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1. Introduction. Throughout this paper S will denote a given monoid, that is, a
semigroup with an identity. A set A is a right S-system if there is a map ¢:AXS—> A
satisfying

¢(a: 1)=a and ¢(a, st) = ¢(¢(a, 5), t)

for any element a of A and any elements s, of S. For ¢(a, s) we write as and we refer to
right S-systems simply as S-systems. One has the obvious definitions of an S-subsystem
and an S-homomorphism.

Clearly S-systems provide the semigroup theory analogue of R-modules over a ring
R. Further, many of the properties defined for S-systems are inspired by the correspond-
ing definitions in ring theory. In particular we have projective, flat and injective
S-systems, where flatness for S-systems weakens the concept of projectivity, as is the case
for modules.

Many papers have been published which characterise monoids by properties of their
S-systems, for example [4], [9], [10]. The properties we consider here are those of
injectivity and a-injectivity, where o is any cardinal strictly greater than 1. The definition
and some of the basic properties of these concepts are given in Section 2. The notion of
a-injectivity was introduced for R-modules over a ring R in [3] and for S-systems in [6].
For both R-modules and S-systems the usual terminology for Xy-injective is weakly
f-injective and for 2-injective is weakly p-injective. Further, if T is a semigroup or a ring
and y(T) is a cardinal such that every right ideal of T has a generating set of fewer than
y(T) elements, then one writes weakly injective for y(T)-injective. In the case of
R-modules, weak injectivity coincides with injectivity, but this is not always true for
S-systems [1].

Monoids over which all S-systems are a-injective (for any cardinal «>1) are
characterised in [6]. In Section 3 we classify monoids over which all a-injective S-systems
are fB-injective, for various choices of cardinals @, f>1. Our proofs are based on the
construction of an a-injective S-system A!“l containing any given S-system A. This
method generalises the construction of the divisible S-system A detailed in [7], where we
classify monoids for whose S-systems the notions of divisibility and weak p-injectivity
coincide.

The monoid § is said to be perfect if all flat S-systems are projective. Perfect monoids
have been studied and characterised in [5] and [9]. It is clear that injectivity is a property
dual to that of projectivity. By analogy with the definition of a coflat module given in [2],
we introduce in [6] the concept of coflatness for S-systems as a notion dual to that of
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flatness. However, Corollary 3.4 of [6] gives that an S-system is coflat if and only if it is
weakly p-injective. In Section 4 we characterise the monoids that are dual to the perfect
monoids, that is, those monoids over which all coflat S-systems are injective. We call such
monoids coperfect.

I would like to record my thanks to Dr J. B. Fountain for his advice and
encouragement whilst this work was in progress.

2. Preliminaries. An S-system A is injective if given any diagram of S-systems and
S-homomorphisms,

A

]o

M <N

where ¢ : N— M is an injection, there exists an S-homomorphism vy : M — A such that

A
e
]
M« N

is commutative. By imposing conditions on M and N we weaken this definition to obtain

the concept of a-injectivity, as follows. Let a be any cardinal strictly greater than 1. Then
an S-system A is a-injective if given any diagram of the form,

A

Js

S ]

where [ is a right ideal of S with a generating set of fewer than « elements, ¢:/— § is the
inclusion mapping and 6:/—A is an S-homomorphism, then there exists an S-

homomorphism v :S— A such that
/ I

Se1

is commutative.

It is clear that an injective S-system is a-injective for any « and that an a-injective
S-system is B-injective for any cardinal B such that 1< =a. Let y = y(§) be a cardinal
such that every right ideal of § has a generating set of fewer than y elements. As pointed
out in the introduction, the usual terminology for y-injective is weakly injective. Further,
we write weakly f-injective for Xy-injective and weakly p-injective for 2-injective.
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We say that an S-system A satisfies the «-Baer criterion for a cardinal & > 1 if, given
any right ideal I of § with a generating set of fewer than « elements, then for any
S-homomorphism 6:1— A there is an element a in A such that 8 is given by 6(r) = ar for
all rin 1.

Given a system of equations = with constants from the S-system A, then T is
consistent if £ has a solution in some S-system containing A. If all equations in X are of
the form xs = a, where s € § and a € A, and if the same variable appears in each, then X is
an a-system over A, where « is any cardinal larger than that of Z. Thus X is an @-system
over A if and only if 3 has the form

E={xs;=a;:jel, [J|<a, 5;€8, a;€ A}.
We will rely on the following two results from [6].
LemMA 2.1. Let A be an S-system and let

Z={xs;=a;:jel, |/|<a,s;€S, a€A}

be an a-system over A. Then the following conditions are equivalent:
(1) Z is consistent,
(ii) for all elements h, k of S and for all elements i, j of J,

S,'h = Sjk jaih = ajk.

