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Abstract

There is a growing attention towards personalised digital health interventions such as health apps. These often depend
on the collection of sensitive personal data, which users generally have limited control over. This work explores
perspectives on data sharing and health apps in two different policy contexts, London and Hong Kong. Through
this study, our goal is to generate insight about what digital health futures should look like and what needs to be
done to achieve them. Using a survey based on a hypothetical health app, we considered a range of behavioural
influences on personal health data sharing with the Capability, Opportunity, Motivation model of Behaviour
(COM-B) to explore some of the key factors affecting the acceptability of data sharing. Results indicate that
willingness to use health apps is influenced by users’ data literacy and control, comfort with sharing health and
location data, existing health concerns, access to personalised health advice from a trusted source, and willingness
to provide data access to specific parties. Gender is a statistically significant factor, as men are more willing to use
health apps. Survey respondents in London are statistically more willing to use health apps than respondents in
Hong Kong. Finally, we propose several policy approaches to address these factors, which include the co-creation
of standards for using artificial intelligence (Al) to generate health advice, innovating app design and governance
models that allow users to carefully control their data, and addressing concerns of gender-specific privacy risks and
public trust in institutions dealing with data.

Policy Significance Statement

Personalised recommendations for goods and services are becoming increasingly common, but they depend on
the collection of potentially sensitive user data, which users generally have limited control over. Our study aims
to help develop better and more acceptable digital technology policies that improve health outcomes and public
trust while preserving user data privacy. Based on more than 2000 survey responses from Hong Kong and
London, we recommend persuading users about the benefits of data use for personalised health advice, enabling
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users to have granular control over data sharing, educating users on data use purposes and settings, designing new
social environments such as data trusts for collective data management, and co-creating clear guidelines for
diagnostic and generative artificial intelligence (AI) for public health purposes.

1. Introduction

Personalised digital health interventions are becoming increasingly viable. Health apps have been
developed for a wide range of health issues, from chronic illness (JA Lee et al., 2018) to mental health
(Alqgahtani et al., 2022) and air pollution exposure (Che et al., 2020). Preliminary results indicate that
personalisation can lead to improved health-related behaviours, although further research is needed to
verify these results (Tong et al., 2021). Meanwhile, Al is becoming cheaper, faster, and more accurate
(D Lee and Yoon, 2021; Alowais et al., 2023), demonstrating the potential to improve diagnoses and
facilitate the design of personalised treatments (Johnson et al., 2021).

Personalised digital healthcare is purported to bring a multitude of benefits. One is patient centricity
and empowerment—patients can conveniently receive tailored information and thereby become
empowered to make better decisions about their own health (Odone et al., 2019). For this reason,
personalisation appears to be a desired feature in health apps (Tang et al., 2015; Carter et al., 2018).
Another is that innovations in this area can create economic value in the form of investments, profits, and
job opportunities (Vicente et al., 2020). Additionally, if done carefully, the health data can be securely
managed while giving patients the autonomy to control how their data is used, leading to a trustworthy
data governance environment (Vicente et al., 2020). These benefits motivate the development of new
digital health interventions, as well as relevant policies.

However, personalisation requires the processing of health data. The sensitive and personal nature of
health data poses privacy risks that can cause widespread public concern, which, in turn, can lead to the
erosion of public trust in digital health interventions (Gille et al., 2022). This was demonstrated during
COVID-19 when governments around the world attempted to rollout digital health technologies, such as
contact tracing apps that collected users’ live location data in relation to landmarks or other users. This
sparked public debate over how personal data would be used or misused, as well as whether people would
be able to have agency in deciding whether to use the technologies (Budd et al., 2020; Li et al., 2022).
There is also growing wariness surrounding the role of research institutions and private companies in the
handling of health-related data (Aitken et al., 2018; Braunack-Mayer et al., 2021), which has made the
public more apprehensive towards sharing their health data with organisations (Middleton et al., 2020).
High-profile cases, such as genetic testing company 23andMe’s bankruptcy, have fuelled concerns about
the possible selling of consumer data without consent and the disproportionate consequences of misusing
said data on racial minorities (Kukutai, 2025), among other issues.

Failing to address these concerns could have severe implications not only on the adoption of new
interventions, but on broader societal issues as well, such as trust in government and in public health
activities (K Hogan et al., 2021). It is therefore important to study the factors that affect individuals’
willingness to share their personal data to receive personalised health recommendations.

