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Summary

The problem of jointly estimating the intensity of past selection affecting an allele and the allele’s
age is formulated in a Bayesian framework. The prior distribution of allele age given its frequency
is obtained from existing population genetics theory. The prior distribution of selection intensity is
assumed to reflect the fact that positive selection on a new mutant is more likely to be weak than
strong. The general approach is illustrated by the development of an importance sampling method
applicable to low-frequency alleles. This method can be used either when the haplotypes of closely
linked marker loci are known or when the lengths of linked ancestral chromosomal segments can be
inferred. The method is illustrated with an application to the Ax allele of G6PD in Africa. Because
changes in allele frequency and recombination are both intrinsically stochastic, there are limits to
the accuracy achievable with any method.

1. Introduction

Neutral loci linked to an allele of interest provide
information about the history of that allele since
it arose by mutation. The extent of linkage dis-
equilibrium (LD) with linked markers allows tests of
neutrality (Sabeti et al., 2002; Slatkin, 2000; Slatkin &
Bertorelle, 2001; Toomajian et al., 2003; Voight et al.,
2006), estimates of selection intensity (Charlesworth,
2006; Charlesworth et al., 2001; Slatkin, 2001; Wiuf,
2001a) and estimates of allele age (Goldstein et al.,
1999; Guo & Xiong, 1997; Kaplan et al., 1994;
McPeek & Strahs, 1999; Reich & Goldstein, 1999;
Risch et al., 1995; Slatkin & Rannala, 1997; Stephens
et al., 1998; Tishkoff et al., 1996). These problems
are usually considered separately. When the goal is
to estimate both age and selection intensity, age is
estimated first and then selection intensity is inferred
from the age by using a deterministic model of selec-
tion, an approach first taken by Stephens et al. (1998).

In this paper, I consider the problem of jointly
estimating the age of an allele and the intensity of

selection it has experienced since it arose by mutation.
I will formulate the problem in a Bayesian framework
that accounts for the stochasticity of both allele fre-
quency change and recombination. I then illustrate
the approach by presenting a method for analysing
low-frequency alleles linked to one or more marker
loci. The method presented here is similar to that of
Rannala & Reeve (2001) for linkage disequilibrium
mapping in that it assumes that the dynamics of
a low-frequency allele can be modelled by a linear
birth–death process, and it approximates the prob-
ability of the data using Monte Carlo summation. It
differs from Rannala & Reeve’s method in using im-
portance sampling instead of the Metropolis–Hasting
algorithm for approximating the probability of the
data.

One of the goals of this paper is to show that even
under ideal conditions, when the genetic and demo-
graphic parameters are known without error, precise
estimates of both allele age and selection intensity
cannot be obtained because of the intrinsic un-
predictability of genetic drift and recombination. This
conclusion is in contrast to the conclusion reached
when allele age is estimated using a ‘model-free ’
method that assumes that the gene genealogy is a star
(meaning that there are no internal branches) and that
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deterministic theory can be used to estimate the
selection intensity under the assumption that the es-
timated age is the true age. The model-free approach
does not take account of all sources of uncertainty in
the estimates of allele age and selection intensity and
hence exaggerates the accuracy of the resulting esti-
mates.

2. Theory

(i) Formulation as a problem in Bayesian inference

Throughout, I will be concerned with the history of an
allele, denoted by M, that arose as a unique mutation
at time t1 in the past in a population previously fixed
for the alternative allele, m, at the locus of interest. All
copies of M are identical by descent with the initial
copy. Although t1 is the true allele age, the time of the
most recent common ancestor of all copies of M in a
sample, called t2 below, is also referred to as the age
(Slatkin & Rannala, 2000). The goal is to estimate t1
and to infer something about selection experienced
by M since t1. The genetic information available is the
frequency of M in the population (x) and data from
marker loci closely linked to M.

