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Abstract

In a decision problem with uncertainty a decision maker receives partial information
about the actual state via an information structure. After receiving a signal, he is
allowed to withdraw and gets zero profit. We say that one structure is better than
another when a withdrawal option exists if it may never happen that one structure
guarantees a positive profit while the other structure guarantees only zero profit. This
order between information structures is characterized in terms that are different from those
used by Blackwell’s comparison of experiments. We also treat the case of a malevolent
nature that chooses a state in an adverse manner. It turns out that Blackwell’s classical
characterization also holds in this case.
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1. Introduction

A decision problem is defined by a state space, a prior distribution, an action set, and a
utility function. Before taking an action, a decision maker (DM) obtains partial information
about the true state of nature through an information structure which randomly chooses a signal
according to a probability distribution that depends on the realized state. Comparing different
information structures (in the statistics literature information structures are commonly referred
to as statistical experiments) has been the subject of many papers (for a comprehensive survey
of this literature, see [3] or, alternatively, for a shorter review, see [2]).

We could compare the expected utility information structures yielded in a given decision
problem. This comparison, however, is too specific, as one information structure may be better
than another in a certain problem and worse in another. Blackwell [1] proposed a comparison
that takes into account the expected utility in all possible decision problems. According to
Blackwell, a structure is better than another if, whatever the decision problem, the expected
utility it guarantees is higher than that guaranteed by the other structure. He showed that
this partial order can be equivalently defined using three different means: stochastic matrices,
expectation of convex functions, and mean-preserving stochastic maps.

Although Blackwell’s partial order is quite intuitive, it is too restrictive. It requires solid
data about all possible decision problems. We propose another partial order over information
structures which requires less specific data and is defined on a wider range than Blackwell’s
order.
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This note deals with a situation where a DM is given the option to withdraw upon receiving
a signal without any cost (i.e. getting zero payoff). This option guarantees that the DM always
gets a nonnegative payoff. A structure is said to be better than another when a withdrawal option
exists if, for every decision problem, it yields a positive payoff whenever the other structure
does. In other words, when a structure is better than another when a withdrawal option exists,
a DM that chooses to use it will never regret doing so, as it will never result in a nonpositive
profit while the other structure results in a strictly positive profit.

There is ample psychological evidence for the existence of a discrepancy between the ways in
which human beings treat losses and gains. Tversky and Kahneman [4] called this phenomenon
the reflection effect. From this perspective we introduce the term ‘better than’, which reflects
a DM who primarily cares about the possibility of having regret for choosing an information
structure that resulted in a loss while another could entail a positive profit. Interestingly, our
ranking coincides with that of Blackwell when a withdrawal option does not exist (see Remark 1,
below). However, when a withdrawal option does exist, the ranking we introduce departs from
the expected utility maximization models.

In Section 3 we present a characterization of the partial order ‘being better when a withdrawal
option exists’ by means analogous to that of Blackwell’s characterization. It turns out that one
structure is better than another when a withdrawal option exists, if the latter results from the
former by a multiplication with a nonnegative matrix. In other words, the characterization is
similar to that of Blackwell with nonnegative matrices replacing stochastic matrices. In the
same vein, in our characterization, nonnegative convex functions replace convex functions,
and the equality of two measures is replaced here by another relation between measures and
absolute continuity.

In Section 4 we refer to a malevolent nature that chooses a state in an adverse manner. Under
these circumstances, we can define an order between information structures as follows: one
structure is better than another when nature is malevolent if, for every decision problem, when
nature chooses a state in order to minimize payoffs, the expected utility it guarantees is higher
than that guaranteed by the other. It is shown that this order coincides with ‘being better than’
defined by Blackwell.

2. Decision problems with incomplete information

Let K be a finite state set. The elements of K are called the states of nature. An information
structure provides an agent with partial information about the actual state. When the state of
nature is k, the agent receives a random signal s whose distribution depends on k. Formally, an
information structure is a pair (S, σ ), where S is a finite set of signals and σ = {σk,s}k∈K, s∈S

is a stochastic matrix. (A matrix (σk,s) is stochastic or substochastic if σk,s ≥ 0 for every k

and s and
∑

s σk,s = 1 or, respectively,
∑

s σk,s ≤ 1 for every k.) When the actual state is k,
the agent receives the signal s with probability σk,s .

