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The Lehmer Polynomial and Pretzel Links
Eriko Hironaka

Abstract. In this paper we find a formula for the Alexander polynomial ∆p1,...,pk (x) of pretzel knots
and links with (p1, . . . , pk,−1) twists, where k is odd and p1, . . . , pk are positive integers. The poly-
nomial ∆2,3,7(x) is the well-known Lehmer polynomial, which is conjectured to have the smallest
Mahler measure among all monic integer polynomials. We confirm that ∆2,3,7(x) has the smallest
Mahler measure among the polynomials arising as∆p1,...,pk (x).

1 Introduction

The Lehmer polynomial, which is the monic, integer polynomial with smallest known
Mahler measure, appears in geometry in two seemingly different guises. One is as the
Alexander polynomial ∆2,3,7(x) for a (−2, 3, 7)-pretzel knot [Reid, p. 34], and an-
other is as the denominator of the growth function of the (2, 3, 7)-Coxeter reflection
group [Floy, p. 483]. We verify that∆2,3,7(x) is the polynomial with smallest Mahler
measure which arises among all polynomials∆p1,...,pk (x).

Throughout this paper, all polynomials will have integer coefficients. Given a
monic polynomial p(x), the product of the norms of the roots of p(x) outside the
unit circle is called the Mahler measure of p(x) (hence cyclotomic polynomials have
Mahler measure 1).

A palindromic polynomial is a polynomial p(x) whose coefficients are the same
read from the left or from the right. Thus, p(x) is palindromic if and only if it satisfies

p(x) = xd p

(
1

x

)
,

where d is the degree of p(x), or equivalently the roots of p(x) are closed under re-
ciprocals.

A long standing open question, posed by Lehmer [Leh, p. 476], is whether the
Mahler measure of an irreducible monic polynomial which is not cyclotomic can be
made arbitrarily close to 1. For non-palindromic irreducible monic polynomials, the
problem is solved: the polynomial

S(x) = x3 − x − 1

has the smallest Mahler measure [Smy], but palindromic polynomials can have small-
er Mahler measure.
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In [Leh], Lehmer made an extensive search finding the best (smallest Mahler mea-
sure) irreducible monic palindromic polynomials of degrees 2, 4, 6 and 8. (An odd
degree palindromic polynomial is necessarily reducible.) The 10-th degree polyno-
mial

L(x) = 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10

found by Lehmer in 1933 [Leh, p. 477] is still the best known for arbitrary degree.
Not surprisingly, L(x) and S(x) both have only one root outside the unit circle.

Let α > 1 be any real algebraic integer with all conjugates on or within the unit
circle. If at least one conjugate is on the unit circle, making the minimal polynomial
necessarily palindromic, then α is called a Salem number. Otherwise, α is called a PV
number. Thus, in addition to having smallest known Mahler measure, the Lehmer
polynomial is the minimal polynomial for the smallest known Salem number αL =
1.17628 . . . [Boyd], and the smallest PV-number,αS = 1.32472 . . . , is a root of S(x).

The first appearance of L(x) (actually L(−x)) in the literature may be in K. Rei-
demeister’s book Knot Theory [Reid, p. 34], where L(−x) is given as the Alexander
polynomial for the (−2, 3, 7)-pretzel knot. In his list of open problems [Kir, p. 340,
problem 5.12], R. Kirby also draws attention to the connection between the minimal-
ity question for Mahler measure and knot theory. Alexander polynomials of knots
and links are a natural place to look for examples pertaining to Lehmer’s question.
It is well known (see [Seif, p. 589, Satz 6], and [Lev]), that a polynomial ∆(x) is the
Alexander polynomial of a knot if and only if ∆(x) is palindromic and ∆(1) = ±1.
By choosing an orientation on the connected components of a link, one can also de-
fine a single variable Alexander polynomial for a link with more than one connected
component. This is the same as taking the usual multi-variable Alexander polyno-
mial for the link, and identifying all variables.