ProrosiTiON 2.2. Let o > 1 be a cardinal. Then the following conditions are equivalent
for an S-system A:
(i) every consistent a-system over A has a solution in A,
(ii) A satisfies the a-Baer criterion,
(iii) A is a-injective.
For an S-system A and a subset H of A X A, then by p(H) we denote the congruence
generated by H, that is, the smallest congruence relation v over A such that H c v.

LemMA 2.3 [10]. The ordered pair (a, b) is in p(H) if and only if a = b or there exists

a natural number n and a sequence
a= Cltl’ dltl = C2t2) vy dn—ltn—l = cntn) dntn = b:

wheret,, . .., t, are elements of S and for each i€ {1, ..., n} either (c;, d;) or (d;, ¢;) is in
H.

A sequence as in Lemma 3.3 will be referred to as a p(H)-sequence of length n. For
any congruence p on A the set of congruence classes of p can be made into an S-system,
with the obvious action of S. We write A/p to denote this S-system and [a],, or simply [a]
where p is understood, for the p-class of an element a of A.

3. Characterising monoids by their a-injective S-systems, Let « be any cardinal

with 1<a =X, We begin this section by detailing a construction of an a-injective
S-system A!*) containing an arbitrary given S-system A.

https://doi.org/10.1017/50017089500006686 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006686

76 VICTORIA GOULD

Firstly, we define Z,, Fy, Hy and A, as follows: for any natural number n, where
l1=n<a, let

25={((s1, @1), - - ., (Sp, @,)) € (§ X A)™:
s,teS, i,je{l,...,n}, s;s =s;t implies that a;s = a;t}.
Then we put

20= U 28)

n<a

B=U{x;S:0€Z}

that is, F, is the free S-system on {x,:0 € 2},
Hy={(x8:, 8;):0€35,n<a, (s,a)=0,ie{l,..., n}},
where o; is the ith component of the row vector o. Now let
A, = (AU K)/p(H,).

Suppose now that a;, a,€A and [a,] =[a,] in A;. Thus a,=a, or a; and a, are
connected via a p(H,)-sequence, which it is easy to see must be of even length. If

a;=c by, dity=cyty, dyty = a,

is a p(H,)-sequence, then ¢, € A and so (c,, d,) = (a;, x,s;) for some (x,s;, a;) € Hy, where
o€ say, n<a. From d,t;=c,t, it follows that there exists a je{l,...,n} with
c2=x,5;, dy=a; and (s;, a;) = 0;. Then x,8;t, = x,8;t, gives s;t; =s;t, and so from the
definition of Z,, a;t; = a;t,. Hence

ay=cih=ait,=ait,=dyt, = a,.

We now let meN, m>1 and make the inductive assumption that if b,, b, are
elements of A connected by a p(H,)-sequence of (necessarily even) length less than 2m,
then b, = b,.

Suppose that

a;=cCity, dita=cCaty, ..., domlym =Gy

is a p(H,)-sequence connecting a; and a,. As above, a, = d,t, and so
a1 =C3ty, oo, omlom = @,

is a p(H,)-sequence of length 2(m — 1) connecting a, and a,, thus a, = a, by the inductive
assumption. Hence A is embedded in A; and we may identify the element a € A with the
element [a] of A,.

In a similar manner one constructs a sequence A, cA,c... using
2,2,,...,H,F,... and H, H,, ..., where Z;, F; and H; are defined using A; in the
same way that 2y, Fy and H, are defined in terms of A. Although £,c3,c..., at each
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stage we choose a basis for £ which is disjoint from the bases used for Fy, F, ..., F;_;.
For ease of notation we make the convention that for n € N the p(H,)-class of an element
a of A, UF, will be denoted by [a],.
Now put Al*)=|J A, where A, is identified with A. We claim that A!% is
a-injective. feN
Let I =kUKskS be a right ideal of § where |K|< a. Suppose that 6:1— Al* is an
€

S-homomorphism. Then for any i, j € K and s, t € S, s;5 = 5.t implies that 6(s;)s = 0(s,)t,
since 0 is well-defined. Since o« =<X;, K is a finite set and so we may assume that
K={1,...,m)} for some m e N with m < a. Clearly there is an n € N with 8(s,) € A, for
all k € K. Thus

o= ((slx 6(sl))» R (S,,,, O(Sm))

is an element of X, and (y,], is an element of A,,,, where {y,:0 € Z,} is the basis of F,.
Since A,., < A!®Y, [y,]. is an element of A!*l. Further, for any k € K,

68(se) = [6(50)] = oSkl = [yolnsi

and it follows that 8(s) = [y,],s for all s € I. Thus A!*! has the a-Baer criterion and so by
Proposition 2.2, Al is a-injective.

