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Abstract

Erdős, Graham and Selfridge considered, for each positive integer n, the least value of tn
so that the integers n + 1, n + 2, . . . , n + tn contain a subset the product of whose members
with n is a square. An open problem posed by Granville concerns the size of tn, under the
assumption of the ABC conjecture. We establish some results on the distribution of tn, and
in the process solve Granville’s problem unconditionally.

2020 Mathematics Subject Classification: 11N25 (Primary); 11D41 (Secondary)

1. Introduction

A question of Erdős, Graham and Selfridge ([6] and [9, B30]) asks to find the least value
of tn so that the integers n + 1, n + 2, . . . , n + tn contain a subset the product of whose mem-
bers with n is a square. (If n is a square then we set tn = 0.) That is, tn ≥ 0 is the least integer
such that there are integers 1 ≤ j1 < · · · < js = tn with

n
s∏

i=1

(n + ji) =�,

where “m =�” means that the integer m is a square. For instance, we easily compute that
t2 = 4, t3 = 5 and t5 = 5, since

2 · 3 · 6 = 62,

3 · 6 · 8 = 122,

5 · 8 · 10 = 202,

and none of the last numbers in the products can be replaced by smaller integers.
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One can interpret tn in terms of integer points on hyperelliptic curves. As an example,
we have t14 = 7 from 14 · 15 · 18 · 20 · 21 = 12602, and this gives rise to the integral point
(x, y) = (14, 1260) on the hyperelliptic curve y2 = x(x + 1)(x + 4)(x + 6)(x + 7). Granville
noted this connection [9, B30] and observed that effective versions of Faltings’ Theorem
[7] would lead to corresponding effective bounds on tn. Granville mentioned that the ABC
conjecture should lead, via work of Elkies [4] and Langevin [12], to stronger bounds on tn.
He also stated that, presumably, tn > nc for some fixed constant c > 0, and perhaps one could
prove this assuming the ABC conjecture.

Our first result below shows that this supposition fails dramatically. A beautiful result of
Granville and Selfridge [8, Corollary 1] shows that if the largest prime factor P+(n) of n
satisfies P+(n) >

√
2n + 1 then tn = P+(n). This inspired us to study closely the relationship

between P+(n) and tn. While tn and P+(n) may no longer be close if P+(n) ≤ √
2n + 1, we

find the distribution of tn continues to follow that of P+(n) in larger ranges.

THEOREM 1·1. For any fixed c ∈ (0, 1],

lim
x→∞

#{n ≤ x : tn ≤ nc}
x

= lim
x→∞

#{n ≤ x : P+(n) ≤ nc}
x

.

Remark 1. The right-hand side in the statement of Theorem 1·1 is equal to ρ(1/c), where
ρ(u) is the well-known Dickman–de Bruijn function which plays a prominent role in the
theory of smooth numbers [11]. Therefore, for every fixed c > 0 a positive proportion of
integers n satisfy tn ≤ nc.

Theorem 1·1 is a corollary of a slightly stronger theorem (Theorem 3·1) which we state
and prove in Section 3 below.

Our next result shows there are integers n attaining even smaller values of tn, much smaller
than nc.

THEOREM 1·2. Let ε > 0 be fixed and sufficiently small, and let x be sufficiently large

depending on ε. Then there are at least x exp
(
−(

3
√

2/2 + ε
)√

log x log log x
)

integers n ≤
x such that tn ≤ exp

(√
(2 + ε) log n log log n

)
.

Suitable modification of the proof of Theorem 1·2 shows there exist hyperelliptic curves
of large genus which have integral points of nontrivial height (see further comments and
discussion at the end of Section 5).

THEOREM 1·3. Fix a constant c ∈ (0, 1). There are arbitrarily large positive inte-
gers J such that the following is true: there exist N positive integers 1 ≤ j1 < j2 < · · · <
jN < J with N ≥ J1−c and a positive integer x ≥ exp

(
c2(log J)2/(5 log log J)

)
such that

x(x + J)
∏N

i=1 (x + ji) is a square.

In the complementary direction, we prove a lower bound on tn when n is not a square
(recall tn = 0 when n is a square). The proof also uses a framework of hyperelliptic curves,
and requires bounding the height of integral points on curves.

THEOREM 1·4. If n is a sufficiently large non-square integer, then

tn 	 (log log n)6/5(log log log n)−1/5.