2. Theoretical framework

Many health apps generate personalised advice to help individuals make behavioural changes to improve
their health and well-being in a variety of health areas, such as physical activity and fitness (Rabbi et al.,
2015; Laranjo et al., 2021), alcohol consumption (Attwood et al., 2017), or diabetes management (Quinn
et al,, 2011; Arsand et al., 2012). However, apps are only effective in preventing health crises or
supporting health condition management effectively, if users actively engage with apps and are willing
to share their personal data in order to receive personalised advice. Engagement with these apps and data
sharing are forms of human behaviour requiring behavioural changes (i.e., someone to do something
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differently, either by adopting or discontinuing a practice)—in this case, adopting the practice of using an
app to share their personal data and receive personalised advice. Given the potential benefits, healthcare
professionals, intervention designers, and policymakers are increasingly interested in supporting and
encouraging this behaviour. This requires a clear understanding of the factors that influence this
behaviour, specifically the factors that enable or hinder it (i.e., enablers and barriers). Identifying these
drivers of behaviour change is therefore essential to designing better health apps and overarching policies
that can encourage health-promoting behaviours.

One helpful framework to understand behaviour and its influences is the Capability, Opportunity,
Motivation model of Behaviour (COM-B) model, which has been widely used to identify the influencing
factors categorised as Capability, Opportunity, and Motivation. Positioned at the core of the Behaviour
Change Wheel (BCW) (Michie et al., 2011), COM-B highlights how behaviour is shaped by these
components, which are further divided into six sub-constructs. Capability includes both psychological
factors (e.g., knowledge, behavioural regulation) and physical factors (e.g., skills, strength). Opportunity
encompasses physical factors (e.g., resources, environment) and social factors (e.g., social norms,
support) that enable behaviour. Motivation involves reflective processes (e.g., attitudes, intentions,
identity) and automatic processes (e.g., emotions, habits). The COM-B model provides a comprehensive
framework for understanding behaviour and identifying factors that influence it. It also facilitates the
selection of evidence-based intervention strategies (West and Michie, 2020), which can be directly
aligned with intervention types proposed within the BCW. The BCW integrates multiple behaviour
change theories into a single model, offering a systematic approach for understanding behaviour and
designing interventions.

Several research gaps still exist in the behaviour change literature on using health apps. For one, while
theoretical frameworks for understanding behaviour and behaviour change like COM-B are increasingly
being applied to digital health services (e.g., Chen et al., 2017; Issom et al., 2020; Mauch et al., 2021;
Szinay et al., 2021), such studies are still scarce. For another, many studies focus on one specific,
sometimes niche context, whether a medical condition (e.g., less common chronic illnesses), temporal
(i.e., one moment in time), or political (e.g., focusing on one country), raising questions about whether
their results are generalisable or context-specific. There are even fewer studies that use the COM-B
framework to understand privacy-related behaviours (Gerber and Stoéver, 2023), especially how data
privacy beliefs could facilitate or inhibit the adoption of digital health tools (Bondaronek et al., 2022).
Further research is needed to understand how perceptions about data privacy can affect health apps’
engagement and effectiveness.

3. Research design and methodology

3.1. Study aims

In our study, we compared data collected from two different contexts to yield more comprehensive
insights on how data privacy concerns towards personalised health apps can affect user engagement. Our
study uses respiratory health as a context for participants to consider, since many of the epidemics and
pandemics that have drawn the most attention in recent decades (SARS, HIN1, MERS, and COVID-19)
have been respiratory illnesses. However, we also worded most of the questions to be about health apps in
general for the results to be broadly applicable to health apps. From a social standpoint, our study
compares two cities that adopt different perspectives on trust and stakeholder interactions in the data
governance space. Temporally, our study is situated in 2023 with declining public concerns towards
COVID-19.

3.2. Data collection and survey design

We designed an online survey with mostly closed multiple-choice questions to assess the effects of
various factors on citizens’ willingness to use personalised health apps. We mapped the three components
of behaviour in the COM-B model to data literacy (psychological capability), control over data sharing
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(physical opportunity), social pressure to use the app (social opportunity), emotional responses to health
and data issues (automatic motivation), and trust in entities and organisations regarding data governance
(reflective motivation).

The survey was conducted in both Hong Kong and London to allow for a comparative analysis. These
cities were chosen because they have similar populations of 7-9 million, with about 95% of adults in each
having access to smartphones and the Internet (Office for National Statistics, 202 1; Ofcom, 2024; Census
and Statistics Department, 2024a). However, there are also significant social and political differences that
may affect how health apps and data privacy risks are perceived across the two cities.

The survey was constructed in Qualtrics and distributed via two different online survey panels for
Hong Kong and London in November 2023. The Hong Kong Public Opinion Research Institute (PORI)
distributed the survey through its email list to its general population survey panel, whereas Dynata
recruited participants via an associated get-paid-to website and used Internet Protocol (IP) addresses to
ensure that the respondents were from London. Neither distributor had any involvement in the formu-
lation of survey questions. More than 1000 adult participants were recruited in each city to ensure a
sufficiently large sample. The survey was made available in the cities’ official languages, which were
English for both and Traditional Chinese for Hong Kong.