To describe the method in as simple a framework as
possible, selection on M will be additive with selection
coefficient s : the relative fitnesses of MM, Mm and
mm individuals are 1+2s, 1+s and 1. I assume a
prior distribution of s, Pr(s) that reflects what is
known about selection on individual alleles. The
strongest positive selection known in humans is on the
S allele of the b-globin gene which causes sickle-cell
anemia. Heterozygous carriers of S have roughly a
20% higher rate of surviving to adulthood than nor-
mal homozygous individuals in regions with a high
incidence of malaria (Vogel & Motulsky, 1996). For
analysing data from human populations, a reasonable
prior distribution of s decreases with s and is small
for s>0.2. In the analysis of G6PD, I assume
Pr(s)=aexas, where a is a parameter with a value in
the range 10–50.

The allele frequency, along with s and assumptions
about past population growth, provide a prior distri-
bution of t1, Pr(t1jx, r, s) (Slatkin, 2002b). Genetic
data from linked marker loci provide additional in-
formation about s and t1 that leads to the posterior
distribution of s and t1 :

Pr(s, t1jx, r,G)=
Pr(t1jx, r, s) Pr(Gjt1, x, r, s) Pr(s)

Pr(Gjx, r) (1)

where G represents the genetic data.
How the posterior distribution is used depends on

the goal of a study. If the goal is to estimate selection
intensity, the best estimate of s is obtained by
averaging over t1, Pr(sjx, r,G)=

R
Pr(s, t1jx, r,G)dt1.

If, instead, the goal is to estimate t1 or to compare

t1 with historical information, then the posterior
distribution of t1 is obtained by averaging over s,
Pr(t1jx, r,G)=

R
Pr(s, t1jx, r,G)ds. The resulting prob-

ability distribution can be used either to test a specific
historical hypothesis, for example the probability that
t1 is larger or smaller than a given time, or to find the
most probable value of t1 and the associated confi-
dence interval. In other situations, the goal is to find
how much information about both t1 and s is pro-
vided by the data, in which case the joint posterior
distribution itself should be used.

(ii) Linear birth–death approximation for
low-frequency alleles

To implement the above theory, I assume that the
population has grown exponentially at rate r to its
current size, N0 : the population size at time t in the
past isN(t)=N0e

xrt. When x is small, the evolution of
the number of copies of M can be approximated by a
linear birth–death process (Wiuf, 2001b), for which
analytical expressions for Pr(t1jx, r, s) are available
(Slatkin, 2002b). The formulas used here are given in
Appendix A.

The probability of the data given t1, Pr(Gjt1, x, r, s),
depends on the intra-allelic genealogy, meaning the
gene tree of the i copies of M in a sample. As illus-
trated in Fig. 1, the intra-allelic genealogy is charac-
terized by a set of i – 1 coalescence times, t2, …, ti, and
the topology, B (for branching pattern). The depen-
dence of Pr(Gjt1x, r, s) on the coalescence times and
topology can be written

Pr(Gjt1, x, r, s)=g
B

Pr(B)

Z

{t2, ...ti}

Pr(Gjt2, . . . ti,B)

rPr(t2, . . . tijx, r, s, t1)dt2 � � � dti, (2)

where the sum is over all topologies with i tips and
the integral is over all sets of intra-allelic coalescence

M M M M m m

t4

t3

t1 m M

t2

Fig. 1. The intra-allelic genealogy of a mutant M found in
four copies (i=4), illustrating the definitions of allele age,
t1, and the intra-allelic coalescence times, t2, t3 and t4.
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times such that t2 ot3 …oti >0 (Felsenstein, 1988).
The first term in the integrand represents the effect of
recombination on loci linked toM; it depends only on
the intra-allelic genealogy and not on the probability
attached to that genealogy. The second term re-
presents the dependence of the joint distribution of
intra-allelic coalescence times, which is easily derived
for a linear birth–death process (Appendix A). Under
the assumption that all copies of M are equivalent, the
distribution of topologies is generated by assuming
each lineage is equally likely to branch at each co-
alescent event, and hence depends only on i.