Instead of looking at all knot and link polynomials we will look at a particular
family. Consider the rational function

Rp1,...,pk (x) = (1− k) + x + (1− x)

(
1

1− xp1
+ · · · +

1

1− xpk

)
,

depending on k ≥ 1 positive integers p1, . . . , pk. It is not hard to check that this
function satisfies:

Rp1,...,pk (x) = xRp1,...,pk

(
1

x

)
.

Thus, multiplying by [p1] · · · [pk] gives the palindromic polynomial

Qp1,...,pk (x) = (x − k + 1)[p1][p2] · · · [pk] +
k∑

i=1

[p1] · · · [̂pi] · · · [pk],

where for any positive integer n, we define [n] to be

[n] = 1 + x + x2 + · · · + xn−1.

One can observe the following by a simple calculation.
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Lemma 1.1 The Lehmer polynomial L(x) is equal to Q2,3,7(−x).

We prove the following Theorem in Section 2.

Theorem 1.2 For p1, . . . , pk an odd number of positive integers, the Alexander poly-
nomial of the (p1, . . . , pk,−1)-pretzel link equals Qp1,...,pk (−x).

Note (see Section 2), that the (−2, 3, 7)-pretzel knot is equivalent to the
(2, 3, 7,−1)-pretzel knot. Furthermore, all the best minimal polynomials of low de-
gree found by Lehmer occur as irreducible factors of Qp1,...,pk (x), for some p1, . . . , pk

(see Section 3).

Theorem 1.3 Among the polynomials of the form Qp1,...,pk (x), with a Salem factor,
L(x) has the smallest Mahler measure.

The family Qp1,...,pk (x) is related to the growth functions of planar Coxeter groups.
Consider the group

〈g1, . . . , gk : (g1g2)p1 , . . . , (gkg1)pk , g2
1 , . . . , g

2
k 〉.

The generators g1, . . . , gk can be represented as the reflections through sides of a com-
pact k-sided polygon with angles

π

pi
, i = 1, . . . , k,

in either the hyperbolic plane, Euclidean plane, or sphere, according to whether

χ(p1, . . . , pk) =
1

p1
+ · · · +

1

pk
− k + 2

the orbifold Euler characteristic of the quotient surface by the Coxeter group, is less
than, equal to, or greater than zero.

Cannon and Wagreich [C-W, Prop. 3.1] and Floyd and Plotnick [F-P, Theo-
rem 5.1] show that the growth function of the planar Coxeter groups have the fol-
lowing form (see also [Bour]).

Theorem 1.4 (Floyd-Plotnick [F-P]) The growth function of the planar Coxeter
group corresponding to the integers p1, . . . , pk with respect to the standard generators
equals

x + 1

Rp1,...,pk (x)
,

and its denominator Qp1,...,pk (x) is a product of cyclotomic polynomials and at most one
Salem polynomial. The Salem polynomial occurs if and only if χ(p1, . . . , pk) < 0.

Theorem 1.3 thus has the following corollary.
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· · ·

Figure 1: (p1, . . . , pk)-pretzel link

Corollary 1.5 Lehmer’s Salem numberαL is the smallest number arising as the growth
rate of a hyperbolic polygonal reflection group.

There is a natural relation between (−1, p1, . . . , pk)-pretzel knots, where p1, . . . ,
pk can be positive or negative, and the |p1|, . . . , |pk|-orbifold 2-sphere, which in-
dicates a partial relation between Q and ∆. The double branched covering of the
3-sphere branched along the (−1, p1, . . . , pk) pretzel knot, where p1, . . . , pk need
not be positive, fibers over the |p1|, . . . , |pk| orbifold 2-sphere (cf. [Kaw].) Thus, the
fundamental group of the complement of the pretzel link and the fundamental group
of the orbifold are closely related.

This only partially explains the relation between the polynomials, however, since
calculations show that the Alexander polynomial, and in particular its Mahler mea-
sure, is not preserved when a positively twisted strand is exchanged for a negatively
twisted one of the same order. The seeming coincidence suggests that there may be a
bound on the growth rate of the fundamental group of a knot or link complement in
terms of the Mahler measure of the Alexander polynomial. This is a topic for further
research, and will not be treated in this paper.