The survey landing page was an informed consent form. Only participants who checked the statement
indicating that they agreed to participate in the survey were allowed to continue the survey. Those who
consented were then randomly and equally assigned to one of two variants of a mock-up design for an
application that claims to generate personalised health advice based on the participant’s personal data. The
designs varied based on whether the putative app was presented as having been designed specifically for
COVID-19-related advice or respiratory health advice in general. Details on data processing were clearly
written in a simplified privacy policy, which participants were asked to read carefully.

After viewing the app mock-up, the participants were asked to rate their agreement with several closed
questions about their data literacy, respiratory health concerns, and trust in various entities. These
questions were constructed and categorised as either Capability, Opportunity, or Motivation questions,
and the answers were scored on a 5-point Likert scale from “Strongly Agree” to “Strongly Disagree”
where higher levels of disagreement were associated with a higher numerical value. Participants were then
asked to rate their willingness to use the application on another 5-point scale, from 1 representing
“Completely Willing” to 5 representing “Completely Unwilling.” Participants were also asked their age,
gender, and level of education as demographic variables. The way the Likert scale values were assigned to
the questions allowed participants to read the most positive options first while preserving the intuitive
interpretation of the linear regression results (i.e., positive coefficients indicate positive correlations
between variables). Finally, participants were given a large text box where they could voluntarily share
more detailed comments on the proposed app, or on health apps in general.

3.3. Data analysis methods

The COM-B variables and demographic variables were used as independent variables for linear
regression in Stata, with willingness to use the application as the outcome variable of interest (see the
Data Availability Statement for the Stata code). Demographic variables were included in the quantitative
analysis to account for between-group differences. Linear regression models were constructed for
bivariable analysis with only one independent variable, as well as multivariable analysis with the full
model and with only the statistically significant variables from the full model. As a sensitivity analysis,
ordinal logistic regressions were performed to check that the data was sufficiently well-behaved for the
linear regression models to return robust results.

Variance inflation factors (VIFs) were calculated for each linear regression model for the full, Hong
Kong, and London samples to test for multicollinearity. None of the VIFs for the variables were above
5, indicating that there were no significant multicollinearity issues that would warrant reconsidering the
validity of the model.
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4. Results
4.1. Sample characteristics

The total number of responses for the survey was 2774, with 1437 responses from Hong Kong and 1337
responses from London (see the Data Availability Statement for the aggregate data) (Li et al., 2025). In
each city, 49.1% of respondents were shown the putative app for COVID-19 management, whereas 50.9%
of respondents were shown the general respiratory health management version. After filtering out
duplicates, incompletes, and “speeders” (i.e., completing the survey in under 2 minutes), the number
of valid responses was reduced to 2362 (see Table 1 for the sample’s demographic profile). Forty more
participants were excluded from the quantitative analysis due to selecting “Other/Prefer not to say” for the
gender and education questions, resulting in 2322 data points for analysis (1308 from Hong Kong and

Table 1. Breakdown of the Hong Kong and London samples by age, gender, and education

Respondents (%)

Sample Hong Kong London Total
Age (years)
18-29 163 180 343
(6.9%) (7.6%) (14.5%)
30-39 401 258 659
(17.0%) (10.9%) (27.9%)
40-49 317 198 515
(13.4%) (8.4%) (21.8%)
50-59 256 164 420
(10.8%) (6.8%) (17.8%)
60+ 206 219 425
(8.7%) (9.3%) (18.0%)
Gender
Man 750 538 1288
(31.8%) (22.8%) (54.5%)
Woman 569 480 1049
(24.1%) (20.3%) (44.4%)
Other/Prefer not to answer” 24 1 25
(1.0%) (0.0%) (1.1%)
Highest level of education
Secondary school or lower 120 7 127
(5.1%) (0.3%) (5.4%)
Vocational qualification 231 124 355
(partial or complete) (9.8%) (5.2%) (15.0%)
Bachelor’s degree or higher 975 883 1858
(41.3%) 37.4%) (78.7%)
Other/Prefer not to answer” 17 5 22
(0.7%) (0.2%) (0.9%)
Total
1343 1019 2362
56.9% 43.1% 100.0%

“Excluded from regression analysis due to low incidence and ambiguity in categorisation.
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1014 from London). This response option was made available for inclusion purposes. However, because
the question does not distinguish between who falls under the “other” category and who preferred not to
disclose, and because the small number of responses affected the ability for the regression model to
converge, the 40 responses were excluded. It is worth noting that 35 of the 40 people who chose “other/
prefer not to say” for gender and education were from Hong Kong, suggesting that Hongkongers may be
more averse to provide personal data than Londoners.