Upon getting a signal s, the agent needs to choose an action from a finite set A. If a is the
action taken and k is the actual state, the agent receives the payoff u(k, a). The payoff matrix
corresponding to A, u, is the matrix (u(k, a))k,a that has |K| rows and |A| columns.

A decision problem is given by (p, A, u), where p ∈ �(K) is a probability distribution over
K , A is a finite set of actions, and u : K ×A → R is the utility function. Given an information
structure S = (S, σ ), the decision problem is described as follows: a state of nature k ∈ K

is randomly chosen according to p, then the agent receives a stochastic signal according to S.
Given the signal, the agent chooses an action a ∈ A and receives payoff u(k, a). Denote by
R(S; p, A, u) the best payoff the agent can receive in the decision problem.
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Definition 1. We say that S is better than T if, for every decision problem (p, A, u),
R(T ; p, A, u) > 0 implies that R(S; p, A, u) > 0.

Remark 1. (i) If R(S; p, A, u) ≥ R(T ; p, A, u) for every p, A, and u then S is better
than T . Conversely, assume that S is better than T . If R(S; p, A, u) < R(T ; p, A, u) for
some p, A, and u then define a new utility function u′ = u − R(S; p, A, u). We obtain
R(S; p, A, u′) = 0 < R(T ; p, A, u), which is a contradiction. Thus, saying that S is better
than T is equivalent to saying that R(S; p, A, u) ≥ R(T ; p, A, u) for every p, A, and u.

(ii) Let p0 be the uniform distribution over K . Note that if R(S; p0, A, u) ≥ R(T ; p0, A, u)

for every A and u then R(S; p, A, u) ≥ R(T ; p, A, u) for every p, A, and u. Indeed, fix p,
A, and u and define u0(k, a) = u(k, a)p(k)/p0(k). Then,

R(S; p, A, u) = R(S; p0, A, u0) ≥ R(T ; p0, A, u0) = R(T ; p, A, u).

Every information structure S = (S, σ ) induces a probability measure mσ over �(K) in the
following way. Consider the probability space K × S equipped with the probability measure
p(k, s) = (1/|K|)σk,s . Then the posterior distribution of k given s is a �(K)-valued random
variable defined over this probability space. We denote by mσ the distribution of this random
variable and call it the standard measure associated with S. This is a probability measure with
finite support. Its atoms are the normalized columns of σ .

A stochastic transformation over �(K) is a function T (x, E) defined for every x ∈ �(K)

and a Borel subset E of �(K) such that E �→ T (x, E) is a probability measure over �(K)

for every x ∈ �(K), and such that x �→ T (x, E) is measurable for every Borel subset E of
�(K). For every probability measure m over �(K), the function M(E) = ∫

T (x, E) dm(x)

is a probability measure over �(K). We denote M = T m. We call T mean preserving if∫
yT (x, dy) = x for every x ∈ �(K). The following theorem is due to Blackwell [1].

Theorem 1. ([1].) Let S = (S, σ ) and T = (T , τ ) be two information structures. Then the
following conditions are equivalent.

(a) For every p, A, and u, if R(T ; p, A, u) > 0 then R(S; p, A, u) > 0.

(b) There exists a stochastic matrix ε = {εs,t }s∈S, t∈T such that τ = σε, the product of the
matrices σ and ε.

(c) There exists a mean-preserving stochastic map T over �(K) such that T mτ = mσ .

(d) For every convex and continuous function h : �(K) → R, if
∫

h dmτ > 0 then∫
h dmσ > 0.

3. Decision problems with a withdrawal option

Assume that, after having received a signal, the agent is allowed to withdraw and to obtain
zero payoff. Formally, the decision problem (p, A, u) with a withdrawal option is the decision
problem (p, A0, u), where A0 = A ∪ {0} and u(k, 0) = 0 for every k ∈ K . Denote by
Rw(S; p, A, u) the agent’s optimal payoff, R(S; p, A0, u).