Acknowledgements The author thanks D. Lind for suggesting the problem of study-
ing the Lehmer question for Alexander polynomials of pretzel knots, and D. Boyd and
I. Vardi for useful comments. The author was supported by the Institutes des Hautes
Études Scientifiques while this paper was written.

2 Pretzel Knots

A (p1, . . . , pk)-pretzel link Lp1,...,pk is a union of k-pairs of strands twisted p1, . . . , pk

times and attached along the tops and bottoms as in Figure 1.
The twists are oriented according to whether pi is positive or negative. For example,
in Figure 1, p1 and pk are positive integers, while p2 is a negative integer.

The Alexander polynomial for Lp1,...,pk , when p1, . . . , pk are odd integers, is well
known (see, for example, [Lic, p. 57]). When they are allowed to be even, the link
may have several components: if the number of even twists pi is d > 2, then the
number of components of the knot is d − 1, otherwise the number of components
is 1.
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Figure 2: Seifert surface for the (2, 3, 7,−1)-pretzel knot

Figure 3: Generating loops for the (2, 3, 7,−1)-pretzel knot

Proof of Theorem 1.2 We compute the Alexander polynomial by a standard method
involving Seifert matrices (see, for example, [Rolf, Chapter 5]) Figure 2 is a (−2, 3, 7)-
pretzel knot (drawn as the equivalent (2, 3, 7,−1)-pretzel knot) with an oriented
Seifert surface shaded in.

Assume k is odd, let p1, . . . , pk be positive integers, and consider the (p1, . . . , pk,
−1)-pretzel link. In order to define a single variable Alexander polynomial, we need
to choose orientations on the components of the link. Our choice will be to orient
the link so that the top strand connecting the twist pi to pi+1 points right if i is even,
left if i is odd, and the bottom strand points left if i is even, and right if i is odd. Thus,
we get an oriented Seifert surface for the link with disks spanning pairs of twists and
the strands that connect them as in Figure 2.

The Seifert matrix of an oriented link is given by choosing generating loops for the
first homology of the Seifert surface, and seeing how their positive pushouts into the
complement of the Seifert surface in the three sphere S3 intersect with the original
loops. This is seen in Figure 2, where the original loops are drawn with a dashed line,
and the pushouts are drawn with a solid line.
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Thus, for a (p1, . . . , pk,−1)-pretzel link K, we obtain a p1 + · · · + pk − k + 1
dimensional square Seifert matrix of the form

SK =




Ap1 0
Ap2

· · ·
Apk 0

1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0 1




where Ap is the p − 1× p − 1 matrix

Ap =




1 −1 0 · · · 0
0 1 −1 0 · · · 0

· · ·
0 · · · 0 1 −1
0 · · · 0 1


 .

If L is an oriented link and SL is its Seifert matrix, then the Alexander polynomial
∆(x) is the characteristic polynomial of the Alexander matrix AL given by the matrix
product

AL = SL × Transpose(S−1
L ).

The orientation on the link determines an infinite cyclic covering of the link comple-
ment in S3. The matrix AL represents the action of a generator of the covering group
on the first homology considered as a module over the ring of Laurent polynomials.

In our situation, the matrix AL is of the form

AL =




Bp1

0

0
−1

. . .
...

Bpk

0

0
−1

1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0 1 0 · · · 0 1− k




where Bp is the p − 1× p − 1 matrix

Bp =




0 −1 0 · · · 0
0 0 −1 0 · · · 0

· · ·
0 · · · 0 −1
1 · · · 1 1


 .
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Let N = p1 + · · ·+ pk− k + 1. If one identifies CN with the linear subspace V ⊂ CN+k

given by the image of the map

(X1,1, . . . ,X1,p1−1, . . . ,Xk,1, . . . ,Xk,pk−1,Y )


→ (X1,1, . . . ,X1,p1−1,−X1,1 − · · · − X1,p1−1, . . . ,

Xk,1, . . . ,Xk,pk−1,−Xk,1 − · · · − Xk,pk−1,Y ),

then AK is equivalent to the restriction to V of the matrix −EK , where EK is given
by:

EK =




C p1

0

0
1

. . .
...

