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ARE NON-COMMUTATIVE Lp SPACES REALLY 
NON-COMMUTATIVE ? 

A. KATAVOLOS 

1. The central objects in integration theory can be considered to be an 
abelian Von Neumann algebra, Lœ, of the measure space, together with 
a (not necessarily finite-valued) positive linear functional on it, the 
integral (see [10]). It is natural, therefore, to attempt to construct a 
"non-commutative" integration theory starting with a non-abelian Von 
Neumann algebra. Segal [9] and Dixmier [2] have developed such a 
theory, and constructed the Non-Commutative Lv spaces associated with 
a Von Neumann algebra M and a normal, faithful, semifinite trace (i.e. a 
unitarily invariant weight) / on M. They show that there exists a unique 
ultra-weakly dense *-ideal J of M such that / (extends to) a positive 
linear form on / . A generalisation of the Holder inequality then shows 
that, for 1 ^ p < oo, the function 

x ^ (t(\x\p))1/p 

is a norm on J, denoted by || • \\p. LP(M, t) denotes the completion of 
(J, || \\v) and its elements can be identified with (unbounded) closed 
"measurable" operators affiliated to M (see [8], [5]); Lœ(M, t) is identi
fied with M itself. Of course, if M is abelian, this construction yields what 
it ought to, namely the classical Lp spaces. The restriction that t be 
unitarily invariant is necessary for the Holder inequality to be valid, 
and hence for the construction of the Lp spaces to be possible. In the 
absence of unitary invariance, one has to resort to Tomita-Takesaki 
theory [12]. 

The problem now presenting itself is whether these non-commutative 
Lp spaces form a class of Banach spaces distinguishable from classical 
ones. More precisely, if 

T:Lp(M,t)-+Lp(X,m) 

(where (X, m) is a measure space) is an onto isometry, then does it follow 
that M is isomorphic, as a Von Neumann algebra, to Lm(X, m) ? The 
purpose of this note is to show that the answer is yes in the finite case 
(/(l) < oo ) when p > 2. The answer is obviously no in case p = 2, since 
Li{M, t) is a Hilbert space. But if the condition that T be positivity 
preserving is added to the hypotheses, then the answer is yes, even in the 
semifinite case (see [1]). 
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2. In order to solve the problem posed above, one needs to study 
isometries of non-commutative Lv spaces. For p = oo, these were classi
fied by Kadison [3]: Isometries of Von Neumann algebras are Jordan 
*-homomorphisms (i.e. linear mappings preserving squares and the 
involution) composed with left multiplication by a fixed unitary. In a 
previous paper [4] this result was partially extended to the case 
2 < p < oo. 

THEOREM 1. Let (Mt, tt) be two Von Neumann algebras equipped with 
faithful normal traces tt such that tt(l) = 1, and let p > 2. If 

T:Lp(Mltti)-+Lp(M2,t2) 

is a *-linear into isometry such that T(l) = 1, then: 
(i) T is a Jordan *-homomorphism 

(ii) T is positivity preserving 
(iii) T preserves || • \\2ni for n = 1, 2, . . . 00 
(iv) T is ultraweakly continuous 
(v) there exists a projection e 6 T(Mi) C\ T(M\)f such that 

X M T(x)e is a homomorphism 

x H-» T(x) (1 — e) is an anti-homomorphism. 

Here we shall need the following variant of this result: 

THEOREM 2. Let (Mif tt) be as in Theorem 1. Suppose that, for some 
n Ç N, n ^ 2, 

T:L2n(Mu h) -> L2n(M2, t2) 

is an into linear mapping such that T(l) = 1 and T maps normal elements 
to normal elements. If T is isometric on normal elements, then all the con
clusions of Theorem 1 follow. 

Proof. Let z G C a n d x <E Mi be normal. Then T(l + zx) = 1 + T{zx) 
is normal, and hence 

||1 + zTx\\2n = ||1 + zx\\2n. 