The results of this paper are all dependent upon the structure of A*),

ProposITION 3.1. Let o > 1 be a cardinal. Then the following conditions are equivalent
for the monoid S

(i) all right ideals of S with a generating set of fewer than « elements are principal,

(ii) all weakly p-injective S-systems are a-injective.

Proof. (i)= (ii). Given (i) it is clear that the notions of weak p-injectivity and
a-injectivity coincide for S-systems; thus (ii) holds.
(ii)) = (i). To show that this implication holds we need a technical lemma.

LemMA 3.2. Let A be an S-system and let A" be constructed as above. Suppose that
there exists an element b of A,,, n >0, such that A c bS. Then there exists an element c in
A,_, with A c cS.

Proof. We may assume that b e A,\A,_,, otherwise there is nothing to prove. If
beA,\A,_, then b has the form b =[y,u],-, whereueS, ceZ,_;and {y,:0€Z,_,} is
the basis of F,_;. Given any a€ A there exists veS with a=bv, that is, [a],_, =
[youvl,-,. Since a #y,uv in A,_;UF,_,, we have that a and y,uv are connected by a
p(H,-,)-sequence

Youv =4, dltl =Cyly, ..., dmtm =a.

Thus ¢, =y,s, d,=c, where ceA,_, and o=(s,c). Then a, ct; are p(H,_,)-related
elements of A,_, and from the construction of A,_,, a =ct;. Hence A ccS and the
lemma holds.
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Returning to the proof of Proposition 3.1, let I = | S be a right ideal of S where
keK

|K| < a. We form the weakly p-injective S-system I'?!, which by assumption is a-injective.
Thus there exists an S-homomorphism  : S — I'® such that

72

pa
S]]

is commutative, where ¢, T are the appropriate inclusion mappings. Then for any k € K,

e = T(ue) = Pe(ue) = Y () = Py
Hence
I= U wsS=U p(DusS = p(1)S.
keK keK

Now y(1) € I, for some n € N. If n # 0 then we may apply Lemma 3.2 successively »n times
and obtain an element ¢ in [ such that / =c¢S. Hence in either case 7 is contained in a

principal right ideal sS of S, where s € I. It follows that I =S and so / is principal.

CoroLLARY 3.3. Let o be any cardinal such that 2< o =X,. Then the following
conditions are equivalent for the monoid S:
(i) all weakly p-injective S-systems are weakly f-injective,
(ii) all weakly p-injective S-systems are «-injective,
(iil) all weakly p-injective S-systems are 3-injective,
(iv) all right ideals of S with a generating set of 2 elements are principal,
(v) finitely generated right ideals of S are principal.

Proof. (i)=> (ii), (ii) = (iii). These implications are immediate.

(iii) = (iv), (v) > (i). These follow from Proposition 3.1.

(iv)=> (v). Let a, b € S. Then aS U bS is a principal right ideal by (iv) and it follows
that aS < bS or bS c aS. Hence the principal right ideals of S are linearly ordered, giving
that finitely generated right ideals of S are principal.

CoroLLARY 3.4. The following conditions are equivalent for the monoid S:
(i) S is a principal right ideal monoid,
(i) all weakly p-injective S-systems are weakly injective.

Proof. This is immediate from Proposition 3.1, with & = y(S).
In order to establish our next result we need the following technical lemma.

LemMA 3.5. Let A be an S-system and let A™ be constructed as above. Suppose that
A is contained in a finitely generated S-subsystem of A, for some n>0. Then A is
contained in a finitely generated S-subsystem of A, _,.

Proof. Letb,,...,b,€A,, n>0, besuchthat Ac CJ b;S. If each b, is in A,,_, then
i=1
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there is nothing to prove. Thus we may assume that there is an r € {1, . . ., m} such that
by,...,b,eA\NA,_yand b,,y,..., b, €A,_,. From the form of A, we have
bi=[y<7,-ui]n—1 (lélér))
where {y,:0€Z,_,} is the basisof F,_;, 0,,...,0,€Z,_;and uy, ..., u, €S. Suppose
further that forie {1, ..., r}, 0;€ 2% and
0; = ((sily Cil)) LI | (Si,p(i): Ci,p(i)))'

LetaeA. IfaebSforie{l,...,r} then there exists an element v of S with

a= [a]n—l = [yo,-uivln—l'
Asa#y,uvin A, UF,_,, there is a p(H,_;)-sequence
Yo UiV = City, dity =Caly, ..., dity=a

connecting y,u;v and a. Then there exists an element je{1,..., p(i)} such that
€1 = Yoy dy = ¢;. Thus a, c;t; are p(H,_,)-related elements of A, _;, giving that a = ¢;t,.
It follows that
A§< UJ c,-,-s)U( U ka>,
1=i=r r<kZ=m
15jSp()

so proving the lemma.