(iii) Genetic data

I will consider here two kinds of genetic data. The first
is the set of multi-locus haplotypes linked to each
copy of M in the sample. I assume there are K diallelic
marker loci, numbered 1 to K, with alleles at each
locus labelled 0 and 1. The 1 allele is assumed ancestral
in the sense that it was on the chromosome carrying
the first copy of M. There are 2K possible haplotypes
and their frequencies on non-M chromosomes are yj,
j=1 … 2K, which are parameters of the model as-
sumed to be known without error and not to have
changed since t1. The genetic data, G, consists of the
haplotype associated with each M-bearing chromo-
some in the sample. I will discuss later the effects of
uncertainly in yj and the haplotype phase of the mar-
kers on the M-bearing chromosomes.

The second kind of genetic data assumes that mar-
ker loci linked to M are sufficiently dense that it is
possible to determine the length of the ancestral seg-
ment still linked to each copy of M. The frequency of
each marker allele is unimportant. In this case the
data consist of the lengths of ancestral segments
measured in terms of the total recombination rate. I
will assume the same rate c between every pair of sites.
In that case, the data is a list of lengths in bases, l1, …,
li, of ancestral segments linked to each copy of M in
the sample. This kind of data differs from the mini-
mum length of the ancestral fragments linked to M,
l=min[l1, …, li], which has been used as a summary
statistic (McPeek & Strahs, 1999; Slatkin, 2001;
Slatkin & Bertorelle, 2001).

For both kinds of data, the computational problem
is to find Pr(Gjt1, x, r, s). As is usually the case when
summing over tree topologies and integrating over
branch lengths, exact computations are not feasible
for more than three or four M-bearing chromosome.
Here, I use an importance sampling method in-
troduced previously (Slatkin, 2002a). The transition
matrices used for the two types of data are summar-
ized in Appendix B. The results from using the
importance sampling method were checked by com-
paring them with results for one and two marker loci
which could be obtained by other means.

3. Positive or negative selection

The Bayesian framework described in the previous
sections does not require that selection favoured of
the mutant of interest. In fact, unless an additional
step is taken, it is not possible to determine whether
the mutant experienced positive or negative selection.
The problem is seen most clearly in the case of an
allele with an additive effect on fitness in a population
of constant size. Maruyama (1974) showed that, un-
der these assumptions, the prior distribution of age is
independent of the sign of the selection coefficient.
Although Maruyama’s conclusion is no longer true if
there is dominance or past population growth, the
implication of his result for the problem of estimating
the selection coefficient from allele age is still import-
ant. A deleterious allele, if it is found in any substan-
tial frequency, has to be relatively young and hence in
LD with linked markers, just as would an advan-
tageous allele.

Maruyama’s result led Nordborg & Tavaré (2002)
to conclude that extensive LD near an allele might
well indicate selection against it rather than in favour
of it. They suggested that which is more probable
depends on the relative rates of deleterious and ad-
vantageous mutations. And they concluded that our
current lack of knowledge about mutation parameters
renders the problem of deciding whether selection was
in favour of or against a mutant ‘philosophical ’.
Nordborg & Tavaré’s (2002) argument is not con-
vincing, however, because it ignores the fact that an
advantageous mutation is much more likely to reach a
given frequency than will a mutation that is deleteri-
ous to the same extent. In Appendix C, I show how to
use the birth–death approximation to find the ratio of
probabilities that a mutant was advantageous instead
of deleterious. If the mutant is present in any sub-
stantial frequency, that ratio is so large that the
possibility of negative selection can be ignored. For
example, in the case of G6PD, discussed below, it is
approximately 1.4r1016 more likely that the selection
coefficient affecting the Ax allele of G6PD is +0.05
than x0.05.