Now^ 

\\1 + zx\\2
2

n
n = hU(l + zx)*(l + zx))n) 

*=o j=o \KJ \Jf 

and similarly 

Hi + *r*||£ = ± ± (?) (*)iV/,((r*)**(r*)'). 
k=o j=o \K/ \Jf 
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Hence, comparing coefficients of zV, we find 

(1) h(x**x>) = h((Tx)*k(TxV) j , k = 1, 2, . . n. 

Putting j = k = 1 in (1), we get 

(2) ||x||2 = \\Tx\\2 V* 6 Mi normal. 

Replacing x by y + zx, with x, ;y commuting self-adjoint elements of Mi 
and z € C, we find, since y + zx (and hence also T(y + zx)) is normal, 

h((y + zx)*(y + zx)) = /2((2> + zTx)*(Ty + zTx)). 

Expanding and comparing coefficients of z, this yields 

(3) h(y*x) = h((Ty)*(Tx)). 

Now (1) with k = 1,7 = 2 gives 

/i(x*x2) = t2((Tx)*(Tx)2). 

Again replacing x by y + zx as above, expanding, and comparing 
coefficients of z2, we find 

(4) h(y*x*) = h({Ty)*{TxY). 

Replace x by x2 in (3) and compare the result with (4) to get 

tt{(Ty)*T(x*)) = h{{Ty)*{TxY) 

or, with y — x2, 

(5) /2(r(x2)*r(x2)) = /2(r(x2)*(rx)2). 
On the other hand, (1) with j = k = 2 gives 

/x(x*2x2) = t2((Tx)*2{Tx)2) 

while (4) with y = x2 gives 

*i(**2*2) = t2{T{x2)*(Tx)2) = ^2(r(x2)*(rx)2) 

(since the left hand side is real) 

= t2((Tx)*2T(x2)). 

Comparing the last two equalities, we find 

(6) /2((7x)*2(rx)2) = ;2((rx)*2r(x2)). 
Using (5) and (6) we can now conclude that 

||r(x2) - (rx)2||2
2 = /2(r(x2)*r(x2) - r(x2*(7x)2 

- (rx)*2r(x2) + (Tx)*2(Tx)2 = o 
and hence 

T(x2) = (7x)2 for each self-adjoint x £ Mi. 
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Therefore 

T(xy + yx) = (TxTy + TyTx) \/x, y £ Mi self-adjoint. 

Writing an arbitrary x £ Mi in the form x = Xi + i'x2 with x;- self-
adjoint, and using the previous equality, we have 

T(x2) = (Tx)2 Vx 6 M1 

and hence 

T(xy + 3a) = TxT^ + TyTx \/x, y G Mi. 

Using this and induction, it follows that 

(7) T(xn) = (Tx)n \/x G Mi, \/n £ N. 

Now let x f Mi be normal, and n 6 N. We have 

l|r*||2n
2* = /2(((r*)*(r*))») = *2((r*)**(7*)n) 

since Tx is normal 

= h{T{x«)*T{xn)) by (7) 

= \\T(x)%2 = ||*n||2* by (2) 

= *1 (**»*») = | | x | | 2 ^ . 

Since it is known that ||x|L = supw ||x||n (see e.g. [5]) it follows that 

\\Tx\\œ = \\x\\œ \/x G Mi normal. 

For arbitrary x = X\ + ix2 £ Mi with Xj self-adjoint 

||rx|U = ||rxi + iTx2\u s ll^xiiu + ||rx2|U 
= HxilU + ||x2||œ < oo 

(|| • ||œ denoting the operator norm). It follows that T(M\) C M2. 
We can now, adapting a proof of Kadison [3], show that T must be 

*-linear. 
Suppose, to the contrary, that 3x £ Mi self-adjoint with ||x|L = 1 

such that Tx = y + iz with y, z £ Mi self-adjoint. We may assume that 
the spectrum of z contains a k £ R with k > 0 (otherwise consider — x). 
Let n £ N be such that (1 + n~2)1/2 < 1 + k/n. Now x + in Ç Mi is 
normal, so that 

\\T(x + w ) | L = II* + in\\œ. 

