s. All
boundary blocks belonging to the same side of the domain
then move simultaneously under the imposed stresses. The
time-step was �L �i=Eð Þ1=2=8, ensuring that the energy
balance between the wind drag work, fracture energy,
inelastic dissipation (including ridge building), frictional
dissipation and water drag work has an error of <1%.

SIMULATIONS
The model starts from an initial configuration of floes at rest.
In the first stage of the experiment the wind stress is applied
zonally along the x-axis for 3000 s, which is sufficient to
break the frozen ice pack into floe aggregates and attain a
steady configuration (Fig. 3 for 	 ¼ 0). The ice blocks are
roughly diamond-shaped, aligned with the compression
direction and permeated with internal cracks. Our aim is to
study how wind rotation affects the crack pattern. We restrict
ourselves to considering a right-angle wind rotation, due to
the shape effect of our square domain. If after the first stage
the wind is immediately rotated by 908, then no further
damage occurs. However, we expect the cracks to refreeze at
least partially. As discussed by Wilchinsky and others (2010),
the cracks which are internal to the blocks are likely to be
inactive, as the main deformation would occur at the cracks
delineating the blocks. Similarly, here we also assume that
since they are not active the internal cracks will refreeze
completely. The remaining cracks, delineating the block
boundaries, are considered to refreeze partially, by a fraction,
	, of the crack length itself. Generally, since cracks form
when the displacement (Equation (6)) has been attained,
crack refreezing in the model requires reduction of floe
displacement at each cracked joint, which is impossible to
achieve without affecting the overlap regions between all
adjacent floe edges, which would arbitrarily change the
stress field in the ice pack. Therefore, we model refreezing by
introducing the cracks formed in the first stage into the
corresponding joints of the initial, undeformed ice-pack
configuration and reducing the crack length by a fraction, 	.
This configuration is then used as an initial state for the
second-stage run where the same wind-stress gradient is
applied meridionally (along the y-axis) for 4000 s. Since, as
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was mentioned earlier, applying the new, rotated wind stress
onto the ice aggregates without refreezing does not have any
significant effect, we refer to the configuration which is the
result of the first-stage run, and which is used as the initial
configuration for the second stage as given by 	 ¼ 0. Figure 3

compares the ice-cover secondary break-up after refreezing
and wind rotation for various degrees of refreezing; it can
also be seen that when the block internal cracks are not
completely refrozen, the sea-ice cover sustains a high degree
of damage. During sea-ice deformation, boundary blocks at

Fig. 3. Ice cover for different refreezing factors, 	 (including 	 ¼ 0), used as an initial configuration for the second-stage runs after partially
refreezing the cracks delineating the blocks and completely refreezing the internal cracks. Different colours distinguish between different
blocks. The ice cover which resulted from a 	 ¼ 0:05 run when no internal cracks were completely refrozen is shown with a high degree of
fragmentation. Joints shown in black delineate blocks used in our statistical analysis. Cracks filtered out in our statistical analyses are shown
in white. The cracks are filtered out to exclude damage zones by retaining only those cracks separating different ice blocks of which at least
one is more than ten times the average floe area. We also remove cracks around the rectangular boundary floe joints. Cracks that surround
blocks completely contained within another larger block are also filtered out.
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the same side remain aligned as the boundary conditions
make them move simultaneously. Inspecting the ice-cover
failure after the first stage with wind along x, one can see that
the internal cracks are preferentially aligned in the zonal
direction and their intersection is therefore reduced. Impos-
ing a wind stress rotated at a right angle produces internal
cracks in a perpendicular direction, significantly increasing
the probability of internal crack intersection. As a result, the
ice cover breaks down into floe-scale blocks if the internal
cracks are not removed after stage one.