ProrosITION 3.6. Let « be a cardinal no less than Xy. Then the following conditions
are equivalent for the monoid S:

(i) all right ideals of S with a generating set of fewer than « elements are finitely
generated,

(ii) all weakly f-injective S-systems are w«-injective.

Proof. ()= (ii). Given (i) we see that the concepts of « injectivity and weak
f-injectivity coincide for S-systems; hence (ii) holds.

(ii) =>> (i). Let I be a right ideal of S with a generating set of fewer than « elements.
We may form I™ which is an a-injective S-system by assumption. Thus there is an
S-homomorphism 1 : S — I™ such that

JIRo
Se—1

is commutative, where ,T are the appropriate inclusion mappings. Let r be any element
of I. Then

r=1(r)=yur)=y(r)=yQ)r
and so I ¢ ¢(1)S. If y(1) eI then
Icy()SciScl
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and so I is finitely generated (indeed principal). Otherwise, (1) e I,\1,_, for some
n>0. Then y(1)S c I, and so y(1)S is a finitely generated S-subsystem of I,. Applying
Lemma 3.5 n times, one sees that ] is contained in a finitely generated S-subsystem of L
Clearly then I is finitely generated.

The monoid S is noetherian if S satisfies the ascending chain condition on right ideals.
It is well known that this is equivalent to all right ideals of S being finitely generated.

CoroLLARY 3.7. Let B be a cardinal with y(S)ZBZN,. Then the following
conditions are equivalent for the monoid S:
(i) S is noetherian,
(ii) all weakly f-injective S-systems are weakly injective,
(iii) all weakly f-injective S-systems are B-injective,
(iv) all weakly f-injective S-systems are X-injective,
(v) all countably generated right ideals of S are finitely generated.

Proof. (i)= (ii). This is immediate from Proposition 3.6, with & = y(S).

(if) = (iii), (iii) = (iv). These are clear.

(iv) = (v). This follows from Proposition 3.6, with a = X;.

(v)=>(i). Let I be a right ideal of S. If ! is not finitely generated then we may form a
strictly increasing sequence of right ideals of §

aScaSUaSca,SUa,SUazSc. ..,

where a; €1, i eN. Let J = | a;S. Then J is a countably generated right ideal of S and so
ieN
by assumption J is finitely generated. Thus there exist m,n € N and elements b,, . .., b,,

of a;SU...Ua,S such that J = L"J b;S. Then
i=1
O%SCI: LmJbiSELnJajS,
j=1 i=1 j=1

a contradiction. Hence I is finitely generated and as I was chosen arbitrarily, S is
noetherian.

4. Coperfect monoids. The concept of a coflat module over a ring is introduced by
Damiano in [2]. He develops in Proposition 1.3 of that paper an elementary criterion for
a module to be coflat; we take the non-additive analogue of this criterion to define a coflat
S-system. Thus an S-system is cofiat if, given any elements a of A and s of § with a ¢ As,
then there exist elements &, k in S such that sh = sk but ah # ak. However, using Lemma
2.1 and Proposition 2.2, it is easy to see that an §-system A is coflat if and only if it is
weakly p-injective. This fact enables us to use the structure of the coflat S-system A® to
prove Proposition 4.1.
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Before stating the result we give some definitions. For any element a of an S-system
4, ann(a) = {(u, v)e S X S:au =av}.

Clearly ann,(a) is a right congrunce on S, the right annihilator congruence of a.
Conversely, given any right congruence p on § one defines

Anny(p) = {s € §: (4, v) € p implies su =sv}.

Then Anny(p) is empty or is a left ideal of S, the left annihilator ideal of p. However, this
concept is too strong for our purposes and weaken it to fit our requirements, as follows.

Let p,v be right congruences on S and let ¢ be an element of S. Then Ann(p, ¢, v) is
defined by

Ann(p, t, v) = Anny(p) U {s € S :if (4, v) € p and su #sv,
then there exist h, k € § with
su =th, hvk, tk =sv}.
Let s,t be elements of S. Then an n-link from s to t in S consists of n-tuples
p=Pu---sPx), G=(q1,-..,qn), F=(r,...,r,) withr, =t and
P1S =411, Pivali = Giviliva (1=i=n-1)

We remind the reader that S is coperfect if all its coflat S-systems are injective.