We have: 

||x + in |L = (1 + »2)1/2 < » + * ^ II» + «IL 

^ lb + (̂z + »)IL = \\T(X + **OIL = Ik + H L 
a contradiction. 
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Let y £ Mi be such that y2 = x*x and y = y*. Then 

T(x*x) = T(y2) = (TyY è 0 

since Py is self-adjoint. This shows that T is positivity preserving. 
Now let x = Xi + ix2 £ M\ with #,- self-adjoint. We have 

||2"ff||2
2 = h(Txi2 + Tx2

2 + iTx{Tx2 — iTx2Tx\) 

= *2(r*i2 + r*2
2) = lir^Ha2 + l|rx2||2

2 = |M2
2 

+ IN|2
2 by (2) 

= l l * l | . a . 
Thus 

\\Tx\\i = ||x||2 V* G M L 

Further, \/n G N, 

l|rx||2w
2w = t%({(Tx)*(Tx))n) = /2((rx)((r*)*(r»)) i ,- i(^)*) 

which by centrality equals 

/2((rx)((r»*)(rx))w- i(^*)) = h(TxT((x*x)*-ix*)) 
which since T is a Jordan *-homomorphism (see [3]) equals 

(Tx*, Ti^x^x*)) where (a, b) = t2(a*b) 

= <x*, (x*x)n~1x*) 

since T is an L2-isometry 

= \\x\\u». 

Thus, V^ G Mi, 

HTxIU = SUpw ||7tf||2» = SUpn ||tf||2n = IMIco 

which shows (iii). 
The remaining conclusions of the Theorems now follow from results 

of [3] and [11] on the structure of Jordan *-homomorphisms between 
Von Neumann algebras. This concludes the proof of Theorem 3. 

3. The results of the previous paragraph do not answer the question 
raised in the Introduction, because of the restrictions that T(l) — 1, 
that T is *-linear (Theorem 1) and that p = 2n (Theorem 2). However, 
based on Theorem 2, we can show 

THEOREM 3. Let M be a Von Neumann algebra, t a faithful normal trace 
on M such that t(l) = 1, and (X,m) a finite measure space. For p > 2, 
suppose that 

T:Lp(M,t)-+Lp(X,m) 

is an into linear mapping, isometric on normal elements. Then M is w*-
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isomorphic to a Von Neumann subalgebra of L œ (Z , w), and hence is 
abelian. 

Proof, (i) Let x G M be a (self-adjoint) projection, y = 1 — x. We 
have 

II* + y\\vv + II* - y||p* - 2||x||/ - 2|M|/ 
= t(\x + y\*) + t{\x - y\») - 2t{\x\*) - 2t(\y\*) 

= t(x + y) + t(x + y) - 2t(x) - 2t(y) = 0 

since \x ± y\2 = (x ± y) (x ± y) = x + y, since xy = 0, so that \x ± y\ 
= x + y and so, since T is isometric on normal elements, 

||Tx + Ty\\p* +\\Tx- Ty\\/ - 2\\Tx\\/ - 2\\Ty\\/ = 0. 

Now Tx, Ty Ç Lp(X,m). Since p > 2, the quantity on the left hand side 
of the previous equality is well known to be always non-negative, and to 
vanish if and only if (Tx)(w). (Ty)(œ) = 0 for almost all co G X (see, 
e-g- [6])- Now for oo ^ X, 

(71) (a,) = ( r x ) ( « ) + ( ry) («) 

and thus, if (Tx)(u) ^ 0 , then (Ty)(u) = 0 , so that (71) (w) = 
(Tx)(co) T̂  0 and therefore co belongs to the support of 71 . Thus if 
x Ç M is a projection, the support of Tx is contained in the support 
of 71 . But an arbitrary x £ M may be approximated, in the Lp norm, 
by a finite linear combination of projections (this is a consequence 
of the spectral theorem and the fact that the Lp norm is smaller than the 
operator norm). Hence for each x G M, the support of Tx is contained 
in the support on.71. Restricting attention to that support, we see that 
there is no loss of generality in assuming that 71 is non-zero almost 
everywhere. 

