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THE HAZARDS OF OPTIMAL PROOFREADING

LUKE TIERNEY,* Carnegie—Mellon University

Abstract

In a recent paper (Yang et al. (1982)) a model for proofreading was
proposed in which a reader has a fixed probability p of detecting a
misprint in a document containing a Poisson number of errors. This
note points out that the conclusions derived from such a model can be
extremely misleading if the probability of detecting a misprint varies
from one misprint to another.

In a recent paper Yang, Wackerly and Rosalsky (1982) present a model to assist in
determining an optimal strategy for proofreading. The model assumes that the number
of errors in a text has a Poisson distribution with rate A, that error detections are
independent and that on each reading each error has the same probability p of being
detected. A strategy is then selected to minimize the expectation of a cost function that
is linear in the number of proof readings and in the number of undetected errors. The
authors treat the case where A and p are known exactly, as well as the case where one
or both are unknown but reasonable prior distributions can be specified.

The assumption that detection probabilities remain constant from one reading to the
next is probably reasonable for documents of, say, fifty or more pages. However, it does
not seem reasonable to assume that all errors are equally easy or hard to detect. For
most readers the two typographical errors ‘adn’ and ‘hte’ are far easier to recognize than
the two errors in ‘Zietschrift fiir Wahrschleinichkeitstheorie’. Furthermore, most typo-
graphical errors of this nature are easier to detect than, say, errors in the cross-
referencing of equations.

In view of these observations it is reasonable to ask how sensitive a model assuming a
constant p is to departures from this assumption. To shed some light on this question,
consider the expected number of undetected errors remaining in the manuscript after k
readings. If p is fixed then this number is A(1—p)*. On the other hand, if the p’s for
different errors are assumed to be independent and identically distributed random
variables then the expected number of errors remaining in the text is AE[(1 —p)*]. Thus
if A and E[p] are assumed known and we act as if p were a constant, then by Jensen’s
inequality the expression A(1—E[p])* would strictly underestimate the expected
number of remaining errors unless the distribution of p was in fact degenerate.

To assess the magnitude of this underestimate, suppose that p has a beta distribution
with parameters « and B. In Table 1 we consider beta distributions with means of 0-75
and 0-9 and standard deviations of 0-05 and 0-025. The table lists the value of
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TABLE 1
Ratio of true to estimated expected remaining errors

standard beta parameters
mean deviation a B k=2 k=3 k=4
0-75 0-050 5-4921 1-8307 1-3605 2-2360 4-1855
0-025 8-7507 2:9169 1-2368 1-7798 2-8718
0-90 0-050 6-5905 0-7323 2-0814 6-0999 22-0547
0-025 10-5008 1-1667 1-7105 3-9631 11-2585

the ratio of the true expected number of remaining errors to the estimate of that
number obtained by assuming a constant p, for values of k ranging from 2 to 4. In all
cases the estimate for k =4 is off by at least a factor of 2-5, and for E[p]=0-9 and
o =0-05, values that seem quite plausible for applications, the estimate is off by a factor
of 22!

The beta model for the distribution of p may not be appropriate, in particular for
values of E[p] close to 1. However, the magnitudes of the errors computed under this
distribution do suggest that a model with constant p should be used with extreme
caution. This warning also applies to cases where A or E[p] are not known exactly, since
assuming a constant p could lead to serious underestimates of A and overestimates of
E[p]

The results of Yang, Wackerly and Rosalsky can be used to obtain an optimal
proofreading strategy for a random p if we assume that A and the distribution of p are
known. In this case, by their Lemma 1, the fact that E[p(1—p)*] decreases in k implies
that the optimal number of proof readings is the smallest k for which

AE[p(1- P)k]§ Ci/Cs,

where C; is the cost of a reading and C, is the cost of an undetected error. Results for
the case where the distribution of p is not completely known are more difficult to obtain
since conjugate priors are no longer available.

In practice, if the distribution of p is in fact not known exactly, then it may pay to try
to group errors into different categories within which the value of p is nearly constant
and to keep track of the number of errors of each type that have been found. The
posterior distributions of Yang, Wackerly and Rosalsky could then be computed for
each category and could be used to select an optimal proofreading strategy. It might be
useful to investigate the tradeoff between the cost of the additional bookkeeping that is
required and the reduction in the cost of the optimal strategy.

Finally, it is worth emphasising that the cautionary remarks of this note apply,
perhaps a fortiori, to other contexts, such as program debugging, where similar models
might be considered.
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