C pk

0

0
1

1 − 1 0 · · · 0 1 − 1 0 · · · 0 · · · 1 − 1 0 · · · 0 1 − 1 0 · · · 0 k− 1




where C p is the p × p permutation matrix

C p =




0 1 0 · · · 0
0 0 1 0 · · · 0

· · ·
0 · · · 0 1
1 0 · · · 0 0


 .

The eigenvalues of EK are thus the negatives of the eigenvalues of AK , together with
1 counted with multiplicity k. The characteristic polynomial of EK is

ChEK (x) = (xp1 − 1) · · · (xpk − 1)(x − k + 1)

+ (x − 1)
k∑

i=1

(xp1 − 1) · · · ̂(xpi − 1) · · · (xpk − 1).

(This can be seen, for example, by cofactor expansion with respect to the last col-
umn.) Dividing by (x − 1)k, gives

ChEK (x)

(x − 1)k
= [p1] · · · [pk](x − k + 1) +

k∑
i=1

[p1] · · · [̂pi] · · · [pk]

= Qp1...,pk (x).
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The claim follows.

By definition, a pretzel link depends only on the cyclic ordering of its twists. The-
orem 1.2 implies the following stronger statement.

Corollary 2.1 For k odd, the Alexander polynomial for the (p1, . . . , pk,−1)-pretzel
link does not depend on the ordering of p1, . . . , pk.

Example Theorem 1.2 implies that for the (p, q,−2) pretzel knot, where p, q are
odd integers, the Alexander polynomial is given by

∆p,q,2(x) =
1 + 2x + x1+p + x1+q − x3 − xp+q + xp+2 + xq+2 + 2xp+q+2 + x3+p+q

(1 + x)3
.

3 Minimality of L(x)

In this section, we give some properties of the functions Rp1,...,pk (x) and Qp1,...,pk (x),
and prove Theorem 1.3.

First we verify that Lehmer’s examples of degrees 2, 4, 6, 8 (see [Leh]), are all
factors of Qp1,...,pk (x), for some p1, . . . , pk:

Q2,2,2,2,2(x) = (1− 3x + x2)(1 + x)3

Q4,4,4(x) = (1− x − x2 − x3 + x4)(1 + x2)2(1 + x)2

Q3,3,4(x) = (1− x2 − x3 − x4 + x6)(1 + x + x2)

Q2,4,5(x) = 1− x3 − x4 − x5 + x8.

The Lehmer polynomial L(x) equals Q2,3,7(x).
The real roots of Qp1,...,pk (x) can be described in terms of the value

χ(p1, . . . , pk) = Rp1,...,pk (1)

=
1

p1
+ · · · +

1

pk
− k + 2

as seen in the following proposition.

Lemma 3.1 The triple (2, 3, 7) gives the maximum negative value of

χ(p1, . . . , pk) = (2− k) +
1

p1
+ · · · +

1

pk

for any p1, . . . , pk ≥ 2.
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Proof For k ≥ 5, we have

2− k +
1

p1
+ · · · +

1

pk
≤ 2− k +

k

2
= 2−

k

2
≤ −

1

2
.

For k = 3 and k = 4, the best possible are

χ(2, 3, 7) = −
1

42

and

χ(2, 2, 2, 3) = −
1

6
,

respectively. Thus, χ(2, 3, 7) is the largest possible.

The following two Lemmas follow from Theorem 1.4, but since they can be simply
verified, we include proofs here.

Lemma 3.2 If

χ(p1, . . . , pk) ≥ 0,

then Qp1,...,pk is a product of cyclotomic polynomials.