Generally as the refreezing factor, 	, increases, the blocks
gradually reorient themselves from the zonal to the
meridional direction. For medium values of 	 the block
shape is less distinct; however, a clear trend in the crack
angle distribution change can be seen from the angular
crack distribution in Figure 4. Later we denote angles
relative to the compressive stress direction through  , which
are taken clockwise for consistency with Ashby and Hallam
(1986), as in Figure 5, while their corresponding values in
the original coordinate system through 
 are taken antic-
lockwise in a standard way. In both cases, we consider only
first quadrants, 
 ¼ �=2�  . At the limiting values of 	
being 0 and 1, the cracks in our simulations (Fig. 4) are
distributed bimodally around the critical flaw angle,  c,
determined by wing-crack formation around the corres-
ponding most compressive stress directions (Jaeger and
Cook, 1979; Ashby and Hallam, 1986; Schulson, 2004),

tanð2 cÞ ¼ 1=�: ð10Þ
The maxima, however, are not very prominent, presumably
due to the limited number of discrete angles determined by
the floe edges, along which cracks can only form. As the
refreezing factor increases, the maxima gradually migrate
between these two limiting values.

DISCUSSION
Crack angles
In order to gain some insight into the nature of the crack re-
orientation mechanism, we first note that the critical flaw
angle,  c, is determined by maximizing the stress intensity at
the adjacent wing cracks (Jaeger and Cook, 1979; Ashby and

Hallam, 1986). In the wing-crack theory the critical flaw is
subject to frictional sliding (Fig. 5), where the frictional stress
is linearly proportional to the normal stress. In our sea-ice
model, the situation is physically different: the joint is
strained elastically until it reaches the failure criterion
(Equation (4)). This initial elastic deformation is, however,
analogous to the subfailure regime of frictional sliding, and
the stress during failure of the joint is then similar to the
stress state during frictional sliding. While our failure
criterion (Equation (4)) also includes a tensile strength, �t,
it is constant and so does not affect the maximization
procedure for the wing-crack stress intensity, and therefore
does not affect the critical flaw angle,  c. Because of this
analogy, here, for simplicity, we consider the wing-crack
theory in order to determine how the critical flaw angle
would depend on the refreezing factor, 	.

Fig. 4. The histograms of the normalized crack length distribution against the angle around the compression direction, x, for different
refreezing factors, 	, under uniaxial compression. The bin width is 38, and the results are averaged over ten different initial Voronoi
tessellations. The cracks are filtered as described in Figure 3. The dotted lines show the critical flaw angle, 
rc (Equation (10)), for compression
along x, the dashed line shows 
c for compression along y, and the dot-dashed line describes the angle, 
r, at which a partially refrozen
crack has the same stress intensity as the critical flaw when the wind stress is along y. PDF: probability density function.

Fig. 5. Wing-crack formation under uniaxial compression. The
critical flaw is aligned at the angle determined by tanð2 cÞ ¼ 1=�
(Jaeger and Cook, 1979; Ashby and Hallam, 1986; Schulson, 2004),
where for � ¼ 0:392� the maximum stress intensity on an adjacent
wing crack is attained.
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Similarly to Ashby and Hallam (1986), we consider a two-
dimensional situation (Fig. 5), but with only one principal
stress, � < 0. The shear stress along a flaw inclined at an
angle,  , to the stress direction is

�xy ¼ ��

2
sin 2 , ð11Þ

while the normal stress across it is

�xx ¼ �

2
ð1� cos 2 Þ, ð12Þ

where we retain the local coordinate notation (x and y) for
consistency with Ashby and Hallam (1986). The shear failure
stress given in Equation (4) opposes the sliding motion at the
crack, so the effective shear stress there becomes

�0xy ¼ �xy � �s ¼ �xy þ �ð�xx � �tÞ: ð13Þ
The mode I stress intensity in a small adjacent wing crack
maximized with regard to � is (Ashby and Hallam, 1986)