The age, gender, and education profiles of the samples do not exactly correspond to the same profiles of
both cities’ populations. For example, more men than women in both Hong Kong and London
participated in the survey, despite Hong Kong having more women than men overall (Census and
Statistics Department, 2024b) and London having a balanced ratio of men to women (Greater London
Authority, 2019). To account for these demographic discrepancies, we incorporate the age, gender, and
education variables directly into our regression analyses.

4.2. Survey responses by question category

Participants in both cities generally expressed confidence in their psychological capability to understand
how their data is being used and what the associated privacy implications are. Nearly half of the
respondents in each city “somewhat agree[d]” with the competency statements. Londoners indicated a
higher level of confidence than Hongkongers, with over 35% of London respondents selecting the
“completely agree” option compared to 19% of Hong Kong respondents.

Similar response patterns were observed in the physical opportunity question about whether partici-
pants would be willing to share data with a health app if they could control how their data is used.
However, responses to social opportunities for app use were more mixed. Whereas over 60% of
Hongkongers and 76% of Londoners shared a positive inclination to disclose personal data through an
app when prompted by a healthcare provider, responses were polarised regarding sharing data through an
app to a government agency—over half of the Hong Kong respondents answered with “strongly disagree”
or “somewhat disagree,” whereas 69% of London responses indicated some level of agreement.
Responses were more spread out for the acquaintance variable, although Hong Kong responses still
skewed negatively while London responses skewed positively.

For automatic motivations, London and Hong Kong respondents shared a similarly high level of
concern towards respiratory infections and a similarly low level of worry towards potentially contracting
severe symptoms, although Hongkongers’ levels of concern were slightly lower than Londoners’.
However, the degree to which participants of both cities are comfortable with sharing data visibly
diverged. Only 7% of Hong Kong participants strongly agreed with being comfortable with sharing
health data with a health app, compared to over 23% of London participants. This difference became even
starker where over 40% of Hong Kong participants expressed strong discomfort towards sharing location
data, compared to less than 10% of London participants.

With respect to reflective motivations, we observed that personalisation was a driver of data sharing,
with over 60% of Hong Kong participants and over 75% of London participants somewhat or strongly
agreeing with the statement. We also determined that the source of personalised health advice mattered.
The question as to whether participants would trust health advice from a medical expert received similarly
positive responses. Meanwhile, the reception of Al-generated health advice (a proposed and increasingly
practicable alternative or complement to expert medical advice) was much more mixed, as about 80% of
the responses in both cities were split relatively evenly across the “somewhat agree/disagree” and “neither
agree nor disagree” options. Figure 1 illustrates the full sample comparison between trust in expert advice
and trust in Al-generated advice.

Regarding sector groups developing the app or having access to the app’s data, however, the only
commonality between cities is that respondents were more wary of private companies overall. Otherwise,
the Hong Kong respondents were much less likely to want to share their data across any of the scenarios,
with the most extreme cases being that over half of the respondents strongly disagreed with sharing data if
private companies and government agencies outside of public health could access it. About 60% of Hong
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Trust in medical advice

Somewhat disagree

Strongly disagree
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Percentage of respondents

Figure 1. Comparison of trust in medical advice provided by medical experts and generated by Al

Kong respondents also chose “strongly disagree” or “somewhat disagree” for sharing data with a
government health agency, regardless of whether the agency developed the app (see Figure 2[a]) or had
access to the data as a third party (see Figure 2[b]). In contrast, about 60% of London respondents chose
“strongly agree” or “somewhat agree” for the same questions. This indicates a much greater amount of
resistance to general government access to personal data in Hong Kong than in London, where hesitation
was only somewhat greater if the government agency accessing the data operated outside of public health.

Respondents’ willingness to use personalised health apps is shown in Figure 3, with “somewhat
willing” being the most popular response (790), followed by “not very willing” (631) and “very willing”
(400). However, splitting the responses by city, we can see that more than 80% of the “completely
unwilling” and “not very willing” responses are from Hong Kong, whereas the London responses account
for 67% and 82% of the “very willing” and “completely willing” answers, respectively.

4.3. General regression results

Several predictors have a statistically significant effect on willingness to use a health app across all three
regression models (see Table 2 with p-values below 0.05 in bold). One is the self-reported psychological
capability to understand how the health app uses the person’s data—a higher understanding by one point
on the Likert scale corresponded to an increase of 0.069 to 0.091 in willingness. The second is the
automatic emotional response of worrying about respiratory infections, as a greater concern towards
respiratory health would be a motivator for someone to use an app to manage or avoid them. This had a
slightly greater effect, with coefficients across models ranging from 0.092 to 0.113. Some reflective
motivations were also identified as factors in determining an individual’s willingness to use the app.
They included the willingness to share personal data to fulfil the purpose of personalised health advice,
and the extent to which an individual trusts the entity (i.e., medical experts or AI) who provides said
advice. Particularly, trust in health advice from a medical expert had the greatest consistent effect on
willingness across all three models, with a coefficient that was 2—3 times higher than that of trust in
health advice from Al.
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Figure 2. Willingness by city to share data with a health app if a government health agency (a) developed
the app or (b) had access to the data.
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Figure 3. Willingness to use personalised health advice according to each city.