PropPOSITION 4.1. The monoid S is coperfect if and only if S is a principal right ideal
monoid with a left zero and S satisfies condition (CI):

(CY) For any element s of S and any right congruence p on S, there are elements t, u in
S and right congruences vo=p, vy, ..., v, on S such that there is an n-link from s to t
satisfying ann(q,) < v;, p,€ Ann(v;_,, q;, v;) (1=i=n), sutps and v, = {(h, k): suhpsuk}.

Proof. Assume first that § is coperfect. Since all coflat S-systems are weakly injective
Corollary 3.4 gives that S is a principal right ideal monoid.
To show that S has a left zero, regard S as an S-system and consider the diagram,

s
T
SR Y
where S° is S with a zero adjoined and 7,¢ are inclusion mappings. By assumption, S is
injective and so there is an S-homomorphism ¥ : $°— $**! which makes the diagram
s@

71

Sle—t-§

https://doi.org/10.1017/50017089500006686 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006686

2 VICTORIA GOULD

commute. For any s € S,

Y(0) = v(0s) = y(0)s
and so if y(0) € S it is immediate that S has a left zero. Otherwise, (0) € S,\S,_; for
some n € N and so ¥(0) has the form y(0) =[y,¢],-1, where {ys:6 € Z,_,} is the basis of
F,_;,0€Z,_;andteS. Now o=(u,a)forsomeuecSandaesS,_;. Ifteus, say t = uv,
then

Y(0) = [youv],—y =[av],_,

and so y(0) € S,,_;, a contradiction. Thus ¢ ¢ uS.
For any s € S, 9(0) = y(0)s gives [yst5],—1 = [yst].—1 and as ¢ ¢ uS one sees that y,s,
y,t cannot be related by a p(H,_,)-sequence. Hence y,ts = y,t so that t =ts and ¢ is a left

zero of S.
Let I =sS be a principal right ideal of S and let p be a right congruence on S. The

S-system Ip ={ap:ael} is an S-subsystem of S/p and as Ip™ is injective there is an
S-homomorphism :S/ p — Ip? which makes the diagram

Ip®?

’d
S/p «——Ip

commute.
For any (h, k) € p we have

Y(1p)h = y((1p)h) = p(hp) = p(kp) = y((1p)k) = ¥ (1p)k.

sp = 1(sp) = yYi(sp) = y(sp) = Y((1p)s) = ¥(1p)s.

If y(1p) € Ip, it follows that there exists an element u of S such that susps and for
any (h, k) € p, suhpsuk. It is then easy to see that (CI) is satisfied, withn =1, p,=¢q, =1
and r, =s.

We now suppose that y(1p) € (Ip),, where n > 0. From the construction of (Ip), we
have ¥(1p) =[y,p1}.-1 or y(1p)=[m],, where {ys:0€Z,_,} is the basis of F,_,,
o0€Z,_;, py€Sand m e (Ip),—,. In the latter case, (1, m) e Z,_, and so

w(lp) = [m]n = [y(l,m)]n'

Thus we may assume that y(1p) has the former expression.
If h,keS and hpk then y(1p)h =y(lp)k and so [y,pihl,—1=[Yop1k],-1. Thus
p1h =pik or y,p,h, y,p,k are connected by a p(H,_,)-sequence

Further,

YoP1h =city, diti=caty, ..., dit; = y,pik.

Now o€Z,_; and so o=(q,, m;) for some q,€S and m; e(lp),_,. It follows that
pih=pkor
pih=qity, mitip(H,_)mity, q1, = p1k.
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But since m,t,, myt, are p(H,_,)-related elements of (Ip),_,, mt; =m;t,. Define the
right congruence v, on § by

v, = ann,(m,).
Hence p,h =p,k or

Pih =qity, i, @iy =pik

and so p, € Ann(vy, q,, v;), where v, = p. Further, if (h, k) € ann,(q,), then q;h = g,k so
that m,h =m,k (for 0 € Z,_,) and (h, k) € v, thus ann,(q,) < v;.

Now sp ={sp),_: =[y.p15].—1 and as sp#y,p;s in F,_, U(Ip),_,; we have that sp,
YoP15 are connected by a p(H,_;)-sequence. This gives that p,s =q,r,, mr,=sp for
some r, € S.

One may express m, as m; = [z,p,],—,, where {z;:0 €Z,_,} is the basis of F,_,,
p2€ S and pu =(q,, m;) €2, _,. Again we define a right congruence v, on S by

v, = ann,(m,).

Suppose that hv,k, that is, mh = m,k. Hence p,h = p,k or z,p,h, z,p,k are related
by a p(H,_,)-sequence. It follows that p,h = p,k or there exist t,t' € § with p,h =¢q,t,
tvyt', go.t' =pok, that is, p,e Ann(vy, q,, v,). Since (g,, my)eZ,_,, it is clear that
ann,(q,) c v,. Further, [sp],-»=[2z.p2r1].—> gives that p,r, = q,r;, myr,=sp for some
r,es.