4. Application to G6PD

The Bayesian method is illustrated by applying it to
the data of Saunders et al. (2005) who sequenced 20
chromosomes carrying the Ax allele at the X-linked
G6PD locus. This allele is found in sub-Saharan
African populations in frequencies up to 20%. It is
thought to confer partial resistance to malaria (Vogel
& Motulsky, 1996). Saunders et al. (2005) sequenced
eight loci in a 2.5 Mb region surrounding G6PD in
51 unrelated males of sub-Saharan African origin.
Twenty of these males carried the Ax allele. LD at
linked SNP markers spanned a region of 1.6 Mb on
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the Ax chromosomes. By applying a simplified ver-
sion of the method presented here, Saunders et al.
(2005) concluded that heterozygous carriers of Ax
had between a 10% and 20% fitness advantage over
homozygous individuals and that Ax arose by mu-
tation less than 150 generations (3750 years) ago. Part
of the purpose of this paper is to formalize and gen-
eralize the method used in that paper and in the paper
of Wood et al. (2005).

Following Saunders et al. (2005), I assume no
population growth (r=0) and a frequency, x=0.11,
of Ax. With a population size of N0=100 000, a
fraction f=9.1r10x4 of the population would have
to be sampled to obtain 20 copies of Ax in a sample.

To analyse the linked haplotypes, I considered
four SNPs (numbers 36, 41, 55 and 99), one each from
the four loci BGN, IDH3G, 1CAM and G0.9MT
in figure 2 of Saunders et al. (2005). I assumed that
the nucleotide carried by the first individual listed
(ALB77) was on the ancestral Ax chromosome and
denoted it by 1. The other nucleotide was denoted
by 0. With this convention, each haplotype can be
numbered from 0 to 15 by treating the haplotype as a
binary number. With this convention, the data of
Saunders et al. can be reduced to six Ax chromo-
somes with haplotype 15, three with haplotype 9,
seven with haplotype 7, one with haplotype 3 and
three with haplotype 1. I used the haplotypes of the 31
non-Ax chromosomes to estimate the frequencies
of the 1 allele to be 0.419, 0.0323, 0.0645 and 0.433
for the four loci. There is no obvious LD on the non-
Ax chromosomes, so I computed the background
frequencies of the 15 haplotypes by assuming linkage
equilibrium.

The linkage map for these four loci was inferred by
assuming that the rate per base is constant in this re-
gion and using the estimated rate between L1CAM
and G6PD of 0.01675 to estimate the rate per base.
The map distances from BGN were 0.0086 for
IDH3G, 0.0131 for L1CAM, 0.02985 for G6PD and
0.0354 for G0.9MT. From the background fre-
quencies and map distances, the elements of the
16r16 transition matrix were obtained.

The other way of analysing this kind of data is to
infer the length of the ancestral chromosome still
linked to Ax. That assessment is somewhat subjec-
tive. For example, in the G6PD data set the first four
of the Ax chromosomes (ALB77, SHO07, VA065
and IVC17) have nearly the same haplotype as far as
the BGN locus, which is 991 kb from G6PD. But the
sequence of VA065 differs from the other three at
SNP 20 and the sequence of IVC17 differs from the
other three at SNP 36, both of which are in the BGN
locus. The two apparently aberrant sites could differ
from the others because of gene conversion or
mutation that did not otherwise affect the ancestral
fragment. Or they could indicate that recombination

had taken place between BGN and IDH3G and then
subsequent recombination recreated what appears to
be the ancestral haplotype. I assumed that a single
aberrant SNP was not sufficient evidence to indicate
recombination. With that assumption, the data of
Saunders et al. (2005) reduce to the following: four of
the Ax chromosomes had the conserved ancestral
fragment to BGN on the centromeric side of G6PB,
seven to IDH3G, one to L1CAM, four to TAZ and
one had no conserved fragment. I did not analyse the
telomeric side of G6PD because all 20 Ax chromo-
somes had identical haplotypes on that side. I
rounded the distances to 50 bp intervals. BGN was
assumed to be 20 units from G6PD, IDH3G was 14
units, L1CAMwas 11 units and TAZ was 2 units. The
recombination distance per 50 bases was 0.01675/
11=0.001528, based on the estimated recombination
rate between G6PD and L1CAM.