The regression models also share some variables that were not statistically significant. One was the
psychological capability to understand the privacy risks associated with sharing personal data to an app.
The social opportunities where an organisation, whether a healthcare provider or a government agency,
demands for data to be shared also did not appear to affect how much a person would want to use a health
app. Who developed the app did not seem to change users’ preferences either, except in the case of private
developers in Hong Kong. Private companies being able to access the data did not have a statistically
significant effect. Finally, whether the app was for respiratory illness in general or for COVID-19
specifically did not appear to alter people’s willingness to use the app.

The full sample model identified a few additional statistically significant variables on participants’
willingness to use personalised health apps. These included knowing someone who shared data with the
app (social opportunity), being comfortable with sharing health and location data with the app (automatic
motivation), worrying about severe respiratory symptoms (automatic motivation), and willingness to
share data if any government agency can access it (reflective motivation). All these variables had a
positive correlation with willingness. Gender and education also had statistically significant effects on
participants’ willingness to use a health app—women were less likely to want to use the app than men, and
individuals with a Bachelor’s degree or above were less likely to want to use the app than their peers with
or without a high school diploma. The ordinal logistic regression model only returned a few differences at
the p-value thresholds of 0.05 and 0.001, with overlapping confidence intervals. This indicates a high
level of agreement between the two models, suggesting that linear regression is sufficiently robust for our
analysis.

4.4. City comparisons
In the overall model, there was a large effect between the two cities. Being a Londoner rather than a
Hongkonger corresponded to a 0.392-point increase in willingness to use a health app.

‘When comparing the two cities’ individual linear regression models, there are a few points in common.
The variables with statistically significant effects on willingness in both cities were understanding how
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Table 2. Linear regression results for Total, Hong Kong, and London samples, with willingness to use the app as the dependent variable

Total

Hong Kong

London

Variables Coef. 95% CI P-value

Coef.

95% CI

P-value

Coef.

95% CI P-value

COM-B Questions (coefficients given per 1 point change on Likert scale)
Psychological Capability
(C2.1) I understand how health apps use 0.075 0.041-0.108 <0.001
my data.
(C2.2) I understand the privacy risks 0.007 —0.026 — 0.040 0.662
associated with sharing my data with
health apps.
Physical Opportunity
(O1.1) I would be willing to share my 0.079  0.045-0.112 <0.001
personal data with a health app if the app
let me control exactly how it uses my
data.
Social Opportunity
(02.1) I would be more willing to share 0.030 —0.001 —-0.061 0.058
my personal data with a health app if
other people I know shared their data
with the app.
(02.2) I would be more willing to share  —0.018 —0.054 - 0.018 0.327
my personal data with a health app if my
healthcare provider (e.g., my GP/family
doctor) asked me to.
(02.3) I would be more willing to share 0.015 —0.022 -0.053 0.414
my personal data with a health app if a
government agency (e.g., [National
Health Service (NHS)] / Department of
Health) requested it.

0.069

0.016

0.033

0.063

—0.033

0.028

0.027-0.110

—0.024 - 0.055

—0.007 - 0.073

0.023-0.103

—0.076 — 0.010

—0.019-0.076

0.001

0.442

0.106

0.002

0.135

0.237

0.091

0.005

0.158

—0.024

0.016

—0.023

0.033-0.149 0.002

—0.053-0.063  0.868

0.097-0.218 < 0.001

—0.074-0.025 0.338

—0.048 — 0.080 0.624

—0.085-0.038  0.463

(Continued)

01-99°
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Table 2. Continued

Variables

Total

Hong Kong

London

Coef.

95% CI

P-value

Coef.

95% CI

P-value

Coef.

95% CI

P-value

Automatic Motivation

(M1.1) - I am generally comfortable with
sharing my personal health data with
health apps.

(M1.2) - I am generally comfortable with
sharing my location data with health
apps.

(M1.3) - I am worried about [COVID-19/
respiratory] infections.

(M1.4)- I fear that I am at higher risk of
having severe symptoms of [COVID-
19/respiratory illness] compared to
others.

Reflective Motivation

(M2.1) I would be willing to share my
personal data with an app if this data is
used to provide health
recommendations that are specific to
me.

(M2.2) I would trust personalised health
advice given to me through the app by a
medical expert.