Clearly we may continue in this manner to obtain elements p;, g;, r; of S and elements
m; of (Ip);—, (1=i=n), such that

PiS=qin, Pirth =qisiliva (12i=n-1).

Further, defining vo = p and v; = ann,(m;), we have ann,(q;) c v; and p; € Ann(v,_,, g;, v)
(1=i=n). Also, m,r, =sp, where m, € Ip. Thus there exists an element u of S with
m,, = sup. This gives sp = supr, = sur,p, that is, spsur,. Finally, for h, k€ S, (h, k) € v, if
and only if m,h =m,k, that is, suph = supk. Hence (h, k) € v, if and only if suhpsuk.

Thus S satisfies condition (CI).

Conversely, assume that S is a principal right ideal monoid with a left zero satisfying
condition (CI). Let A be a coflat S-system. We show first that given any diagram of the
form,

A

Jo

Slp «— Ip

where I =sS is a principal right ideal of S and 6:Ip— A is an S-homomorphism, there
exists an S-homomorphism y:S/p— A such that yi = 6.

Suppose that I, p and 6 are given as above. By assumption there exist neN,
elements p;, q;, r; of S and right congruences v; on § (1=i=n), satisfying the conditions
of (CI).
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Let ¢, :9.,5— A be defined by

Pn(gat) = O(sutp).

Then ¢, is well-defined, for if g,t =q,t’, then (¢, t') € ann,(q,) so that (¢, ¢') € v,. Then
the definition of v, gives sutpsut’. Clearly ¢, is an S-homomorphism and since 4 is cofiat
we may extend ¢, to an S-homomorphism ¢, :S— A. Now define &,:5/v,_,— A by

E,,(tv,,_l) = qsn(pnt)'

If tv,_,t', then as p, € Ann(v,_,, q,,, v,), either (a) p.t =p,t’, or (b) p,t=q,v, vv,v',
q,v' =p,t' for some v,v' €.

If (a) holds, then clearly &,(tv,-;) = &,(t'v,—,). If (b) holds, by the definition of v,
suvpsuv’ and so

E,(tVn-1) = Pn(Pnt) = $u(gnv) = Pn(gnv) = O(suvp)
= 0(suv’'p) = 0n(gnV") = Pugnl’) = Pu(Pat’) = E,(t'v,_).

Thus &, is well-defined and obviously is an S-homomorphism.
We now define ¢,,_,:q,_,S— A by

¢n—l(qn—lt) = En(tvn—l);

then, as ann,(q,_;) < Vv,._1, ¢,._; is a well-defined S-homomorphism. Again using the
coflatness of A, we may extend ¢, to an S-homomorphism ¢,_,:5— A. We now use
¢,_1 to define an S-homomorphism &,_,:8/v,_,— A by putting

Enc1(tVn—2) = Pnr(Pr_it).
To see that §,_, is well-defined, suppose that tv,,_,t'. As above we have that either
(@) pa-it=pnpat' or (b) pit' =q,_1v, vv,_ V', q,,v' =p,_,t' for some v,v’' € S. If (a)
holds, it is immediate that §,_,(tv,_,) = &,_,(t'v,_,). If (b) holds, then
gn—l(tvn—Z) = J)n—l(pn—lt) = én—l(qn—lv) = ¢n—l(qn—lv)
= gn(vvn—l) = f;',,(v’v,,_l) = ¢n—l(qn—lvl) = J)n—l(qn—lvl)
= ¢n-—1(pn—ltl) = §n-l(t’vn—2)-

_ Clearly we may continue in this way to obtain S-homomorphisms ¢,:9;5— A,
¢;:S—A, §:S/vi_,—> A (1=i=n), such that

$n(gnt) = O(sutp),
oigit) =Eia(tv)  (A=i=n-1)
and forie {1,...,n}, ¢, is an S-homomorphism extending ¢, and
E(tvicy) = i pit).

Thus we obtain an S-homomorphism y =&,:5/v,=8/p— A. It remains to show
that ¢ extends 6.
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We have yi(sp) = y(sp) = Ei(sp) = Ei(svo) = ¢1(p1s) = @i(qin) = ¢i(qin)
= Ex(nvy) = ¢_2(P2’1) = 0xg2r) = P2(g2r2) = Ex(v2) = ... = Eu(raciVay) =
Gu(Parn-1) = @u(qutn) = ¢n(g.rn) = O(sur,p) = 6(sp). Hence for any stel,
Yu(stp) = G(stp), that is, Yt = 6.