Proof When k = 1, 2, we have

Qp(x) = 1 + x + · · · + xp−1

and

Qp,q(x) = 1 + x + · · · + xp+q−1

so the Mahler measure is always one.
For any k, we have

χ(1, p2, . . . , pk) = χ(p2, . . . , pk)

so we can assume that all the pi are greater than 1. If k ≥ 4, then we have

1

p1
+ · · · +

1

pk
≤

k

2
≤ k− 2,

with equality only for (2, 2, 2, 2). Let Φn(x) denote the n-th cyclotomic polynomial,
that is, the minimal polynomial for the n-th root of unity. If k = 3 or 4, the only
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possibilities are

Q2,2,n(x) = (1 + xn+1)(1 + x)

Q2,3,3(x) = (1− x2 + x4)(1 + x + x2) = Φ12(x)Φ(x)

Q2,3,4(x) = (1− x3 + x6)(1 + x) = Φ18(x)Φ2(x)

Q2,3,5(x) = 1 + x − x3 − x4 − x5 + x7 + x8 = Φ30(x)

Q2,3,6(x) = (1 + x)(1− x)2(1 + x + x2)(1 + x + x2 + x3 + x4)

Q2,4,4(x) = (x − 1)2(1 + x)2(1 + x2)(1 + x + x2)

Q3,3,3(x) = (x − 1)2(1 + x)(1 + x + x2)2

Q2,2,2,2(x) = (x − 1)2(x + 1)3.

In all the above examples, the Mahler measure is one.

Lemma 3.3 If
χ(p1, . . . , pk) < 0.

Then Qp1,...,pk (x) has exactly one real root greater than 1.

Proof Since
Rp1,...,pk (0) = 1

and
Rp1,...,pk (1) = χ(p1, . . . , pk) < 0,

the function Rp1,...,pk must have a real root strictly between 0 and 1.
For all integers p > 1,

d

dx

1− x

1− xp
=

(1− p)xp + pxp−1 − 1

(x − 1)2p
.

On the interval [0, 1], the numerator is increasing and the denominator is decreasing:

d

dx
(1− p)xp + pxp−1 − 1 = p(p − 1)xp−2(1− x) > 0,

and
d

dx
(x − 1)2p = 2p(x − 1)2p−1 < 0.

Therefore, Rp1,...,pk (x) is strictly decreasing and concave up on [0, 1], and the root is
unique.

Since Qp1,...,pk (x) is palindromic, it follows that Rp1,...,pk , and hence Qp1,...,pk has
exactly one root greater than 1.

We are now ready to prove the main result of this section.
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Proof of Theorem 1.3 Observe that for x > 0 (and any k), the values of Rp1,...,pk (x)
strictly decrease if one increases any of the p1, . . . , pk.

By Lemma 3.2 and 3.3, we know that Qp1,...,pk (x) has a single root αp1,...,pk outside
the unit circle if and only if χ(p1, . . . , pk) < 0. In the proof of Lemma 3.3 it was
shown that the graph of Rp1,...,pk (x) is concave up on [0, 1]. Thus, the zero x0 ∈
[0, 1] of Rp1,...,pk (x) is strictly less than the x-intercept of the line joining (0, 1) and(

1,Rp1,...,pk (1)
)

, giving

x0 <
1

1− χ(p1, . . . , pk)
,

and

αp1,...,pk =
1

x0
> 1− χ(p1, . . . , pk).

When k ≥ 4, Lemma 3.1 implies that aside from the case (2, 2, 2, 3) we have

αp1,...,pk > 1− χ(2, 2, 2, 4) =
5

4
= 1.25 > α2,3,7.

The remaining case (2, 2, 2, 3), for k = 4, can be checked by computer:

α2,2,2,3 = 1.72208 · · · > α2,3,7,

as can the minimal cases for k = 3, which finishes the proof:

α3,3,4 = 1.40127 · · · > α2,3,7

α2,4,5 = 1.28064 · · · > α2,3,7.
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[Boyd] D. W. Boyd, Speculations concerning the range of Mahler’s measure. Canad. Math. Bull. (4)

24(1981), 453–469.
[C-W] J. Cannon and P. Wagreich, Growth functions of surface groups. Math. Ann. 293(1992), 239–257.
[Floy] W. J. Floyd, Growth of planar Coxeter groups, P.V. numbers, and Salem numbers. Math. Ann.

293(1992), 475–483.
[F-P] W. J. Floyd and S. P. Plotnick, Symmetries of planar growth functions of Coxeter groups. Invent.

Math. 93(1988), 501–543.
[Kaw] A. Kawauchi, A Survey of Knot Theory. Birkhäuser-Verlag, Basel, 1996.
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