
Theoretical Approaches to Multiple 
Stars and Their Formation 

https://doi.org/10.1017/S0252921100008678 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100008678


RevMexAA (Serie de Conferencias), 21, 147-151 (2004) 

THREE-BODY PROBLEM AND MULTIPLE STELLAR SYSTEMS 

M. Valtonen1 

RESUMEN 

Las interacciones de tres cuerpos ocurren en cumulos estelares, donde se dan encuentros entre binarias y estrellas 
sencillas formando temporalmente sistemas triples. Las triples son generalemente inestables y se fragmentan en 
una nueva binaria y una estrella sencilla. La simple dispersion de una estrella sencilla por una binaria tambien 
ocurre. Ambos procesos pueden ser estudiados con la teori'a estadistica del rompimiento y la dispersion de tres 
cuerpos. En este trabajo, aplicamos la teori'a a las estrellas binarias, suponiendo que estas han participado en 
procesos de tres cuerpos. Se discuten las distribuciones de los periodos, las excentricidades y los cocientes de 
masa de las binarias obtenidos, y se comparan con muestras observacionales. 

ABSTRACT 

Three-body processes go on in star clusters where binary stars meet single stars and frequently form temporary 
triple systems. The triples are typically unstable and break up into a new binary and a single star. Also 
a simple scattering of a single star from a binary may take place. Both processes can be handled by the 
statistical theories of three-body break-up and scattering. Here we apply the theory to binary stars, assuming 
that binaries have been involved in the three-body process. The distributions of binary periods, eccentricities 
and mass ratios are discussed from this point of view and compared with observational samples. 
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1. INTRODUCTION 

Numerical simulations of star cluster evolution 
have shown that three-body interactions take place 
among cluster stars frequently. In the three-body 
break-up a binary is often expelled out of the clus­
ter and it becomes a binary in the general field of 
stars of the Galaxy. There may still be further en­
counters with other stars later on, but on the whole 
the "hard" binaries probably have their properties 
more or less frozen since their escape from the star 
cluster of their origin. We will now study what kind 
of binary star population we expect from this pro­
cess and how it compares with the observed binaries. 
In particular, we are interested to see if Opik's law 
follows, i.e. if the orbital periods of binaries are uni­
formly distributed in the logarithmic scale. Also the 
distribution of binary mass ratios can be predicted 
for different types of primary stars. 

2. BINARY ENERGY AND PERIOD 

A statistical theory for the three-body break-up 
was derived by Monaghan (1976) assuming that all 
systems have a constant total energy EQ. He derived 
the distribution of the binding energy EB of the final 
binary after the third body has escaped. The basic 
principle of the theory is to assume that escapes hap­
pen in such a way that the phase space formed by 
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the positions and momenta of the binary and the 
third body becomes uniformly filled with the rep­
resentative points. Starting from this principle one 
calculates the phase space volume a and derives the 
final distributions of various quantities. Some as­
sumptions are required on the way, and depending 
on these assumptions different final distributions are 
arrived at. Here we follow the calculation of Valto­
nen and Karttunen (2004) which is slightly different 
from Monaghan (1976). The distribution of final bi­
nary energies is proportional to Eg '5 rather than 
Eg25 of Monaghan (1976). This modification is in 
agreement with Heggie (1975). The binary binding 
energy is normalised to the constant total energy EQ 
of the systems. 

But in star clusters EQ may vary greatly from 
one three-body system to another. Monaghan (1976) 
calculates the available phase space volume a which 
is inversely proportional to |i?o|: 

o(\EMEQ\<x\E^&\EQ\. (1) 

If for any reason the three-body systems are uni­
formly distributed in the EQ space then we expect 
that the binary energies EB after the three-body 
break-up also follow Eq. (1). i.e., Opik's law should 
be valid. To what extent this is true can be found 
out by studying young star clusters observationally 
as well as by simulating star formation processes the-

147 

https://doi.org/10.1017/S0252921100008678 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100008678


148 VALTONEN 

oretically. 
Hard binaries in star clusters tend to harden fur­

ther. At the limit of very hard binaries we may write 
the average hardening rate 

1 
MV^RA m 3G2J 

M n 
(2) 

Here M = {mamb)/(ma + mb), ma and mj are the 
binary component masses, m j = ma + mb, M = 
TUB + rns, ms is the mass of the escaper, VQ is the 
mean orbital speed of the binary, R& is the rate of 
energy transfer, n is the number density of single 
stars, V3 is the speed of the binary relative to the 
single stars, and G is the gravitational constant. In 
a star cluster we may regard the right hand side as a 
constant in the first approximation, even though in 
fact the density of stars n and the typical speed of 
stars do vary during the cluster evolution. But using 
this assumption, and also putting all stars equal to 
IMQ, the equation is easily integrated: 

EB 16G 2 M|nT 

(EB)o V2V3 ' [6) 

where (EB)O is the initial value of the binary energy 
\(EB)O\ ^ \EB\ and v0 is the corresponding mean 
orbital speed. T is the time of escape of the binary 
from the cluster since the birth of the star cluster. 