Now suppose that N is an S-subsystem of an S-system M and ¢:N—A is an
S-homomorphism. Consider the partially ordered set whose members are pairs (N’, ¢'),
where N’ is an S-subsystem of M containing N and ¢':N'— A is an S-homomorphism
extending ¢ and = is defined by

(N', ¢")=(N", ¢") if and only if N' = N” and ¢" extends ¢’.
By Zorn’s lemma, this set has a maximal member, say (P, 8). If P # M, choose m € M\ P
and put I = {s € S:ms € P}.
If I =, then mS N P =(J and we may define a function §:mSU P— A by

§(ms) = as,,
Ep)=6(p) (peP),
where s, is a left zero of S and a is a fixed element of A. We have
E(mst) = asg = asot = E(ms)t

and it follows that § is an S-homomorphism strictly extending 6, that is,
(P, ) <(mS UP, &), contradicting the maximality of (P, 8). Thus I #J and it follows
that / is a principal right ideal of S, say I =sS.

Define a right congruence p on S by

hpk if and only if mh =mk,

that is, p = ann/(m). Let A:Ip— A be defined by A(stp) = 8(mst). Since p = ann,(m), it
is clear that A is a well-defined S-homomorphism. Hence there is an S-homomorphism
u:S/p— A which extends A. Now define y:mSUP— A by

Yp(mt) = u(tp),
y(p)=6(p) (peP).

If mt =mt', then tpt' so that y(mt)=y(mt'). If mt=p for some p € P, then t el
and so t = st’ for some ¢’ € S. Thus

Y(mt) = u(tp) = u(st'p) = Mst'p) = 8(mst’) = 8(mt) = 6(p) = y(p)

and so y is a well-defined S-homomorphism. But (P, 8) < (mS U P, y), a contradiction.
Hence P =M and A is injective. Since A is an arbitrary coflat S-system, the monoid S is
coperfect.

To establish our next corollary we need a technical lemma.

LemMa 4.2. Let I =sS be a principal right ideal of the monoid S and p a right
congruence on S. Suppose that n € N and there exists elements p;, q;, r; of S and right
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congruences v; on S (1 =i = n) satisfying the conditions of (CI). Suppose further that q; is
regular fori€ {1, ..., n}. Then there exists an element x of S such that if h,k € S and hpk,
then suxhpsuxk and further, stpsuxst, for any st € I.

Proof. Letie{1,...,n}. We show that for any h,k € §,

hv;_1k > qip;hviqipk,
where ¢,9:q; = g;.
Given q,9;9; = q:, (4:9:» 1) € ann(¢;) and so g;q;v;1. Now since p; € Ann(v,_y, g;, V1),
either (a) p;h = p;k or (b) p;h =q,h', h'vk', q;k’' = p;k for some h', k' € S.
If (a) holds, then gq;p;h = qp;k and so certainly q;p;hv;q;p;k. If (b) holds, then

qipih = qiqih'vih'vik'viqiqik’ = qipik

and so our claim is correct. It follows that if hpk then xhv,xk, where x=
qnPndn-1Pn-1- - - 41p1- Hence if hpk, then suxhpsuxk.

Now sps, that is, svys, SO q1p15v1q1p1S, wWhich gives gi1q,rv,q1p;s. But lvlqlql, o)
that r,v,qi1q.,n, hence rvi,qip;s. Thus g;p,riv.q:p2qipis and so q2q2r;v2q2p.q1p:s,
giving rv,q,p.q1p:s. Clearly we may continue in this manner to obtain r,v,xs. Thus
sur,psuxs, hence spsuxs and so for any st € I, stpsuxst.

If all S-systems are injective, then S is a completely right injective monoid. We may
now deduce the following result which appears in {4}, [8] and [11].

CoROLLARY 4.3. The monoid S is completely right injective if and only if

(a) S has a left zero, and

(b) for any right ideal I of S and right congruence p on S, there is an element y of 1
such that for any t € I, ytpt and for any h, k € S with hpk, yhpyk.

Proof. If § is completely right injective, then clearly all coflat S-systems are
injective. Thus § has a left zero, all right ideals of S are principal and S satisfies condition
(CI). Further, all S-systems are coflat and so by Proposition 4.1 of [6], S is regular.

Let I be a right ideal of S and p a right congruence on §. Then [ =sS for some s € §
and since S is regular and satisfies (CI), it follows from Lemma 4.2 that there is an
element x of S such that hpk implies suxhpsuxk and tpsuxt for any ¢ € 1. Putting y = sux,
we see that (b) holds.