The results from analysing the two data sets are
presented in Fig. 2. Part (a) shows the joint posterior
distribution of s and t1 based on the analysis of an-
cestral fragments; (b) shows the same distribution
obtained from the analysis of four marker loci. The
two distributions have the same character. There is
a ridge indicating that t1 and s are somewhat con-
founded. The reason is that both the prior distri-
bution of allele age and the distribution of intra-allelic
coalescence times depend strongly, although not ex-
clusively. on the product st1. The two data sets
nevertheless result in joint estimates of s and t1 that
are consistent with each other. The maximum for
Fig. 2a is at s=0.26 and t1=40 generations and for
Fig. 2b at s=0.24 and t1=40 generations.

The similarity of the most probable values of s and
t1 does not tell the whole story. Although it is some-
what difficult to see in the three-dimensional graphs in
Fig. 2, there is much more variability in Fig 2b than in
2a. The variability is more obvious when the marginal
distributions of s and t1 are computed (Fig. 3). The
marginal distributions of s and t1 for the model of
ancestral segments (Fig. 3a and b) and are much
smoother than the corresponding distributions based
on the four marker loci (Fig. 3c and d ). The results
for both models are based on 106 replicates of the
importance sampling algorithm, so the difference be-
tween results from the two models reflects the greater
intrinsic variability in recombination in a small set of
marker loci.

5. Discussion

The Bayesian framework for jointly estimating allele
age and selection intensity is quite general and can
be adapted to other models of selection and to other
assumptions about population history. The im-
plementation of the method presented here is appro-
priate for low-frequency alleles. The application to

M. Slatkin 132

https://doi.org/10.1017/S0016672307008944 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672307008944


the Ax allele of G6PD shows that allele age and
selection intensity are partially confounded because of
the underlying population genetic processes. We can
see why that is true by considering a deterministic
model of selection on an allele with additive effect s on
fitness. The differential equation that approximates
the change in allele frequency is

dp

dt
=sp(1xp) (3)

where p is the allele frequency and t is time (Hartl &
Clark, 1997). This equation is unchanged if s is mul-
tiplied by a constant C, s0=Cs, and the units of
time are reduced by the same factor, t0=t=C. Hence
any function that depends on the product st is un-
changed.

The reason that s and t1 are not completely con-
founded is that, when M is at low frequency, the

trajectory of allele frequencies is not deterministic ; it
is also affected by genetic drift. Drift and selection are
both accounted for in the linear birth–death approxi-
mation. The equations in Appendix A show that both
the prior distribution of age and the joint distribution
of intra-allelic coalescence times depend on s and t1
separately as well as on the product st1.

The Bayesian method accounts for both the stoch-
astic dynamics of a low-frequency allele and the
stochastic nature of recombination. These two
sources of unpredictability make it difficult to obtain
precise estimates of age and selection intensity even
under the idealized conditions assumed here. Any
additional sources of uncertainty, for example in
estimated map distances, estimated haplotype fre-
quencies of the non-M chromosomes or inferred
haplotype phases, further reduce the ability to esti-
mate ages and selection intensities.

The importance of accounting for all sources of
variability is evident in the analysis of the G6PD data
set. Figs 2 and 3 show that there is more variability in
the results for the four marker loci than for the an-
cestral segments. The reason is that, in the model of
individual marker loci, there are more sources of un-
certainty. In this example, the age of the Ax allele is
small enough (B50 generations) and the recombi-
nation distances between the markers are also small
enough (B1–3 cM) that very few recombination
events are expected after Ax arose by mutation. The
data do not allow a precise determination of the
number or order of those recombination events and
hence do not narrowly constrain the estimates of s
and t1. Failure to take account of all sources of
variability, as in ‘model-free ’ methods that assume
that the intra-allelic genealogy is a star (Neuhausen
et al., 1996; Reich & Goldstein, 1999), lead to exag-
gerated confidence in the resulting estimates.