Because of the evolution in the star cluster as 
well as the effect of the Galactic tides, the cluster is 
gradually dissolved. The time of dissolution tj has 
been estimated at 

times a factor depending on the structure of the 
cluster (Binney and Tremaine 1987). Here Mciuster 
is the mass of the cluster and r^ is its median ra­
dius. Since 250 solar mass stars within a sphere of 
1 pc in radius makes the average number density 
n = 250/(|7r pc3) « 60 p c - 3 , the equation may be 
written by using this mean number density n: 

td « 5.7 x 108 (n/60 pc"3) yr. (5) 

We may take the typical escape time of the binary 
to be half of td, i.e. 

T « 3 x 108(ra/60 pc - 3 ) yr. (6) 

From here n may be solved and inserted into Eq. (3) 
above. Then 

EB 16G 2 M| 

(E, B)0 VQV3 

= 5.3 

,3 x 108 yr 
rp \ 2 

60 p c _ J x T 

3x 108yr/ 

VQVZ 

(km/s)3 

- l (7) 

Putting a typical number w3 = 0.25 km/s, and 
starting from a hard binary with v$ = 1 km/s, WP 
expect to end up with 

we 

EB 

(EB)O 
20 

T y 
3 x lovy (8) 

In a typical hardening period of T = 108 yr we then 
expect the average binary binding energy to increase 
by a factor of 2 and the corresponding orbital period 
to shorten by about a factor of 3. 

Since l-E^lo ^ voithe n n a ^ v a m e °f \EB\ does not 
depend on VQ (i.e. on the initial orbital period) but 
only on T. Therefore the distribution of final periods 
P should depend on the distribution of T. 

A numerical simulation of the Pleiades star clus­
ter by Kroupa, Aarseth and Hurley (2001) shows 
that in its assumed 100 million year lifetime the bi­
nary period distribution shifts shortward by about a 
factor of 3 at the end of large periods (P ^ 30 yr). 
This agrees with our simple estimate. At the end of 
short periods no significant shift is detected in the 
simulation. 

Depending primarily on the cluster star density, 
clusters live different lengths of time, and provide 
different periods T for the hardening process. We 
get an idea of the distribution of T from observations 
of star clusters. The current age r of a star cluster 
is a representative time in the history of a cluster, 
and may well tell us when a typical binary escape 
happens. The distribution of r is observed to be 
(Wielen 1971) 

f(r) ex r - 1 (9) 

in the interval 2 x 107 yr ^ T ^ 5 X 108 yr, it steepens 
beyond the upper limit. Let us then suppose that 
also 

f(T) a T-1 (10) 

in this range. 
Since EB/(EB)O °C T2, the corresponding period 

ratio P/PQ OC T~3. Therefore we find 

/(jP/Po) = i 9 ™ *(jP/Po)_1- (11) 

In a logarithmic scale the distribution of P/PQ is flat: 

f(P/P0) 
d\og(P/P0) 

constant (12) 

since d(P/P0) = (P/P0)d(\og(P/P0)). This should 
be valid over one and half orders of magnitude in T, 
which corresponds to over four orders of magnitude 
in P/P0. 
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Binary period distribution 

o 
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Fig. 1. The period distribution of a sample of nearby 
binary stars with a solar type primary (Duquennoy & 
Mayor 1991, Fig. 7). Lines refer to theoretical expecta­
tions. 

What is the range of validity of this result? At 
the end of small T, below about T — 2 x 107 yr, there 
is negligible binary hardening. At the other end, 
T > 5 x 108 yr, the power-law of Eq. (9) steepens and 
the expected period distribution becomes (P <; 10 

yr): 

These distributions are compared with observations 
(Duquennoy and Mayor 1991) in Fig. 1. We notice 
that the predicted break at the end of low values 
of P/PQ, below the orbital period of ten years, is 
not borne out by observations. It appears that these 
short period binaries come from a binary population 
which have short periods to start with. Such "pri­
mordial" binaries are observed in star clusters and 
they make an important contribution to the short 
period end of the distribution. 

The reason for the relative flatness of the short 
period binary distribution may be in the star for­
mation process. Apparently, Eq. (1) applies there 
at least over a limited range of E(,. The scale free 
property of the distribution for longer periods may 
result from binary hardening. The steepening of the 
period distribution beyond log(P/yr) s=s 5 is well un­
derstood by the disruption of long period binaries 
in the Galactic field. Relative to the stellar back­
ground, these binaries are "soft" and tend to become 
even softer until they break up. 