The implied constant is effectively computable.
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The outline of the rest of the paper is as follows. In Section 2, we describe the
notation and conventions of the paper. In Section 3, we state Theorem 3·1, of which
Theorem 1·1 is essentially a special case; we assemble the ingredients for the proof and
then prove Theorems 3·1 and 1·1. In Section 4, we prove Theorem 1·2. Section 5 contains
the results and modifications of the proof of Theorem 1·2 necessary to prove Theorem 1·3;
we close the section with some comments and discussion. We prove Theorem 1·4 in
Section 6.

2. Notation and conventions

Given a positive integer n, the integer tn is the smallest nonnegative integer so that the
integers n + 1, n + 2, . . . , n + tn contain a subset the product of whose members with n is a
square. If n is a square then we define tn = 0.

The expression m =� means that the integer m is a square. We write P+(n) for the largest
prime factor of a positive integer n. We set P+(1) = 1. We write ω(n) for the number of
distinct prime factors of n.

A number n is y–smooth if P+(n) ≤ y. We write �(x, y) for the number of y–smooth
integers n ≤ x, and ρ(u) for the Dickman–de Bruijn function.

We let P∗(n) denote the largest prime which divides n to an odd power. Let S�(x, y) =
{n ≤ x : P∗(n) ≤ y}, the set of integers n ≤ x which are a square times a y–smooth integer. As
noted by Granville and Selfridge [8, p.4] we have P∗(n) ≤ tn. Therefore, if n ≤ x and tn ≤ y,
then n ∈ S�(x, y). So

#{n ≤ x : tn ≤ y} ≤ |S�(x, y)| =: ��(x, y).

One can easily show that ��(x, y) ∼ �(x, y) for y ≥ (log x)3 by results on �(x/d, y)/�(x, y)
like in [3].

Given two finite sets S and T , we write S�T for the symmetric difference of S and T .
That is, S�T consists of those elements which are in one of S or T but not both: S�T =
(S ∪ T)\(S ∩ T). By associativity one can consider the symmetric difference of any finite
number of sets

S1�S2� · · · �Sk = {x : x is an element of an odd number of the sets Si}.
Given a finite set S we write #S or |S| for the cardinality of S. The power set of S, i.e. the

set that consists of all the subsets of S, is denoted by P(S).
The finite field with two elements is denoted as F2.
The real number x is always large. The notation o(1) denotes a quantity tending to zero

as some other parameter, usually x, tends to infinity. We write f � g, g 	 f , or f = O(g) if
there exists a constant C such that f ≤ Cg. We write f ∼ g if f = (1 + o(1))g.

In discussion, but not in proofs, we sometimes refer to the height of an integral point (x, y)
on a curve. By this we mean the naive height max (|x|, |y|). We similarly refer to the height
of an integer polynomial, which is the maximum of the absolute value of its coefficients.

3. The distribution of tn: Proof of Theorem 1·1
As mentioned in the introduction, Theorem 1·1 is a corollary of a somewhat stronger

result, which we state here.
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THEOREM 3·1. Let x be sufficiently large, and let c satisfy (log log log x)2/log log x ≤
c ≤ 1. Then

∑
n≤x

tn≤xc

1 =
∑
n≤x

P+(n)≤xc

1 + O
( x

c log x

)

uniformly in c.

We prove Theorem 3·1 by proving upper bounds for
∑
n≤x

tn≤xc

1 and
∑
n≤x

P+(n)≤xc

1

in terms of each other. More precisely, the proof of Theorem 3·1 relies on the following two
propositions.

PROPOSITION 3·2 (tn less than P+(n) on average). Let 0 < c ≤ 1. Then
∑
n≤x

tn≤xc

1 ≤
∑
n≤x

P+(n)≤xc

1 + O(x exp(−√
log x))

uniformly in c.

PROPOSITION 3·3 (P+(n) less than tn on average). Let 0 < c ≤ 1. Then
∑
n≤x

P+(n)≤xc

1 ≤
∑
n≤x

tn≤xc

1 + O
( x

c log x

)

uniformly in c.

Proof of Theorem 3·1 assuming Propositions 3·2 and 3·3. From Proposition 3·2 we have
∑
n≤x

tn≤xc

1 ≤
∑
n≤x

P+(n)≤xc

1 + O
(
x exp(−√

log x)
)
,

so from Proposition 3·3 we have
∑
n≤x

tn≤xc

1 =
∑
n≤x

P+(n)≤xc

1 + O
( x

c log x

)
.

That this asymptotic formula is non-trivial for the stated range of c follows from classical
estimates for smooth numbers [10, 11].

We first turn our attention to Proposition 3·2, since the proof is simpler and introduces
some of the key ideas. The first result we need is a simple inequality relating tn and P+(n).

LEMMA 3·4. If P+(n)2 � n, then tn ≥ P+(n).