(M2.3) I would trust personalised health
advice from the app that is generated by
artificial intelligence (AI).

(M2.4) I would be willing to share my
personal data with a health app if a
government health agency made the

app.

0.074

0.058

0.046

0.107

0.098

0.143

0.059

0.025

0.036-0.111

0.026-0.091

0.018-0.074

0.079-0.136

0.056-0.140

0.104-0.183

0.028-0.089

—0.019 - 0.069

<0.001

<0.001

0.001

<0.001

<0.001

<0.001

<0.001

0.263

0.043

0.091

0.059

0.113

0.074

0.112

0.042

—0.001

—0.004 - 0.090

0.050-0.132

0.019-0.100

0.074-0.152

0.022-0.126

0.062-0.161

0.001-0.083

—0.060 — 0.057

0.074

<0.001

0.004

<0.001

0.005

<0.001

0.044

0.966

0.133

—0.012

0.030

0.092

0.156

0.176

0.094

0.057

0.071-0.194

—0.063 — 0.040

—0.008 — 0.069

0.051-0.133

0.086-0.225

0.110-0.241

0.049-0.140

—0.009 -0.123

<0.001

0.656

0.122

<0.001

<0.001

<0.001

<0.001

0.092

(Continued)
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Table 2. Continued

Variables

Total

Hong Kong

London

Coef.

95% CI

P-value Coef. 95% CI P-value

Coef.

95% CI

P-value

(M2.5) I would be willing to share my
personal data with a health app if a
public research institution (e.g., a public
university) made the app.

(M2.6) I would be willing to share my
personal data with a health app if a
private company made the app.

(M2.7) I would be willing to share my
personal data with a health app if a
government health agency had access to
the data.

(M2.8) I would be willing to share my
personal data with a health app if a
government agency outside of public
health had access to the data.

(M2.9) I would be willing to share my
personal data with a health app if a
public research institution had access to
the data.

(M2.10) I would be willing to share my
personal data with a health app if a
private company had access to the data.

Type of Illness (General respiratory
illness versus COVID-19)

Demographic Variables

City (London versus Hong Kong)

Age (Years)

30-39 versus 18-29

0.027

0.027

0.085

0.061

0.039

—0.010

—0.007

0.392

0.003

—0.016 - 0.071

—0.013 - 0.066

0.040-0.130

0.022-0.100

—0.001 - 0.079

—0.051 - 0.031

—0.063 - 0.049

0.322-0.462

—0.086 — 0.093

0.218 0.024 —0.034 —0.081 0.417

0.183  0.06 0.005-0.114 0.032

<0.001 0.096 0.037-0.156 0.002

0.002 0.044 —0.009 —0.097 0.103

0.054 0.061 0.009-0.113 0.021

0.648 —0.036 —0.094 —0.022 0.228

0.803 —0.038 —0.114-0.038 0.324

<0.001 N/A

0942 0.047 —0.078 - 0.173 0.458

0.025

0.005

0.049

0.065

0.024

0.005

0.029

—0.012

—0.042 - 0.093

—0.051 - 0.062

—0.021 - 0.119

0.007-0.122

—0.038 - 0.086

—0.053 - 0.062

—0.053 -0.110

N/A

—0.138 - 0.115

0.457

0.859

0.168

0.027

0.446

0.873

0.493

0.857

(Continued)
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Table 2. Continued

Total Hong Kong London
Variables Coef. 95% CI P-value Coef. 95% CI P-value Coef. 95% CI P-value
40-49 versus 18-29 0.032 —0.063 - 0.126 0.508 0.144 0.012-0.276 0.032 —0.083 —0.219-0.052  0.228
50-59 versus 18-29 —0.018 —0.117 - 0.081 0.725 0.103 —0.036 —0.241 0.145 —0.115 —0.260-0.030 0.119
60+ versus 18-29 0.057 —0.045-0.158 0.274 0.254 0.104-0.403 <0.001 —0.063 —0.205-0.079 0.386
Gender(women versus men) —0.079 —0.135--0.022 0.007 —0.090 —0.166 — —0.013  0.022 —0.082 —0.168 —0.003  0.057
Highest Level of Education
Vocational training versus high school or —0.126 —0.265 - 0.013 0.075 —0.107 —0.258 — 0.044 0.164 —0.215 —0.719-0.289  0.403
lower
Bachelor’s or higher versus high school or —0.138 —0.265 - —0.011  0.033 —0.099 —0.233 —0.035 0.149 —0.265 —0.758 -0.229  0.293
lower
Observations 2322 1308 1014
R-squared 0.666 0.557 0.645

Note: Statistically significant p-values are in bold.
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apps use data (psychological capability), worrying about the risk of severe respiratory symptoms
(automatic motivation), personalisation as an app feature (reflective motivation), and trust in medical
advice from an expert or from Al (reflective motivation). As for the variables that were not statistically
significant, these were understanding privacy risks (psychological capability), having data requested by a
healthcare provider or government agency (social opportunity), having a government health agency or
public research institution as the app developer (reflective motivation), giving private companies access to
user data (reflective motivation), whether the hypothetical app was for general respiratory illness or
COVID-19 management, and the participant’s highest level of education.