A DM who needs to choose between obtaining information via S or via T before knowing
the payoff function has no problem when S is better than T . However, the ‘better than’ order
is not complete and quite often neither S is better than T nor T is better than S. However,
suppose that a withdrawal option is available. Moreover, suppose that the only information
about the information structures is that whenever a positive profit is guaranteed when getting
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signals through T , it is always the case when getting signals through S. In the sense that it
may never happen that getting signals through T ensures a positive profit while getting signals
through S ensures only zero profit, i.e. S is better than T . This order is formally defined as
follows.

Definition 2. We say that S is better than T when a withdrawal option exists if, for every
decision problem (p, A, u), Rw(T ; p, A, u) > 0 implies that Rw(S; p, A, u) > 0.

It is clear that, when S is better than T when a withdrawal option exists, S is better than T .
Theorem 1 states that S is better than T if and only if there exists a stochastic matrix ε such that
τ = σε. In the following theorem the fact that S is better than T when a withdrawal option
exists is characterized by weaker conditions than that of Theorem 1. For instance, τ = σε,
where ε is merely a matrix whose entries are nonnegative.

Example 1. Let the number of states of nature be four, and let σ and τ be given by

σ =

⎛
⎜⎜⎜⎜⎝

1
2 0 1

2 0
1
2 0 0 1

2

0 1
2

1
2 0

0 1
2 0 1

2

⎞
⎟⎟⎟⎟⎠

and τ =

⎛
⎜⎜⎝

1 0
1 0
0 1
0 1

⎞
⎟⎟⎠ .

There exists no stochastic matrix ε such that τ = σε. However, denoting,

ε =

⎛
⎜⎜⎝

2 0
0 2
0 0
0 0

⎞
⎟⎟⎠ ,

we obtain τ = σε. Thus, there exists a matrix ε with nonnegative entries such that τ = σε

and, by Theorem 2, below, the information structure corresponding to σ is better than that
corresponding to τ when a withdrawal option exists.

Theorem 1(a) means that there exists a stochastic transformation (i.e. a linear transformation
that maps probability measures over S to probability measures over T ) which maps the kth row
of σ to the kth row of τ . Theorem 2, below, is analogous to Theorem 1. It characterizes when
one information structure is better than another when a withdrawal option exists. However,
instead of using terms of stochastic matrices, it uses terms of matrices that have nonnegative
entries.

A matrix ε = {εs,t }s∈S, t∈T with nonnegative entries induces a linear transformation that
maps measures (not necessarily probability) over S to measures over T . The fact that τ = σε,
with ε being a matrix with nonnegative entries, means that there exists such a transformation
that maps the kth row of σ (which is a probability measure of S) to the kth row of τ (a probability
measure over T ).

Remark 2. The appearance of the stochastic matrix ε in Theorem 1(b) has a natural probabilis-
tic interpretation: the agent receives a signal s ∈ S and then simulates a new signal t ∈ T (the
distribution of t is dictated by s). The more general notion of maps between measures cannot
be interpreted in such a way. In some sense, the equivalence between conditions (a) and (b) of
Theorem 2, below, establishes the operational meaning of these maps, since it characterizes the
cases when one information structure can be transformed to another in terms of the best payoff
each structure yields in games.
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Theorem 2. The following conditions are equivalent.

(a) S is better than T when a withdrawal option exists.

(b) There exists a matrix ε with nonnegative entries such that τ = σε.

(c) For every convex, continuous, and nonnegative function h : �(K) → R, if
∫

h dmτ > 0
then

∫
h dmσ > 0.

(d) There exists a mean-preserving stochastic map T over �(K) such that T mτ is absolutely
continuous with respect to mσ .

Proof. Firstly, we prove that condition (a) implies condition (b). Assume that there exists no
matrix ε with nonnegative entries such that τ = σε. In particular, there exists some column τ∗t

of τ that is not a conic combination of the columns of σ (a conic combination of vectors is a linear
combination with nonnegative coefficients). By the separation theorem, there exists a |K| × 1
matrix α such that 〈τ∗t , α〉 > 0 but 〈σε, α〉 ≤ 0 for every |S| × 1 matrix ε with nonnegative
coefficients (for matrices X and Y of the same dimension, we define 〈X, Y 〉 = tr(X�Y ) = the
sum of the entries along the main diagonal of the matrix X�Y ). (Note that the action set A

corresponding to α is a singleton.) Let p be the uniform distribution over K .
Consider the strategy (in the game played under τ ) that prescribes playing action a when

obtaining signal t , and withdrawing otherwise. The expected payoff of this strategy is
(
∑

k τkt /|K|)〈τ∗t , α〉 > 0. Thus, Rw(T ; p, A, u) > 0. However, the expected payoff of
any strategy γ is 〈σγ , α〉 ≤ 0. This means that Rw(S; p, A, u) = 0, which proves the desired
assertion.