Proof. Let p = P+(n). If p2 � n, then n is not a square so by the definition of tn there are
integers 1 ≤ j1 < · · · < js = tn with n

∏s
i=1 (n + ji) =�. Since p divides the left-hand side to
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an even power but p2 � n there is some i such that p | n + ji. Since p | n and p | n + ji we have
p | ji, so tn ≥ ji ≥ p.

We also need a result quantifying that it is rare for an integer n to be divisible by the
square of its largest prime factor (see also [5, p. 345]).

LEMMA 3·5 (Bound for exceptional set with P+(n)2 | n). Let E denote the set of n ≤ x
such that P+(n)2 | n. Then |E | � x exp(−√

log x).

Proof. Any n ∈ E may be written as n = p2m, where P+(m) ≤ p, and therefore

|E | ≤
∑

p≤x1/2

∑
m≤x/p2

P+(m)≤p

1.

We introduce a parameter 10 ≤ P ≤ x1/2 and split the sum over p at P. The contribution
from p > P is trivially � x/P. We bound the contribution from p ≤ P using Rankin’s trick.
Set α = 1 − 1/log P, so that

∑
p≤P

∑
m≤x/p2

P+(m)≤p

1 ≤ xα
∑
p≤P

1

p2α

∑
P+(m)≤p

1

mα
� xα

∑
p≤P

(log p)3

p2
� xα .

We have therefore proved |E | � x/P + x exp( − log x/log P), and the optimal choice is to
take P = exp(

√
log x).

We now have the tools to prove Proposition 3·2.

Proof of Proposition 3·2. We split the integers n ≤ x according to whether or not P+(n)2 |
n, so that ∑

n≤x
tn≤xc

1 =
∑
n≤x

tn≤xc

P+(n)2�n

1 +
∑
n≤x

tn≤xc

P+(n)2|n

1 ≤
∑
n≤x

tn≤xc

P+(n)2�n

1 + |E |,

where E is the set in Lemma 3·5. If P+(n)2 � n then we have P+(n) ≤ tn by Lemma 3·4, so
∑
n≤x

tn≤xc

P+(n)2�n

1 =
∑
n≤x

tn≤xc

P+(n)≤xc

P+(n)2�n

1 ≤
∑
n≤x

P+(n)≤xc

1,

by positivity. Therefore
∑
n≤x

tn≤xc

1 ≤
∑
n≤x

P+(n)≤xc

1 + |E |,

and we finish with an appeal to Lemma 3·5.
The proof of Proposition 3·3 is slightly more circuitous, and relies upon an analysis of the

number of subsets S of an interval with
∏

n∈S n =�. For this we require two more lemmas,
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though the reader may wish to skip ahead and see how the lemmas are used in establishing
Proposition 3·3 before examining their proofs.

LEMMA 3·6 (Subset squares and tn in intervals). Let I = (x, x + y] be an interval. The
number of subsets S of I ∩N such that

∏
n∈S n =� is equal to 2r, where

r := #{n > x : n + tn ≤ x + y} = #{n ∈ I : n + tn ∈ I}.
Proof. The result is trivially true if r = 0, so assume r ≥ 1. Let n1 < · · · < nr be those

integers with x < n ≤ n + tn ≤ x + y, and let Pi be a non-empty product of integers in
[ni, ni + tni], including the endpoints, for which the product equals a square. Given �1 <

· · · < �j ∈ (x, x + y], define v(�e1
1 · · · �ej

j ) = ∏
i:ei odd �i.

We claim that the v(
∏

i∈I Pi), I ⊂ {1, . . . , r} are distinct. If two are equal, select them
minimally so that the Pi are distinct and therefore v(Pi1 · · · Pi�) = v(Pj1 · · · Pjk ), say, with all
the i∗, j∗ distinct. We may assume i1 < j1, and therefore n1 is part of the first product but not
the second, a contradiction.

We claim that if m1 < · · · < mk ∈ (x, x + y] with m1 · · · mk =� then

m1 · · · mk = v
( ∏

i∈I

Pi

)
for some I ⊂ {1, . . . , r}.

If not, select such a product with m1 maximal. By definition x < m1 ≤ m1 + tm1 ≤ mk ≤ x +
y, and so m1 = n� for some �. Then �= v(P�m1 · · · mk) = v(n�P�m2 · · · mk) = M1 · · · Mk,
where M1 > m1. By the maximality of m1 we have M1 · · · Mk = v(

∏
i∈I Pi) for some I ⊂

{1, . . . , r}, and so

m1 · · · mk = v(P2
�m1 · · · mk) = v(P�M1 · · · Mk) = v(P� ·

∏
i∈I

Pi),

a contradiction.
We deduce there are 2r products of distinct integers in (x, x + y] which give a square.