Conversely, suppose that S satisfies (a) and (b). Let I be a right ideal of S and p the
equality relation on S. Then there is an element y of I with ys =s for any s € I. Hence

I=ylcyScl,
so that I =yS and [/ is principal.

As in the proof of Proposition 4.1, S satisfies condition (CI). Thus all coflat S-systems
are injective.

Let s € S. Then as above there is an element y of sS with ys =s; hence s is a regular
element and so S is a regular monoid. Thus all S-systems are coflat and hence injective,
that is, S is a completely right injective monoid.

We end this section by using Proposition 4.1 to give an example of a coperfect
monoid that is not completely right injective.
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CoroLLARY 4.4. Let S be the infinite cyclic monoid generated by the element a. Then
8% is a coperfect monoid which is not completely right injective.

Proof. Since the only regular elements of S® are 0 and 1 (=a°), S is not a regular
monoid and so, by Proposition 4.1 of [6], not all S-systems are coflat. Hence S° is
certainly not completely right injective.

The monoid $° is commutative and is a principal ideal monoid. Further, §° is
0O-cancellative and has no zero-divisors.

Let seS® and let p be a congruence on S°. If s=0, take n=1 and put
p1=q,=u=1and r,=0. Then p,s =¢q,r, and sur, =0 so that sur,ps. Further, (h, k) €
ann.(q,) if and only if & = k and so ann,(q,) is contained in every congruence on S. Let
vy = {(h, k):suhpsuk}; as s =0 we have that v, is the trivial congruence S°x $° If
h, k € S® and hpk, then 1h = 1h, hv,k, 1k = 1k and so 1 € Ann(p, 1, v,).

We now suppose that s #0. If p = I, the identity relation on S, then we again take
n=1 and put p,=r,=u=1 and q,=s. Letting v, = {(h, k):shpsk}, we have v,=
{(h, k):sh =5k} =I5 Now p;s =qr, and sur,ps. Also, ann,(q,) = ann/(s) =I5 and so
ann.(q,) c v,. Since p = I, it is clear that 1 € Ann(p, s, v,).

If p # I, we may choose an element ¢ of $° such that there is an element z of §° with
tpz, t# z and tS° is the maximal ideal with this property. Clearly ¢ #0. If z =0, then 00
so that £*p0pt and tpt>. Now ¢ = ¢ if and only if ¢ =1. If t =1, then 1p0 and so bp0 for all
elements b of S° This gives that p is trivial. However, if p is trivial, then putting n =1,
pi=q:=ri=u=0and v, =5°X 5" it is easy for us to see that the conditions of (CI) are
satisfied.

Thus we may assume that p # I, p #5° X S° and there exist non-zero elements ¢,z
of S° such that tpz, ¢t # z and ¢5° is maximal with respect to this property.

Since $° is a principal ideal monoid, either tS° < 58°, or sS° < tS°. Suppose firstly that
tS°c sS°. Take n=1 and put p,=r,=u=1 and ¢, =s. Then p,s = q,r, and sur,ps. Let
v, ={(h, k):shpsk}. Then ann/(q,)=ann,(s)=Is and so ann,q,) < v,. It remains to
prove that 1€ Ann(p, s, v,). Let v, v’ € §? and suppose that vpv'. If v =v’, then clearly
lv=1v'. If v #v’, then v,v’ €tS° and so v =sh, v' = sk for some h,k € §°. Then from
shpsk we have that hv,k and so 1 € Ann(p, s, v,), as required.

Assume now that sS°<tS°. We know that there are natural numbers c, d, e with
t=a‘ z=a"% d=c+e and e>0. Then tpa“*™ for all m e N and so we may choose an
element w of S such that wS® = s5° < £S° and tow.

Let y, k be the elements of § with s =¢y, w=sk. Then spwy and wy =sky. Take
n=2and putu=1,

=l q=tn=y,

P2=W,q;=5,r,=ky,
vi={(h, h'):thpth'},
vy ={(h, h'):shpsh'}.

Then pys =s =ty =qn, pory=wy =sky = q,r, and sur, = sky = wyps. Since q,, q,
are non-zero, ann,(q,) c v, and ann,(g,) < v,.
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If v,v' €S° vpv' and v+#v', then v=th, v’ =th’ for some h,h' € S°. Thus thpth’
and so hv;h’, which gives that 1 € Ann(p, ¢, v,), that is, p; € Ann(vy, qo, V1)

Finally, if v,v’ are elements of S° such that vv,v’, then tvptv’ and so wupwu' as
wS®ctS%. Now wv =skv and wv' =skv’, giving skvpskv’ and kuv,kv'. Thus we
Ann(v,, s, ¥;), that is, p, € Ann(v,, g5, v;). This completes the proof that S° satisfies
condition (CI).
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