KIð�, Þ ¼ 2ð�aÞ1=2
31=2

�0xy , ð14Þ

where a is the critical crack length. Maximization of the
mode I stress intensity with regard to  gives the critical flaw
angle (Equation (10)), and the maximum stress intensity at
this flaw reaches KIð cÞ. In our model, the inter-floe joints
transfer the stress through the refrozen parts of the cracks as
well as through the broken parts where the ridging force
(Equation (7)) acts normal to the cracks. The ridging stress at
the beginning of the ridging process (l ¼ 0) is 6.53 kPa,
which is <4% of the compressive strength (Equation (3)) and
therefore will be ignored here. The refrozen part of the crack
constitutes a fraction, 	, of its length, while the remaining
part remains stress-free as the ridging stress has been
ignored. This leads to a 1=	 increase in the stress acting in
the refrozen part of the crack relative to its unbroken state,
which leads to the corresponding increase in the stress
intensity. Generally, for a single, disconnected flaw, the
effect of such a stress increase on the stress intensity would
be absorbed by the surrounding unbroken joints. In particu-
lar, for an open flaw with zero shear traction, the stress
intensity given by Equation (14) remains finite as 	! 0.
However, since in our case the partly refrozen flaws are all
connected as they delineate separate ice blocks formed
during the initial sea-ice failure, the flaws subject to opening
would also be only partly refrozen and therefore have the
same stress concentration. Thus we can assume that the
stress is increased uniformly, and the stress intensity can be
obtained by Equation (13) with �=	 substituting for �. As the

stress intensity at partially refrozen cracks increases, one
would expect rupture to occur primarily in them at the
critical angle,  c, relative to the new wind direction, which
we would use for now as our local coordinate system.
However, the refrozen cracks are concentrated around the
critical flaw angles determined by the initial wind direction,
which would now be  r

c ¼ �=2�  c, so there are not
enough refrozen cracks available to fail at  c. At the same
time, when other angles are considered, the stress intensity
reduces. In this case, two effects compete: the stress intensity
is reduced when the crack angle deviates from the critical
flaw angle, but it is increased as the refreezing factor, 	,
decreases. If we find an angle,  r, which determines the
stress intensity at refrozen cracks equal to the stress intensity
of new cracks generated at critical flaw angles,

KIð�, cÞ ¼ KIð�=	, rÞ, ð15Þ
then the refrozen cracks would preferentially not fail at
angles  >  r, as the stress intensity there would be lower
than the stress intensity at the new critical flaws directed at
angle  c. The tensile strength, �t, can be cancelled from
Equation (15) which then becomes an equation for  r,

sin 2 r þ �ðcos 2 r � 1Þ ¼ 	 sin 2 c þ � cos 2 c � 1ð Þ½ �:
ð16Þ

The solution can be found as

 r ¼ arccos
s1 � s2

2ð1þ �2Þ
� �1=2

,

s1 ¼ 1þ 2�2 � 	� �� 1þ �2� �1=2h i
,

s2 ¼ 1� 	2 þ 2�ð1� 	Þ	 �� 1þ �2
� �1=2h in o1=2

,

ð17Þ

which is shown in Figure 6. The angle distribution maxima
in the original coordinate system (
 ¼ �=2�  ) associated
with the initial wind direction roughly fall between the new
critical flaw angle, 
c, shown by the dashed line, and the
refrozen crack angle with the same stress intensity, 
r, shown
by the dash-dotted line in Figure 4. As the refreezing factor,
	, increases,  r !  c as the stress acting across the refrozen
part of the crack decreases until it reaches the magnitude of
stress at new cracks (Fig. 6). As  r approaches  c, the crack
length distribution peaks become situated closer to  c than
 r. For small 	 the limiting angle for refrozen crack failure,
 r, relative to the most compressive stress direction is close
to the initial critical flaw angle,  r

c ¼ �=2�  c (Fig. 6). The
stress intensity at the refrozen cracks increases as  becomes
smaller relative to  r

c, and since  r and  r
c are close, there

are enough refrozen cracks available for failure at  <  r

and the peak is situated roughly halfway between  r and  c.
As 	 increases,  r gradually moves away from  r

c, so there
are fewer refrozen cracks available for failure, which makes
failure of refrozen cracks less probable, and the crack length
distribution peaks move away from  r towards  c.