The estimated selection intensity on the Ax allele
of G6PD, 0.24, is larger than the minimum estimate of
0.05 reported by Saunders et al. (2005), and the esti-
mated age, 40 generations, is smaller than their esti-
mate. The difference is a consequence of assuming a
prior distribution for s and using it in the Bayesian
analysis. Saunders et al. (2005) found that the likeli-
hood function depends only weakly on s for s>0.05.
They used s=0.05 as a conservative estimate and then
estimated t1 from the posterior distribution of t1, given
that value of s. The result is an overestimate of t1 and
an underestimate of s. In contrast, the estimates ob-
tained here are from a posterior distribution that has
a single maximum, albeit one that lies on an evident
ridge.

In the G6PD example, no population growth was
assumed. If there actually had been exponential
growth, then the estimated selection coefficient would
estimate r+s because population growth has almost
the same effect on linked markers as does positive
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Fig. 2. The joint posterior distribution of s and t1
computed for the Ax allele of G6PD using the
importance sampling method described in the text. The
data and genetic map were taken from Saunders et al.
(2005). In both cases, 106 replicates were used. (a) Pr(s, t1)
estimated from the lengths of ancestral chromosomal
segments linked to Ax. The identification of the ancestral
segments is described in the text. (b) Pr(s, t1) estimated
from data for four marker loci (BGN, IDH3G, 1CAM and
G0.9MT) linked to G6PD. The details of the genetic map
are described in the text.
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selection. However, exponential growth would affect
all loci in the same way, resulting in more LD across
the genome. The evidence for positive selection at
G6PD comes from the fact that the extent of LD with
the Ax locus is unusually large.

In the general formulation of the birth–death ap-
proximation, only exponential growth at rate r was
considered in order to order to minimize the number
of parameters in the model. The method could be
adapted to other models of demographic history, in-
cluding population subdivision and bottlenecks in
population size. As in the case of exponential growth,
evidence of selection comes from LD with the allele of
interest that exceeds background levels of LD created
by demographic processes.

The Bayesian analysis described above assumes
a prior distribution of selection intensities, but treats

the observed mutant frequency (x) as a fixed
parameter. It would be possible to develop a
Bayesian method in which a prior distribution of
x is derived from assumptions about mutation, selec-
tion, drift and other factors. Such an approach,
however, would not take account of the way
that mutants are chosen for detailed genetic analy-
sis of the type done by Saunders et al. (2005). Until
the criteria for carrying out such studies can be
quantified, it seems difficult to extend the Bayesian
framework to include a prior distribution of x as
well.

This research was supported in part by Grant GM40282
from the US National Institutes of Health. I thank
B. Rannala for helpful discussions of this topic and the re-
viewers for helpful comments on a previous version of this
paper.
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Appendix A. Approximations based on the linear

birth–death process

(i) Prior distribution of allele age

The prior distribution is itself derived from a Bayesian
formulation initially used by Kimura & Ohta (1973).
The probability that an allele M of frequency x0 at
t=0 is at frequency x at a later time t=T can be
written as a transition function w(x,Tjx0, 0) that de-
pends on the population sizes and selection intensities
between 0 and T. The prior distribution of allele age
is obtained from this transition function by assuming
a constant mutation rate m. The probability that a
mutation arises t1 generations in the past is 2 mN(xt1)
where N(xt1) is the population size at that time. The
probability that M arises t1 generations in the past
and is found at frequency x today is

2 mN(t1)w(x, 0jx0,xt1)

where x0 is the frequency of a newmutant, 1/[2N(xt1)].
Therefore,

Pr(t1)=
N(xt1)w(x, 0jx0,xt1)R1

0 N(xt1)w(x, 0jx0,xt1)dt1
: (A1)

For neutral alleles in a population of variable size
and for arbitrary x0 and x, w can be obtained as the
solution to a diffusion equation that approximates
the Wright–Fisher, Moran and other models of gene
frequency evolution. For selected alleles, there is no
usable solution for w even in a population of constant
size. If x0 and x are both small, the problem can be
simplified because the number of copies of M can be
modelled by a linear birth–death process that allows
for both exponential population growth and additive
selection. (Slatkin, 2002b ; Wiuf, 2001b). In this case,
analytical expressions for Pr(t1) are available. If there
are N0 individuals in the population at the present
time and n chromosomes are chosen at random and
tested for M, the fraction of the population sampled is
f=n/(2N0) and the number of copies of M in the
sample is i=2N0x. The population is assumed to have
grown exponentially at rate r and s is the additive
selection coefficient in favour of M. The growth rate r
is non-negative, but s may take any value.