LEMMA 3·7 (tn in intervals and smooth numbers). Let I = (x, x + y] be an interval. We
have

#{n > x : n + tn ≤ x + y} ≥ #{y − smooth integers in I} − π(y).

Proof. Let

N := S�(x + y, y)\S�(x, y) = {n1, . . . , nm}
and let {n1, . . . , nk} be the largest subset of N such that if

∏
i∈I ni is a square with I ⊂

{1, . . . , k} then I =∅ (that is, they are the largest multiplicatively independent subset in Z
modulo squares), so k ≤ π(y).

Any subproduct of nk+1 · · · nm is therefore dependent on n1, . . . , nk. That is, if J ⊂ {k +
1, . . . , m} then there exists J = J(I) ⊂ {1, . . . , k} such that

∏
j∈J

nj ·
∏

i∈I(J)

ni =�.
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These products are distinct since the sets J are distinct. The number of square products is
therefore ≥ 2m−k. Combining this with Lemma 3·6 yields

#{n : x < n ≤ n + tn ≤ x + y} ≥ m − k ≥ ��(x + y, y) − �(x, y) − π(y).

Proof of Proposition 3·3. If x is sufficiently large and P+(n) > x0.51 then [8, Corollary 1]
implies P+(n) = tn, and therefore

∑
n≤x

P+(n)≤xc

1 =
∑
n≤x

P+(n)≤x0.51

1 +
∑
n≤x

x0.51<tn≤xc

1.

The proposition in the case c > 0.51 therefore follows from the proposition in the case c ≤
0.51, so we may assume c ≤ 0.51.

Let I = (x, x + y] so Lemma 3·7 reads as

#{n : x < n ≤ n + tn ≤ x + y} ≥ #{n ∈ I : P∗(n) ≤ y} − π(y).

Now, since P∗(n) ≤ tn we have

#{n : x < n ≤ n + tn ≤ x + y} ≤ #{n ∈ I : tn ≤ y}
= #{n ∈ I : P∗(n) ≤ y} − #{n ∈ I : P∗(n) ≤ y < tn}.

Combining the last two equations gives #{n ∈ I : P∗(n) ≤ y < tn} ≤ π(y), and so

#{n ∈ I : P∗(n) ≤ y} ≤ #{n ∈ I : tn ≤ y} + #{n ∈ I : P∗(n) ≤ y < tn}
≤ #{n ∈ I : tn ≤ y} + π(y).

Summing this up over intervals of length y gives

��(x, y) ≤ #{n ∈ I : tn ≤ y} + O(x/ log y).

Proof of Theorem 1·1. By [8, Corollary 1] we may assume c ≤ 0.51. We have
∑
n≤x

P+(n)≤xc

1 ∼
∑
n≤x

tn≤xc

1 ∼
∑

x/ log x<n≤x
tn≤xc

1

by Theorem 3·1 and trivial estimation. We split the sum acording to the size of tn so that

∑
x/ log x<n≤x

tn≤xc

1 ∼
∑
n≤x

tn≤nc

1 + O
( ∑

n≤x
(x/ log x)c<tn≤xc

1
)

.

We must show
∑
n≤x

(x/ log x)c<tn≤xc

1 = o(x).

We split the sum over n according to whether or not n ∈ E , with E as in Lemma 3·5. The
size of E is o(x). If n �∈ E then P+(n) ≤ tn, and we may further split the sum with n �∈ E
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according to whether or not P+(n) ≤ (x/ log x)c. Hence
∑
n≤x

(x/ log x)c<tn≤xc

1 =
∑
n≤x
n �∈E

(x/ log x)c<tn≤xc

1 + o(x)

=
∑
n≤x
n �∈E

(x/ log x)c<tn≤xc

P+(n)≤(x/ log x)c

1 + O
( ∑

n≤x
(x/ log x)c<P+(n)≤xc

1
)

+ o(x).

The O-term has size � x(log log x/log x). For the other sum, we set Y = (x/ log x)c and note
that

∑
n≤x
n �∈E

(x/ log x)c<tn≤xc

P+(n)≤(x/ log x)c

1 ≤
∑
n≤x
tn>Y

P+(n)≤Y

1 = o(x),

by the argument in the proof of Proposition 3·3.
Since we similarly have

∑
n≤x

P+(n)≤xc

1 ∼
∑
n≤x

P+(n)≤nc

1 + O
( ∑

n≤x
(x/ log x)c<P+(n)≤xc

1
)

=
∑
n≤x

P+(n)≤nc

1 + o(x),

this completes the proof.