Secondly, we prove that condition (c) implies condition (b). If there exists no matrix ε

with nonnegative entries such that τ = σε, let α be as in the previous paragraph and define
h(x) = max(xα, 0) (α is a |K|-dimensional vector and xα the inner product of x and α). The
function h is nonnegative and as a maximum of two linear functions, it is convex. Finally, the
properties of α imply that

∫
h dmτ > 0 but

∫
h dmσ = 0, contrary to condition (c).

Thirdly, we prove that condition (b) implies condition (a). Let A be the set of actions. A
strategy of the agent is given by a substochastic matrix γ = {γs,a}s∈S, a∈A: if the signal is s,
the player takes action a with probability γs,a . Assume, without loss of generality, that p is the
uniform distribution over K . Then the expected payoff to the player is given by (1/|K|)〈τγ , α〉,
where α is the payoff matrix corresponding to A and u. Assume that this is strictly greater
than 0. By assumption, τ = σε for some matrix ε with nonnegative entries. Thus, εγ = Cγ ′
for some substochastic matrix γ ′ and a constant C > 0. If the agent uses the strategy γ ′ in the
S-game then his payoff is

Rw(S; p, A, u) = 1

|K| 〈σγ ′, α〉 = 1

C|K| 〈τγ , α〉 = 1

C
Rw(T ; p, A, u) > 0.

Fourthly, we prove that condition (b) implies condition (d). Let x be an atom of µτ , which
corresponds to a column of τ . By condition (b), this column is a conic combination of some
columns of σ . It follows that x is in the convex hull of the atoms of mσ . Therefore, there exists
a probability measure, µx , over �(K) which is absolutely continuous with respect to mσ such
that x = ∫

y dµx . We let T (x, E) = µx(E) for every atom x of mτ and T (x, E) = δx(E) for
every x outside the support of mτ . Here, δx is Dirac’s atomic measure at x. Then T is mean
preserving and T τ is absolutely continuous with respect to σ .

Finally, we prove that condition (d) implies condition (c). Let h : �(K) → R be a convex,
continuous, and nonnegative function such that

∫
h dmτ > 0. Since h is convex and T is
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mean preserving, it follows that
∫

h dT mτ ≥ ∫
h dmτ > 0. Since h is nonnegative and T mτ

is absolutely continuous with respect to mσ , it follows that
∫

h dmσ > 0.

Remark 3. Unlike the case without a withdrawal option, Theorem 2(b) does not imply that,
for every decision problem (p, A, u), Rw(T ; p, A, u) ≥ Rw(S; p, A, u). This is equivalent
to R(T ; p, A, u) ≥ R(S; p, A, u) for every decision problem (p, A, u). Indeed, by adding a
large positive constant M to u, the withdrawal option becomes irrelevant. Therefore, if, for every
decision problem (p, A, u), Rw(T ; p, A, u) ≥ Rw(S; p, A, u), then R(T ; p, A, u + M) =
Rw(T ; p, A, u+M) ≥ Rw(S; p, A, u+M) = R(S; p, A, u+M) for every (p, A, u). This
implies that R(T ; p, A, u) ≥ R(S; p, A, u) for every (p, A, u).

Remark 4. It follows from Theorem 2 that S and T are equivalent when a withdrawal option
exists (that is, Rw(T ; p, A, u) > 0 is equivalent to Rw(S; p, A, u) > 0 for every p, A, and u)
if and only if the supports of the corresponding standard measures mσ and mτ have the same
convex hull.