There were also notable differences across the two models. The Hong Kong regression model indicated
that trust in general is crucial to the acceptance of personalised health apps. This included trust in
acquaintances (social opportunity), trust in private app developers (reflective motivation), and trust in
government health agencies’ or public research institutions’ access to data (reflective motivation). Three
other variables were statistically significant in the Hong Kong model but not in the London model—the first
was comfort with sharing location data (automatic motivation), the second was age, specifically with the 40—
49 and 60+ age groups indicating a higher level of willingness to use health apps than the 18-29 age group,
and the third was gender, although London’s p-value for gender was 0.057. Meanwhile, there were only
three variables that were statistically significant in London but not in Hong Kong. These were the options for
users to directly control how the app uses their data (physical opportunity), comfort with sharing health data
(automatic motivation), and willingness to share data if a government agency outside of public health had
access to the data (reflective motivation), although this variable had a p-value of 0.074 in Hong Kong.

As with the general model, the ordinal logistic regression models for the two cities returned broadly
similar results.

5. Discussion and policy implications
5.1. Implications for data governance

Our survey determined that tailored health advice is a desired feature of health apps, and that users are
often willing to share their personal data to receive it. Clearly communicating the potential benefits of data
sharing for personalised health advice and building digital health literacy (van Kessel et al., 2022) can help
increase public acceptance. This could involve highlighting success stories and emphasising the potential
for improved health outcomes.

However, the level of trust in the generated advice depends on whether the user trusts the provider,
whether a medical expert or Al. This highlights the need for policies that enhance transparency over data
and the algorithms that process it (Kernbach et al., 2022), or technical approaches that minimise the need
for data to be collected or stored. That would require governments and app developers to implement
robust data governance frameworks. Guidelines on data collection, usage, storage, and sharing are crucial,
including specifying the purpose of data collection, minimising data collected to only what is necessary,
and ensuring secure data storage (Morley et al., 2020; Nurgalieva et al., 2020). Open communication
about data practices, independent audits, and mechanisms for redress can also help build public trust in
institutions handling data (Budd et al., 2020; Li and Yarime, 2021).

Another consideration to make is that trust in health advice from a medical expert not only was higher
overall than trust in health advice from Al but it also had a more significant effect on willingness to use a
health app. As Al plays an increasingly important role in healthcare (Johnson et al., 2021), policies should
address public concerns about the use of Al in health. It would be crucial to establish reliable standards for
Al in health devices. Clear guidelines on the development, validation, and deployment of diagnostic and
generative Al are necessary to ensure the safety, effectiveness, and ethical use of novel health technologies
(Rajpurkar et al., 2022). Making Al algorithms more transparent and understandable to users (Shin, 2021)
could help build public trust in health advice made by Al. Al implementation also does not need to replace
medical experts in the health app space; instead, experts can be heavily involved in the design of
Al-powered health apps, use analytical Al as a supporting tool for diagnosis, and fact-check the advice
generated by large language models (Dzobo et al., 2020). Transparency on how medical experts utilise
Al-powered health apps could then facilitate trust-building with patients.
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It would also be important to empower users to better understand and control the use of their personal
data. As indicated by the linear regression analysis, willingness to use personalised health apps increases
with people’s perceived psychological capability to understand how health apps use their data, the
physical opportunity to control exactly how the app uses data, and the availability of data access only
to trusted parties. This could be achieved by designing public health apps with more granular data control
options (AR Lee et al., 2024). Users should have the ability to easily choose what data they share and with
whom, where possible. This could involve allowing users to opt in or out of specific data-sharing features
and providing clear explanations of the implications of their choices (e.g., Kaye et al., 2015; Baker et al.,
2016; Scocciaetal., 2020). It would also be helpful to explore innovative data governance models, such as
data trusts or data cooperatives, to balance individual control over data with the need for data sharing for
public health purposes (Hogan etal., 2022; Bartlett et al., 2024; Redhead et al., 2025). These models could
allow individuals to collectively determine how their data is used, while ensuring that data is available for
legitimate research and public health purposes.