I have presented elsewhere distributions for all
combinations of r and s (Slatkin, 2002b). Here I in-
clude only those formulas used to obtain the results
presented in the text. If r=s=0, the prior probability
that M arose t generations in the past is

Pr(t)=
2if itix1

(2+ft)i+1 ; (A2a)

if r=0 and s>0,

Pr(t)=
2if is2exst(1xexst)ix1

( f+( fx2s)exst)i+1 ; (A2b)

if r>0 and s>0,

Pr(t)=

j f ix1ex(j+r)t(1xexjt)ix1

( f+( fx2j)exjt)i+1C( j)2F1(1+r=j, 1+i, 1+r=j+i;1xj=f)
,

(A2c)

where j=r+s, C( ) is the gamma function and 2F1( ) is
the hypergeometric function (Abramowitz & Stegun,
1965). In these equations, t is used instead of t1 for
notational convenience. Note that in equations (A2b)
and (A2c), Pr(t) depends on s and t separately as well
as on the product st.

(ii) Intra-allelic coalescence times

As shown by Slatkin & Rannala (1997), the coalesc-
ence times for the intra-allelic genealogy are easy to
generate if the number of copies of the mutant follows
a linear birth–death process. A random set of co-
alescence times {t2, …, ti} is obtained by generating
ix1 random variables from a kernel distribution,
b(tjt1), and then sorting them in decreasing order. If
r=s=0,

b(tjt1)=
2(2+ft1)

t1(2+ft)2
(A3a)

and if j=r+s>0,

b(tjt1)=
2j2exjt

( fx( fx2j)exjt)2
fx( fx2j)exjt1

1xexjt1
: (A3b)

If the intra-allelic genealogy were a star, then
t2=…=ti=t1. In this model, that would be equivalent
to b(tjt1) being a spike (i. e. a Dirac d function) at
t=t1. The extent to which b(tjt1) is not a spike in-
dicates how much the intra-allelic genealogy differs
from a star.

Appendix B. Estimating the probability of the data

by using importance sampling

The method described in the text requires the calcu-
lation of Pr Gjt1, x, r, sð Þ, which is the probability of the
genetic data (G), given the age of M (t1), the frequency
of M (x), the population growth rate (r) and the
selection intensity (s). The exact calculation requires
the evaluation of equation (2) in the text. Because
the number of branching patterns of a genealogy in-
creases very rapidly with the number of terminal
branches, it becomes impractical to evaluate the sum
exactly for a sample size larger than 3 or 4. To avoid
this problem, I use an importance sampling method
introduced previously (Slatkin, 2002a) that performs
well when the intra-allelic genealogy is generated by a
linear birth–death process. The idea is to sample
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branching patterns in such a way that patterns that
contribute more to the overall probability of the data
are sampled more frequently. By generating a large
number of trees and taking the average, an estimate of
the probability of the data is obtained:

Pr Gjt1, x, r, sð Þ � 1

H
g
H

h=1

PrRS(Bh)

PrIS(Bh)
Pr GjBh, t2, . . . , ti,Fð Þ,

(B1)

where H is the total number of replicates, PrRS(Bh)
is the probability of branching pattern Bh under a
random choice of branching patterns, PrIS(Bh) is the
probability of Bh under the importance sampling
method used and F is the forward transition matrix
for the genetic data in one generation. This transition
matrix has to be specified for each type of data. In this
paper, I consider two models : one with K loci and an
arbitrary recombination map and the other of the
length of the ancestral chromosome associated with
each copy of M.