4. Small values of tn: Proof of Theorem 1·2
The proof of Theorem 1·2 uses estimates for smooth numbers and some elementary com-

binatorics. We introduce parameters y < L ≤ xo(1), and the first idea is to find many short
intervals I ⊂ [1, x] of length L which contain roughly the expected number of y–smooth
numbers.

LEMMA 4·1 (Many intervals with expected number of smooths). Let x be sufficiently
large, and let y < L ≤ xo(1) with y ≥ exp((log x)1/100). Then there are 	 �(x, y)L−1 disjoint
intervals I ⊂ [x/ log x, x] of length L such that

#{y − smooth integers in I} 	 L
�(x, y)

x
.

Proof. With y as in the statement of the lemma we have by [10, Theorem 1] that the
number of smooth numbers in (x/ log x, x] is ≥ (1 − o(1))�(x, y).

For k a positive integer write I = Ik = (kL, (k + 1)L], and let I denote those I which
are contained in (x/ log x, x]. By trivial estimation #I � x/L. Let δ > 0 be a sufficiently
small positive constant, and write I = G ∪ Gc, where I ∈ G if #{y − smooth integers in I} >

δL�(x, y)/x. If δ is sufficiently small the number of y-smooth integers in all of Gc is
O(δ�(x, y)). Since #{y − smooth integers in I} ≤ L we find that #G 	 �(x, y)/L.
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If a short interval contains sufficiently many y–smooth numbers, then we can construct an
integer n with small tn.

LEMMA 4·2 (Build small tn with many smooths). Let I be an interval of length L such
that

#{y − smooth integers in I} > π(y).

Then there exists an integer n ∈ I with tn ≤ L.

Proof. Let p1 < · · · < pR be the primes ≤ y, so that π(y) = R. A y–smooth integer n may
be written as n = ∏R

i=1 pei
i , where ei is a nonnegative integer. By considering only the parity

of ei we obtain a map θ : {y − smooth integers} → FR
2 given by

θ(n) = (e1 (mod 2), . . . , eR (mod 2)). (1)

Let m1, . . . , mM be the y–smooth integers in I. By assumption, we have M > R. Given
J ⊂ {1, . . . , M}, let nJ = ∏

j∈J mj. The number 2M of subsets of {1, . . . , M} is greater than

2R = #FR
2 , so by the pigeonhole principle there exist distinct subsets J, J′ of {1, . . . , M} such

that θ(nJ) = θ(nJ′). By the definition of θ this implies

∏
m∈J

m ·
∏

m∈J′
m =�.

Since J �= J′ we see that J�J′ �=∅ and
∏

m∈J�J′ m =�. The least element n of J�J′ is then
the desired integer.

Proof of Theorem 1·2. We define y = exp(
√

2
2

√
log x log log x) and

L = exp
((√

2 + (log log x)−1/2
) √

log x log log x
)

.

By [10, Theorem 1] and Lemma 4·1 there are 	 xL−1ρ
(
log x/log y

)
intervals I ⊂

[x/ log x, x] of length L such that each interval I contains 	 Lρ
(

log x/log y
)

numbers which

are y–smooth. By [11, Corollary 2·3], the number of y–smooth integers in each interval I of
length L is therefore

	 y exp
(

(log x)1/2(log log x)1/4
)

,

hence the number of y–smooth integers in each interval is > π(y) ∼ y/log y. We conclude
by applying Lemma 4·2.

We remark that our proof of Theorem 1·2 has some similarities to heuristic run-time
analysis of factoring algorithms [13, p. 1477] (see also [2] and [8, section 1]).

5. Large integral points on hyperelliptic curves: Proof of Theorem 1·3
As mentioned in the introduction, the proof of Theorem 1·3 draws on ingredients in the

proof of Theorem 1·2. We also need an additional lemma, which provides for the existence
of sets with large symmetric difference provided we have sufficiently many sets upon which
to draw.
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LEMMA 5·1 (Many subsets implies a large symmetric difference). Let N be large and let
S1, . . . , SK be distinct subsets of {1, . . . , N}. If K ≥ 2Q with Q ≥ N1/100, then there exist i �= j
such that

|Si�Sj| > 1

6

Q

log N
.

Proof. Let A be an arbitrarily chosen (nonempty) subset Si. For any other subset S,
we may uniquely write S as the disjoint union S = S′ ∪ SA, where S′ ∩ A =∅ and SA ⊂ A.
Observe that A�S = (A\S) ∪ (S\A) = (A\SA) ∪ S′. Let δ ≥ 1/100 be a parameter. If |A�S| ≤
δQ/log N, then |S′| ≤ δQ/log N and |A\SA| ≤ δQ/log N.