Failure modes
Given a shear stress at a joint, the failure displacements, ��t
or �c given by Equation (6), must be reached for the joint to
fail. We normalize the tensile failure displacement to
�r ¼ ��t =j�cj, where �r can be interpreted as a failure regime
parameter: for a tensile strength ten times smaller than the
compressive strength it varies from �1 (pure compressive
failure) through 0 (pure shear rupture) to 0.1 (pure tensile
failure). Figure 7 shows histograms of the normalized crack

Fig. 6. Solution for Equation (17) relative to the highest compression
direction.
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length distribution during joint failure against �r, from which
it can be seen that the most probable shear rupture regime is
shifting from a compressive mode to a tensile one as the
refreezing factor, 	, increases. The position of the peak of
the tensile mode (shown by the vertical dashed line) was
found by Wilchinsky and others (2010) to be determined by
minimizing the joint failure energy per unit crack length,
Wf ¼ kn�2n=2þ �2 �t � kn�nð Þ2= 2ksð Þ, over all possible fail-
ure scenarios, which determines the corresponding failure
displacements

�min
n ¼ 2ð1þ �Þ�2

1þ 2ð1þ �Þ�2
�t
kn

, �min
s ¼ 1

�
�min
n : ð18Þ

This failure regime involves a tensile shear rupture of the
joints through opening of the wing cracks. The dominance of
shear failure under compression at small refreezing factors,
	, is explained by the fact that failure mainly occurs at
refrozen cracks which are aligned at a less acute angle
relative to the compressive stress direction. Figure 8 shows
the crack angle distribution for cracks failing under
compression or tension separately. For both high and low
refreezing factors, the cracks that failed under compression
are distributed between the critical flaw angle, 
c, and the
refrozen flaw-limiting angle, 
r, given by Equations (10) and
(17), which also corresponds to the minima of the crack
length distribution under tension. The main difference is that
in the 	 ¼ 0:05 case the fraction of cracks that failed under
tension is �16%, whereas it is �41% for 	 ¼ 1.

CONCLUSIONS
A discrete-element model was used to study how a change
in wind direction can alter the orientation of sea-ice floe
aggregates mainly formed through shear failure. The initial
sea-ice aggregates were formed by imposing a

1.15�10�7 Pam�1 wind stress gradient for 3000 s in the
zonal direction. The formed cracks were then partially
refrozen by reducing their length by a particular fraction, the
refreezing factor, and the accumulated deformation was
disregarded for simplicity. The partially healed sea-ice pack
then underwent the same wind-stress gradient for 4000 s, but
rotated by 908. In order to prevent high damage of the sea-
ice pack due to intersection of internal cracks generated in
the first and second stages, they were deemed to have
refrozen completely. Our calculations show that, as the
degree of crack refreezing increases, the crack angle
gradually rotates from the critical flaw angle during wing-
crack formation relative to the initial wind direction to the
critical flaw angle determined by the new wind direction.
The position of the maxima in the crack length angular
distribution is bounded by the wing-crack theory critical
flaw angle,  c, and an angle,  r, where the partially refrozen
cracks have the same stress intensity. New cracks are less
likely to form at angles much lower than  c, while the
partially refrozen cracks are less likely to fail at angles much
higher than  r relative to the new compression direction.
Since the number of suitably aligned refrozen cracks
decreases as  r rotates away from the most likely refrozen
crack angle as the refreezing factor increases, the secondary
cracks become more aligned with  c rather than  r. For low
refreezing factors, the prevailing mode of shear failure
involves compression between the floe joints as the refrozen
cracks which are the easiest to fail are at less acute angles
relative to the compression direction, and for a 5% refrozen
fraction only 16% of cracks fail under tension. For higher
refreezing factors, the failure occurs at the wing-crack theory
critical flaw angle (308) which is more acute relative to the
compression direction, so the most likely shear failure
occurs under tension at the wing cracks, and for completely
refrozen cracks, or failure from the initial, unbroken
configuration, 41% of all cracks fail under tension.
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