3. BINARY ECCENTRICITIES 

The distribution of the eccentricities of binaries 
leads to the same conclusion: tight binaries, with pe­
riods less than 3 yr, have a bell shaped distribution 
with a peak around e = 0.3. Wider binaries, with 
periods exceeding 3 yr, show a distribution which 
agrees with /(e) = 2e, the distribution expected 

after three-body evolution (Duquennoy and Mayor 
1991, Kroupa 1995). 

4. BINARY MASS RATIOS 

The three body evolution also modifies the bi­
nary mass ratios. Binary pairs where both compo­
nents are massive are more likely to survive than 
pairs with unequal masses. This makes the mass 
ratio distribution evolve towards mb/ma « 1. The 
mass ratios obtained by picking pairs of stars at ran­
dom from the initial distribution of stellar masses 
are therefore subject to later evolution. 

Different binaries evolve by different amounts. 
The most massive binaries tend to settle near cluster 
centres and they are subject to many strong three-
body interactions. As a result, exchanges of binary 
members take place until the binary is made up of 
two rather heavy members. 

Ordinary binaries are involved in fewer strong 
three-body interactions. There we may assume that 
only a single three-body interaction is responsible 
for the mass ratio distribution. Starting from this 
assumption, we may pick three mass values at ran­
dom from the Salpeter initial mass function f(m). 
Then we use the probability distribution of 

P , = 
m. 

ms 
ma

2 + mb
2 (14) 

to decide which star (ms) escapes and which are the 
two others (ma and m^) that make up the binary 
pair. The mass ratio m = mb/ma (mj < ma) is thus 
obtained. Repeat the process many times and the 
distribution of mass ratios is built up. The proce­
dure is best carried out by computer in Monte Carlo 
fashion, i.e. by picking out random numbers from 
suitable distributions. 

The result of this operation is shown in Fig. 2 
as a dashed line. A comparison of the data points 
for a sample of binaries with B-type primaries (where 
the Salpeter mass function is applicable) shows good 
agreement. It thus appears that these binaries (of 
typical orbital period 3 yr) have had at least one 
three-body interaction in the past. 

In the case of solar type (spectral class G) pri­
maries the Salpeter mass function for single stars is 
not suitable. However, a flatter power-law, with in­
dex a = 1.25 in 

Km) (15) 

may be used. Then the same process as described 
above leads to the distribution of Fig. 3 (dashed 
line). The observations by Duquennoy and Mayor 
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Mass ratios in binary stars Binary mass ratios 
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Fig. 2. The mass ratio of binary star components in 
an observational sample with a B spectral type primary 
(points with error bars; Evans 1995). The dashed line is 
based on a theory where two lower mass companions for 
the B-type star have been picked at random, and one of 
the companions has escaped. 

(1991) are well described except at the low values of 
mb/ma where both the observations and the power-
law assumption are very uncertain. 

For the most massive O-type stars this procedure 
is not reasonable since numerous three-body encoun­
ters have in fact t runcated from below the distribu­
tion of the possible mass values. Now we may pick 
three mass values from the power-law distribution 
with a = 3.2 (applicable to the upper end of the 
mass range), all of which are above a given lower 
limit. Then we again ask which one of the three 
stars escapes, which ones make the binary and what 
is their mass ratio. The mass ratio distribution built 
up in this way is shown as a continuous line in Fig. 
4. It agrees well with the observed O-star primaries 
sample (Abt 1983). 

The rather puzzling situation with the mass ra­
tio distribution varying as a function of the spectral 
type of the primary is therefore explained as a re­
sult of three-body interactions among stars (Valto­
nen 1997). 
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Fig. 4. The observed distribution of binary star mass ra­
tios when the primary is an O-type star (points with er­
ror bars; Abt 1983). It is compared with the three-body 
theory with a = 3.2 and single star mass distribution 
truncated from below. 
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DISCUSSION 

Zinnecker - Where has this discussion on the dynamical origin of the binary period distribution been 
published before? More specifically, is there a 3-body dynamical explanation of Poveda's and Opik's law that 
/(log P) = constant between log Pmjn and log Pm a x? 

Valtonen - As far as I know, this type of mechanism has not been discussed before. 

Sterzik - Broadening of the period distribution due to the binary hardening process by passing through 
star clusters is an evolutionary process that lasts a long time. Broad period distributions and very short-period 
(spectroscopic) binaries are, however, already frequent in the pre-main-sequence phase. Could you please 
comment? 

Valtonen - This mechanism assumes a broad range of environments from which binaries came from. There­
fore, one should not expect Opik's law to apply in individual clusters over the same wide range as among the 
field binaries. Short-period binaries probably require a different mechanism. 

Salvador Curiel, Mauri Valtonen and Andrei Tokovinin. 
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