The number of choices for the set S′ is

≤
∑

0≤k≤δQ/ log N

(N
k

)
,

and this is also a bound on the number of choices for the set SA. By the upper bound
(N

k

) ≤
(eN/k)k, valid for k ≥ 1, we find∑

0≤k≤δQ/ log N

(N
k

) ≤ 1 + (eN)δQ/ log N
∑
k≥1

k−k ≤ (3N)δQ/ log N ≤ exp(2δQ) .

It follows that the total number of choices of subset S such that |A�S| ≤ δQ/ log N is
≤ exp(4δQ) < 1.95Q, the last inequality following if we choose δ = 1/6, say. Since there are
K ≥ 2Q subsets, there must be some subset Si such that |A�Si| > Q/(6 log N).

Proof of Theorem 1·3. Let x be a large integer. As in the proof of Theorem 1·2, we set our

smoothness parameter y = exp
(

(
√

2/2)
√

log x log log x
)

. Given a constant C >
√

2, we also

define a length parameter L = yC
√

2.
We may apply Lemma 4·1 to deduce the existence of many disjoint intervals I ⊂

[x/ log x, x] of length L such that the number of y–smooth integers in I is 	 L�(x, y)/x.
We fix one such interval I, and note that by the argument of Theorem 1·3 the number of
y–smooth integers in I is ≥ exp

(
(C − √

2/2 − o(1))
√

log x log log x
)
. If we let M denote the

number of y–smooth integers in I, and R = π(y), then we see that

M − R ≥ exp

((
C −

√
2

2
− o(1)

)√
log x log log x

)
≥ L1−

√
2

2C −o(1).

Let n1, . . . , nM be the y–smooth integers in I. Given a subset S ⊂ {1, . . . , M} we may
construct the y–smooth integer nS = ∏

s∈S ns, and then map nS to FR
2 using the map θ from

(1). By the pigeonhole principle, there is some v ∈ FR
2 and ≥ 2M−R subsets S of {1, . . . , M}

such that θ(nS) = v for every such S. We apply Lemma 5·1 to obtain the existence of two
subsets, call them S and T , of {1, . . . , M} such that

|S�T| ≥ 1

6

M − R

log M
≥ L1−

√
2

2C −o(1).

By construction we have
∏

s∈S�T ns =�. We may arrange the integers ns in increasing
order and write them as n, n + j1, . . . , n + jV for some integer n ∈ [x/ log x, x] and some
integers 1 ≤ j1 < j2 < · · · < jV ≤ L. It follows that n(n + jV )

∏V−1
i=1 (n + ji) is a square.
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We claim that setting J = jV gives rise to a J as in the statement of the theorem. First, note

that V − 1 ≥ L1−
√

2
2C −o(1) − 2 ≥ J1−c, the last inequality holding if we set C = √

2/c, say.
Since x ≤ n(log n)2 we see that L ≤ exp

(
(C + o(1))

√
log n log log n

)
, which implies log n ≥(

(1 − o(1))/(2C2)
)

((log L)2/log log L). Recalling our choice for C and that J ≤ L we find

n ≥ exp

(
c2

5

(log J)2

log log J

)
.

Since every large x gives rise to such a J, and since J ≥ L1/3, say, which tends to infinity
with x, we may take J to be arbitrarily large, as claimed.

We close this section with some comments on Theorem 1·3. In particular, it is worth
comparing Theorem 1·3 with more trivial considerations.

First, we note that it is easy to obtain points (x, y) on a hyperelliptic curve of large genus
if we allow x = 0 (so that y is large). Indeed, consider the hyperelliptic curve y2 = P(x) =
xg + D2, where g ≥ 5 is large and D is a large positive integer. The point (0,D) clearly lies on
the hyperelliptic curve and, since the height H of P is D2, we see the integral point (0,D) has
height 	 H1/2. We might expect that all integral points on a hyperelliptic curve y2 = P(x)
have height � HO(1), so this trivial construction is already fairly sharp.

Second, we consider hyperelliptic curves with integral points (x, y) where x �= 0. The
hyperelliptic curve y2 = P(x) = ∏J

i=1 (x + j), J ≥ 5, is similar to the curves constructed in
Theorem 1·3, and this curve has the integral point (−J, 0). The polynomial P has height H =
J!, so the point (−J, 0) on the curve has height 	 log H/ log log H for large J. In contrast,
Theorem 1·3 provides integral points (x, y) on curves y2 = P(x) with xy �= 0 and

x � (log H)
log log H

log log log H 	A (log H)A,

where H is the height of P.
It would be very interesting to construct hyperelliptic curves of large genus having integral

points (x, y) with x ≥ Hc, for c > 0 some fixed constant.