4. A malevolent nature

In Section 3 we let the DM have an extra withdrawal option. In this section we let Nature
have an extra power. Consider a situation in which Nature chooses her state strategically to
minimize the agent payoff. An information structure S = (s, σ ) and a set of actions A induce
a zero-sum game played by the agent (the maximizer) and Nature (the minimizer). Nature
chooses a state k, then a signal s is chosen according to S, the agent is informed of it and
chooses an action a. The payoff is u(k, a). Let

Rm(S; A, u) = min
p∈�(K)

R(S; p, A, u)

be the value of this game. The value exists since each player has finitely many strategies. It
turns out that the partial order induced over information structures when Nature is malevolent
coincides with that of Theorem 1. Formally, we have the following theorem.

Theorem 3. Let S = (S, σ ) and T = (T , τ ) be two information structures. Then the following
conditions are equivalent.

(a) For every A, if Rm(T ; A, u) > 0 then Rm(S; A, u) > 0.

(b) There exists a stochastic matrix ε = {εs,t }s∈S, t∈T such that τ = σε.

Proof. First we prove that condition (b) implies condition (a). Suppose that τ = σε for a
stochastic matrix ε, and let A be a finite set of actions such that Rm(T ; A, u) > 0. If p ∈ �(K)

is an optimal strategy for Nature in the S-game then R(T ; p, A, u) ≥ Rm(T ; A, u) > 0. By
Theorem 1,

Rm(S; A, u) = R(S; p, A, u) > 0.

Now we prove that condition (a) implies condition (b). Assume that there exists no stochastic
matrix ε = {εs,t }s∈S, t∈T such that τ = σε. Let Q1 be the set of all matrices of the form σε,
where ε ranges over all stochastic matrices ε = {εs,t }s∈S, t∈T . Let Q2 be the set of all matrices
of the form δτ , where δ is a diagonal |K| × |K| matrix with nonnegative entries. Here Q1 is a
compact convex set and Q2 is a convex cone in the vector space of all |K| × |T | matrices.

First assume that Q1 ∩ Q2 
= ∅. Let δτ ∈ Q2 also belong to Q1. As any matrix in Q1, δτ

is stochastic. This may happen only if δ is the identity matrix, in which case τ ∈ Q1, that is,
τ = σε and condition (b) is satisfied.
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Now assume that Q1 ∩Q2 
= ∅. By the separation theorem, there exists a |K| × |T | matrix
α that strictly separates Q1 and Q2. That is, 〈α, x〉 < 0 for every x ∈ Q1 and 〈αx〉 > 0 for
every x ∈ Q2. Define A to be the set of the columns of α, and let u be the utility function that
turns α into the payoff matrix that corresponds to A and u.

First suppose that the game is played under S, and that Nature’s mixed strategy is uniform
over K . Let an agent’s strategy be given by a stochastic matrix ε = {εs,t }s∈S, t∈T (that is,
when he receives the signal s, he chooses the t-column of α with probability εs,t ). The agent’s
payoff is then (1/|K|)(σε)α, which is strictly smaller than 0 since σε ∈ Q1. It follows that
Rm(S; A) < 0.

Now suppose that the game is played under T , and that the agent’s strategy prescribes him
to play the signal he received. If Nature picks state k (it is a pure strategy of Nature) then the
payoff is 〈ηkτ , α〉, where ηk is the |K| × |K| matrix whose only nonzero entry is the (k, k)th
entry, which is 1. Since ηkτ ∈ Q2 for every k, it follows that the agent has a positive payoff
against every pure strategy of Nature and, therefore, against any of its mixed strategies. Thus,
Rm(T ; A) > 0.

5. Final remarks

5.1. Different withdrawal options

Assume that instead of a constant zero payoff, the withdrawal option yields a payoff
b ∈ R

K that depends on the realized state of nature. For every decision problem (p, A, u) and
information structure S, denote by Rw(S; p, A, u; b) the DM’s optimal payoff if he is allowed
the withdrawal option b. It turns out that Theorem 2 can be stated as follows.

Theorem 4. (a) There exists a matrix ε with nonnegative entries such that τ = σε. This
condition implies the following condition.

(b) For every decision problem (p, A, u), if Rw(T ; p, A, u; b) > R(T ; b) then Rw(S; p,

A, u; b) > R(S; b).

We do not know the analogous condition in the case of several withdrawal options.

5.2. General measures and signal spaces

The results above can be stated in more general terms, not necessarily with finite signal
spaces. In order to keep this note concise, we choose to omit the details.
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