(iii) Multiple marker loci

There are assumed to be K diallelic marker loci linked
to M. At each locus, allele 0 is assumed to have been
on the ancestral M chromosome. The 2K haplotype
frequencies on the non-M chromosomes are assumed
to be known and fixed. The genetic map is specified by
c, the recombination rate between M and locus 1. If
c<0, locus 1 is to the left of M; if c>0, locus 1 is the
to right. The recombination rate between locus k and
k+1 is ck (k=1, …, Kx1). Therefore, M is the left-
most locus if c>0 and M is the rightmost locus if
xc>gKx1

k=1 ck. Otherwise M is between one pair of
marker loci. The number of M-bearing chromosomes
is assumed to be so small that only recombination
events between an M-bearing and a non-M-bearing
chromosome are considered. There is no interference
in recombination and the recombination rates are as-
sumed to be sufficiently small that at most one cross-
ing-over occurs each generation.

With these assumptions, it is straightforward to
find the elements of F, the forward transition matrix
for the 2K states of the marker loci on an M-bearing
chromosomes. Each off-diagonal element of F re-
presents a transition from one marker haplotype to
another. The transition probability is the sum of
the probabilities of recombination events between
each pair of marker loci. For example, if K=4,
the probability of a transition from (1, 0, 1, 0) to (1, 0,
1, 1) can result from a recombination event between
markers 2 and 3 bringing in the 1, 1 haplotype
at markers 3 and 4 and a recombination event be-
tween markers 3 and 4 bringing in the 1 allele at
marker 4. The diagonal elements are obtained by
subtracting from 1.

(iv) Ancestral chromosome lengths

If the lengths of ancestral chromosomes linked to
each copy of M are known, it is possible to derive an
analytical expression for an arbitrary power of F, the
forward transition matrix. The chromosomal seg-
ments on each side of M are considered separately
and then the probabilities are multiplied to obtain the
overall probability. On one side of M, assume there
are L sites and the recombination rate between each
pair of sites is c. The parameter L is chosen to be large
enough that the results do not depend on its value.
The state of a segment is k, the length of the ancestral
segment linked to M (k=0, 1, …, L).

The elements of F are probabilities of transitions
from state k in generation t to state kk in generation
t+1: Fkk0=0 if kk>k, Fkk0=(1xc)k if kk=k and Fkk0=
c(1xc)k

0
if kk<k. It is straightforward to verify that

the elements of Ft are 0 if kk>k, (1xc)ktif kk=k and
(1xc)k

0tx(1xc)(k
0+1)t if kk<k.

Appendix C. Positive or negative selection

The theory of linear birth–death processes pro-
vides the probability that j alleles are found at time t,
given one copy at time 0, a birth rate l and a death
rate m :

Pr(jjt)=u 1xuð Þjx1
(C1)

(j>0), where

u=
l 1xex(lxm)t
� �
lxmex(lxm)t

(C2)

(Kendall, 1948). If a fraction f of the population is
sampled with replacement, then the probability that i
copies of the allele are present in the sample is ob-
tained by multiplying (C1) by a binomial distribution
with probability f and sample size j and summing over
j to obtain:

Pr(ijt)=u0 1xu0ð Þix1
(C3)

where u0=fu= 1x(1xf )u½ �.
Slatkin & Rannala (1997) andWiuf (2001b) showed

that the linear birth–death process approximates
the dynamics of a rare allele in a population of
size N growing exponentially at rate r and subject
to additive selection of intensity s if l=1/2 and
m=1/2xrxs.

Given that i copies of a mutant are observed at time
t, the relative likelihood that a mutant has a selective
advantage s instead a selective disadvantage of s is the
ratio Pr(ijs, t)=Pr(ijxs, t). This ratio is very large if s is
not small. In the example used in the text, in which
i=20, f=9.1r10x4 and r=0, the ratio is approxi-
mately 1.4r1016 if s=0.05 and increases rapidly as s
increases.
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