6. Lower bounds on tn: Proof of Theorem 1·4
If n is a large non-square integer, then by definition n(n + tn)

∏s
i=1 (n + ji) =�, where 1 ≤

j1 < · · · < js < tn are integers (obviously we must have s < tn). If tn is very small compared
to n, then the curve

y2 = x(x + J)
s∏

i=1

(x + ji) (2)

contains an integral point with x extremely large (here and throughout the section we write
J = tn in keeping with the notation of our other theorems). We rely on a uniform bound for
the height of integral points on hyperelliptic curves due to Bérczes, Evertse and Győry [1].
Their method utilises linear forms in logarithms.

We use different arguments depending on the size of s, with s as in (2). When s = 0 trivial
arguments suffice to bound the size of x. If s ≥ 1 but is smaller than a small power of J, then
we consider the hyperelliptic equation (2) directly and apply the result of Bérczes, Evertse
and Győry. When s is larger than a small power of J it is more efficient to extract a suitable
system of generalised Pell equations from (2) and bound the size of solutions to these Pell
equations. The coefficients of the Pell equations have size controlled by prime divisors ≤ J,
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and we can use some elementary arguments to find a system with coefficients that are smaller
than what a trivial bound would give. The final bound results from balancing the arguments
coming from small s and large s.

LEMMA 6·1 (Trivial case, s = 0). Let J ≥ 1 be an integer. If x and y are positive integers
with y2 = x(x + J), then x ≤ J2.

Proof. If x and x + J have greatest common divisor d ≥ 1, then d | J. We change variables
x = dz and find (y/d)2 = z(z + J/d), where (z, z + J/d) = 1. Then z = a2 and z + J/d = b2

for some positive integers b > a. Then

J/d = b2 − a2 = (b + a)(b − a) ≥ b + a,

so a, b ≤ J/d. Then z = a2 ≤ J2/d2 and x = dz ≤ J2/d ≤ J2.

The next lemma is the theorem of Bérczes, Evertse and Győry [1] in the special case we
require.

LEMMA 6·2 (Height of integral points). Let P(x) = ∑n
i=0 aixi ∈Z[x] with deg (P) ≥ 3 and

no repeated roots. Write maxi |ai| = H. If x and y are positive integers with y2 = P(x) then

max (log x, log y) ≤ (4n)212n4
H50n4

.

Proof. This is [1, Theorem 2·2] with K =Q and S equal to the infinite place of Q, where
b = 1 in [1, (2·5)].

The following lemma is useful when s is small.

LEMMA 6·3 (Bound on height when is small). Let J ≥ 2 be an integer, and let 1 ≤
j1 < · · · < js < J be integers, where s ≥ 1. If x and y are positive integers with y2 = x(x +
J)

∏s
i=1 (x + ji) then log x ≤ exp

(
O(s5 log J)

)
.

Proof. The integer polynomial x(x + J)
∏s

i=1 (x + ji) has degree s + 2 and clearly has no
repeated roots. The coefficients of the polynomial all have size ≤ Js+1, so by Lemma 6·2 we
see any solution to y2 = x(x + J)

∏s
i=1 (x + ji) satisfies

log x ≤ (
4(s + 2)

)212(s+2)4
(Js+1)50(s+2)4 ≤ exp

(
O(s5 log J)

)
.

When s is large we argue more carefully. We use the following lemma to control the
coefficients of an auxiliary hyperelliptic equation.

LEMMA 6·4 (Finding numbers with fewer prime factors). Let J be a sufficiently large
positive integer, and let b1, . . . , bt be positive integers all of whose prime factors are ≤ J. If
100 ≤ t ≤ J1/2/ log J and gcd(bi, bj) ≤ J for all i �= j, then there exist distinct bi, bj, bk with

ω(bi), ω(bj), ω(bk) � J

t log J
.

Proof. We observe that, by the prime number theorem, any distinct bi and bj have �
log J/ log log J ≤ log J prime factors in common, since gcd(bi, bj) ≤ J. Let si denote the set
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of prime factors of bi. Note that |si ∩ sj| ≤ log J for any i �= j, and that each si is contained in
the set of all primes ≤ J.