At the same time, it is crucial to recognise that factors beyond app functionality and data governance
affect app uptake, including the underlying social and political context. As demonstrated by the survey
responses and the linear regression model, Hong Kong participants were much more hesitant than their
London counterparts to share data with a health app, especially if a government agency or private
company developed the app or had access to its data. This result is consistent with a greater level of
scepticism in Hong Kong towards data sharing in general, as discussed in the Sample Characteristics
section. Open-ended text responses from Hong Kong participants illustrated a scepticism regarding the
government’s ability to respect citizen’s privacy, lack of perceived punishment for companies or
(government) departments leaking personal data, and concern about the adequacy of current data
protection and privacy laws in Hong Kong with respect to technological advancements such as Big Data,
the Internet of Things, and Al. The Personal Data (Privacy) Ordinance in Hong Kong (Cap. 486)
(Ordinance) has not been fully updated to address challenges posed by these emerging digital
technologies. This could make people in Hong Kong concerned about the handling of their data and
the protection of their privacy. In addition, some respondents directly stated their concern that providing
personal data to the government might lead to direct surveillance, also seen in earlier work on the response
to government-created contact-tracing applications (Li et al., 2022). Given the political unrest and societal
concerns observed in the past years in Hong Kong, it would be particularly important to facilitate building
trust in those institutions involved in dealing with sensitive data in the public and private sectors (Cole and
Tran, 2022; Martin et al., 2022). The Privacy Commissioner for Personal Data (PCPD) could play a key
role to enhance transparency and accountability in data-handling practices (Chung and Zhu, 2024). As the
government is keen to promote open data and cross-boundary data flows within the Greater Bay Area
including cities in mainland China, public trust in data governance would be critical.

There was also a gendered difference in the results, as women were overall less willing than men to use
health apps. Women also tended to be less comfortable with sharing health or location data. Although we
may not be able to draw causal inferences from our quantitative data, we can turn to past studies on gender
and data privacy that corroborate our findings. For example, women may be more concerned about
protecting anonymity and intimacy in health apps (Wilkowska and Ziefle, 2012), and they may be less
willing to share sensitive information such as fingerprints and IP addresses than men (Serum et al., 2022).
The reasons for these behavioural differences may include higher levels of anxiety and risk aversion, as
well as greater perceived risks and harms posed online and offline (Tifferet, 2019). More efforts should be
made to understand how digital health technology regulations can be better designed and enforced to
address the privacy concerns of people of all genders. This is crucial when current health apps marketed
towards women may not satisfactorily comply with existing data privacy laws, leading to a gender gap in
data protection (Alfawzan et al., 2022; Hammond and Burdon, 2024).

5.2. Study strengths and limitations

Our study benefits from several research design features. Firstly, we utilised robust theoretical models
(COM-B and the BCW) to categorise barriers and enablers for behaviour change. The variables that we
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chose allowed for a holistic analysis of factors affecting app adoption, including app features, data
implications, health considerations, and demographics characteristics. To achieve generalisable results,
we recruited a sample with a representative sample size, and we accounted for age, gender, and education
in the statistical model to make up for differences in demographic features between the sample and
population. Our analysis also compares across two cities, London and Hong Kong, to consider social and
political effects on data governance. Finally, we designed strong methodological tools to analyse the
survey responses, including VIFs to account for multicollinearity and ordinal regression to confirm the
validity of the linear model.

Even with these design considerations, we must acknowledge the limitations of our study. For one,
participants were self-selected by opting into the study, especially the Hong Kong participants who
responded to an email invitation. We cannot eliminate the possibility that people with stronger, perhaps
more extreme opinions may have been more inclined to participate. For another, our study prompted
participants to consider their behaviour with a hypothetical app, but their responses may change if they
were to reflect on their behaviour when using a real app. Moreover, the quantitative results from our
survey do not provide in-depth insights, namely the underlying context as to why they chose specific
multiple-choice answers.

We aim to investigate this further by conducting a thorough qualitative analysis of the open-ended text
responses that we received at the end of the survey. We also encourage additional research on the social
and political effects on the acceptance of digital health interventions, especially on the variables that we
were unable to include in our model.

6. Conclusion

In this paper, we explored the drivers of health app acceptance in two cities. We determined that
understanding and control of data use, comfort with data sharing, health concerns, data sharing for
personalisation features, trust in medical advice, and acceptance of data access by different parties all had
positive correlations with willingness to use health apps. The demographic factors that affected app
acceptance were gender, with women being less likely to want to use health apps than men, and city, with
Hong Kong citizens being less likely to want to use health apps than London citizens. We then identified
app design and data governance considerations that can improve health outcomes while protecting users’
data privacy. These include persuading users about the benefits of data use for personalised health advice,
enabling users to have granular control over data sharing, educating users on how apps use data and how
data settings can be changed, and designing new social environments such as data trusts that can allow for
collective decision-making on data management.
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Stata.do file was written in Stata MP 18.5, so adjustments may need to be made if another version of Stata is being used.
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