Since Tl is an almost everywhere non-zero measurable function on 
(X, m), we may define the mapping 5 by 

Sx = Tx/Tl 

and the measure 

M(4) = ((71)*(71))* /2mC4) 

defined on measurable subsets of X, and /x will be equivalent to m. 
Thus Loo(X, /*) = Lœ(X, m). We have 

j\Sx\pdn = j\Tx\pdm = | |x | | / for normal x £ M. 

Thus 

S:Lp(M,t)->Lp(X, M) 

is isometric on normal elements, and 51 = 1. 
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Now let x Ç M be normal. Then Sx G LP(X, n) and hence may be 
regarded as a normal operator affiliated to L^X^n) — Lœ(X,m). In 
case p — 2n, with n £ N, n > 2, Theorem 2 is applicable. If not, we use 
the following result ([4]): 

PROPOSITION 4. Let (Mj} tj) be two Von Neumann algebras equipped with 
normal faithful traces tj such that tj(l) — 1, let p > 2, and let Xj 6 Lp 

(Mj, tj) be normal. If, for small z £ C, we have 

| |1 + ZXi\v = | |1 + ZX<i\v 

then 

( a ) | | x i | | 2 = ||x2 | |2 

and 

(b) | M 4 = ||x2||4. 

Returning to the proof of Theorem 3, if x G M is normal, then so is 
1 + zx, \/z £ C. Hence 

||1 + zx\\p = ||1 + zSx\\p 

and thus by Proposition 4, 

| |*||« = | | .SK| |4 . 

Thus Theorem 2 is again applicable, and shows that 5 is a Jordan 
*-homomorphism, and isometric in the operator norm, therefore injective. 
Since it is also ultra-weakly continuous, it is a w* isomorphism onto its 
range, a w*-subalgebra of Lœ(X, m). Finally, let x,y £ Mbe self-adjoint. 
Then i(xy — yx) G M is self-ad joint, and we have 

S((ixy — iyx)2) = (iSxSy — iSySx)2 

which by a well-known property of Jordan homomorphisms equals 0 
since Lœ(Xy m) is abelian. Therefore (ixy — iyx)2 = 0, so that ixy — 
iyx = 0, and hence M is abelian. This concludes the proof of Theorem 3. 

PROPOSITION 5. Let (M, t) and (X, m) be as in Theorem 3, let p G 
(1, oo ], p ?± 2 and let 

T:Lp(M,t)->Lp(X,m) 

be an onto linear isometry. Then M is w*-isomorphic to Lœ(X, m), and 
hence is abelian. 

Proof, lip > 2, this is just Theorem 3, since the mapping S constructed 
in the proof of that theorem maps M onto Lœ(X, m), if T is onto. If 
p Ç [1, 2), we use duality to reduce the problem to the case p > 2. 
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It is well-known (see, e.g. [2]) that the dual of LP(M, t) is Lq(M, t)9 

where 1/p + l/q = 1, so that q > 2. Since T is an onto isometry, the 
dual map: 

T*:LQ(X,rn)-+Lq(M,t) 

is also an onto isometry, and hence so is its inverse 

(T*)-i:LQ(M,t)->Lq(X,m) q > 2. 

We may thus apply Theorem 3 to (T*) - 1 . 

4. Concluding remarks. Theorem 3 and Proposition 5 show that 
Non-Commutative Lp spaces do form a class of Banach spaces distinct 
from classical ones, in the sense that they can never be isometric to sub-
spaces of classical Lp spaces. It is of interest to study the structure of the 
isometries of these spaces. More precisely, do these isometries preserve 
the structure of the underlying Von Neumann algebras? The problem 
here is to relax the restrictions of preservation of the involution and the 
identity in Theorem 1. This problem will be investigated in a future 
paper. 

C. A. McCarthy [7] has proved that in case M is the algebra of all 
bounded operators on an infinite dimensional Hilbert space, and t is the 
usual trace, then LP(M, t) can never be linearly and bicontinuously 
embedded in an ordinary Lv space. His method is completely different 
from ours, and does not seem to be readily extendible to the general case, 
as it is based on explicit calculations of various Lv norms using ortho-
normal bases of the underlying Hilbert space. 
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