Without loss of generality we may assume |s1| ≥ |s2| ≥ · · · ≥ |st|. We claim that

|s1 ∪ · · · ∪ sr| ≥ r|sr| − r(r − 1)

2
log J (3)

for each 1 ≤ r ≤ t. This inequality trivially holds for r = 1, which provides the base case
for an inductive argument. Let A = s1 ∪ · · · ∪ sr, so that by inclusion-exclusion and the
induction hypothesis

|s1 ∪ · · · ∪ sr+1| ≥ r|sr| − r(r − 1)

2
log J + |sr+1| −

r∑
i=1

|si ∩ sr+1|.

Since |si ∩ sr+1| ≤ log J and |sr| ≥ |sr+1|, we obtain |A ∩ sr+1| ≥ (r + 1)|sr+1| −
(r(r + 1)/2) log J, as desired. This completes the proof of the claim.

Applying (3) yields |sr| ≤ (1/r)|s1 ∪ · · · ∪ sr| + (r − 1) log J/2 for any 1 ≤ r ≤ t. Since
each set si is contained in the set of all primes ≤ J we have |sr| � J/r log J + r log J, and
since r ≤ t ≤ J1/2/ log J we have |sr| � J/r log J. We finish the proof by taking i = t − 2, j =
t − 1, and k = t.

We are now ready to obtain a bound when s is large.

LEMMA 6·5 (Bound on height when is large). Let J be a sufficiently large positive integer,
and let 1 ≤ j1 < · · · < js < J be integers, where J1/100 ≤ s < J. If x and y are positive integers
with y2 = x(x + J)

∏s
i=1 (x + ji) then

log x ≤ exp

(
O

( J

t log J

))
,

where t is any integer satisfying J1/100 ≤ t ≤ min (s, J1/2/ log J).

Proof. We write j0 = 0 and js+1 = J, so that the hyperelliptic equation is y2 = ∏s+2
i=0 (x +

ji). If d | (x + ji) and d | (x + ji′) then d | |ji − ji′ | ≤ J, so the greatest common divisor of
any two distinct x + ji is ≤ J. We may therefore uniquely write x + ji = biz2

i , where bi is
squarefree and divisible only by primes ≤ J. Observe that gcd(bi, bi′) ≤ J for i �= i′.

Choose any t of the bi, with t as in statement of the lemma. By Lemma 6·4 there exist
three distinct bi, bk, and b� with ω(bi), ω(bk), ω(b�) � J/t log J. From the equations

x + ji = biz
2
i , x + jk = bkz2

k , x + j� = b�z2
�,

we deduce

(bkb�zkz�)2 = bkb�(x + jk)(x + j�) = bkb�(biz
2
i + jk − ji)(biz

2
i + j� − ji). (4)

The quartic polynomial bkb�(biz2
i + jk − ji)(biz2

i + j� − ji) has no repeated roots (since jk �=
j�) and has coefficients with absolute value

≤ J2bibkb� ≤ J2+ω(bi)+ω(bk)+ω(b�) ≤ exp
(
O (J/t)

)
.
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We apply Lemma 6·2 to the hyperelliptic equation (4) to find

log zi ≤ 16212·44
exp

(
O (J/t)

)50·44 � exp
(
O (J/t)

)
.

Since x + ji = biz2
i this implies log x ≤ exp(O (J/t)).

Proof of Theorem 1·4. Let n be a large non-square integer. Write J = tn so that by definition
we have y2 = n(n + J)

∏s
i=1 (n + ji) for some integers 1 ≤ ji < · · · < js < J and s ≥ 0. If s =

0 then Lemma 6·1 implies n ≤ J2. We may therefore assume s ≥ 1.
If J is bounded then by Lemma 6·2 we see n is effectively bounded in terms of J, so we

may assume J is sufficiently large. We define t = �(J/ log J)1/6�. If 1 ≤ s ≤ t then Lemma 6·3
gives

log n ≤ exp
(
O(t5 log J)

) = exp
(

O
(
J5/6(log J)1/6)).

If t ≤ s < J then applying Lemma 6·5 gives

log n ≤ exp
(
O(J/t)

) = exp
(

O
(
J5/6(log J)1/6)).

Therefore, in any case log n ≤ exp
(

O
(
J5/6(log J)1/6

))
, which implies log log n �

J5/6(log J)1/6. This last inequality implies in turn that J 	 (log log n)6/5(log log log n)−1/5.
One can likely obtain improvements to Theorem 1·4 by working with a version of

Lemma 6·2 which exploits particular features of the hyperelliptic equation (2).
We expect that one can obtain a stronger result than Theorem 1·4.

CONJECTURE 1. Let c ∈ (0, 1) be a fixed constant, and assume n is a non-square integer
which is sufficiently large in terms of c. Then tn ≥ (log n)1−c.
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