
BULL. AUSTRAL. MATH. SOC. 4 I A 3 6 , 4 I A 2 5

VOL. 27 ( 1 9 8 3 ) , 7 3 - 8 1 .

ON APPROXIMATION OF
CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

BY POSITIVE LINEAR OPERATORS

HEINZ H. GONSKA

The aim of this note is to prove a theorem on the pointwise

degree of approximation of continuously differentiable functions

by positive linear operators. As can "be seen from the

applications to Bernstein and Hermite-Fejer operators, our

inequality yields "better constants and sometimes even a higher

degree of approximation than the known general results.

Recently Mond and Vasudevan [73] proved a refined version of a theorem

of Censor [3] concerning the approximation of functions in (T[a, b] "by

positive linear operators. This improvement which is also due to Meier

[70] can be obtained by proceeding in the same way as was done by Mond [72]

who modified the well known result of Shisha and Mond [77].

It is the aim of the present note to indicate that there is a further

improvement over Censor's result which yields better constants than the

theorem of Mond and Vasudevan and which guarantees for certain positive

linear operators even a higher degree of approximation. Moreover, the

assumption that \L (1)} _. is uniformly bounded is superfluous.

Following De Vore [4] we prove a pointwise statement.

THEOREM. Let L be a linear positive operator on C[a, b] . Let

f € CT[a, b] and let w(f, •) be the modulus of continuity of f .
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Then the estimate

\L(f, x)-f(x)\ 5 |/(x)| • |i(e0, x)-l| + H/'ll • l i ^ -x , x)|

+ JL(|erx|, x) + -̂ • i j l^-x)2 , x]] • «(/', fc)

holdsj where e. denotes the ith monomial, h € (0 , fc-a] i s arbitrarily

chosen, and ||*|| denotes the sup-norm.

Proof. First observe that

| i ( / , x)-f(x) | < \L(f, x)-f(x) • L(e0, x) | + | / (x ) | • \L[eQ, x ) - l | .

Thus i t remains to estimate the difference L(.f, •) - / ( • ) • i(^0> *) •

Since / is in u[a,b] and £ is a positive linear operator we know
for each x € [a, b] that

\Uf, x)-f(x) • L[eQ, x)\ = \L(f-f(x), x)\

< i(|/-/(x)|, X)

s H/'ll • L[\ex-x\, x) .

This inequal i ty i s due to Mamedov [9 ] .

Moreover, l e t g i u[a, b] . In th i s case we have

\Ug, x)-g(x) ' l[eQ, x) | < h ' i f ^ - x ) 2 , x] • ||<?''|| + U ^ - x , x) | . ||?'|| .

This type of e s t i m a t e can be t r a c e d t o De Vore [43 and, independen t ly ,

Min'kova [ 1 7 ] .

Now l e t / € c[a, b] . Considering again t he d i f f e rence

L(f, ') - f(') • h\e , •) we have for an a r b i t r a r y g in CT[a,b],

\L(f, x)-/(x) • L{eQ, x)\

5 \L(f-g, x)-(f-g)(x) • L[eQ, x)\ + \L(g, x)-g(x) • L[eQ, x)\

2 \\(f-g)'\\ • L{\ex-x\, x] + ||ff»|| • h • i f ^ - x ) 2 , x]

+ Wg'W • l i t e ^ , «)l •

Now we extend / ' to a function / ' by defining f '(x) = f'(a) for
x < a and ?'(x) = f {b) for x > i> . Putting
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for 0 < ft 2 b-a and x € [a, b] y ie lds a function ( / ' ) , sa t i s fy ing the
n

1 (h -
(f')h{x) := ̂  J f'

inequalities

11/'-(/');,!! ^ "(/ '» &) and

If we now choose g (. CT[a, b] in such a way that g' = (f')r, we arrive

at

|£(/ , x)-f(x) • L[eQ, x)\

5 «(/', ft) • Lfl^-xl, «) + | * " ( / ' , *) • * • ijf^-x)2, a]

+ 11/'II • U ( v x ' x^

= i i / ' i i • | i k - x ' x ) i + f ^ d v x | ' x ^ + h ' 4 K - X ) 2 ' X 1 1 "w{f>>h)-
1 V i_l

From this the desired inequality follows.

Note that if L reproduces the zero-th or the zero-th and the first

monomial at a fixed point x , this theorem gives a much simpler estimate.

This is the case for the polynomial operator introduced by Bernstein [2]

which will be treated in the following

EXAMPLE. For the classical Bernstein operators given for / € IR^0'1^

*.(/, *) := I /(*/*) ' il)xk(l-x)n-k
n k=o K

for f £ (r[0, 1] , x € [0, 1] and n > 1 the following inequalities

hold:

(i)

\Bn(f, x)-f(x)| 2 { | («-

here r is given by r = [nx] where [MX] denotes the

largest integer not exceeding nx ;
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( i i ) \\B f-f\\ < % . -L . U U _L] .
Vn • Vn}

Proof. The important representation of B [\e -x\ , x) was given by

Schurer and Steutel [75]; the equality S \[e -x) , x\ = x(l-x)/n is well

known. This gives (i). In order to arrive at (ii) it is not necessary to

use (i).

Using the Cauchy-Schwartz inequality (which can give quite a crude

estimate) one has

This leads to the estimate

8-Vn

which was claimed under (ii).

Thus, "by employing the above smoothing approach we arrive at an

estimate for the approximation by Bernstein polynomials which is better

than the corresponding application of the theorem of Mond and Vasudevan.

The following remark shows that our approach gives always better constants

provided that L (e_, x) = 1 and l[e, , x] = x for x € [a, b] fixed.

If h{e., x) = e \x) for i = 0, 1 , and if we choose h = A • u ,

A > 0 , where p = ||i[(e, - - ) 2 , ')\\2 > 0 , then

Thus the above approach yields an estimate which - for the particular case

of Bernstein operators - comes close to the striking result of Schurer and

Steutel [76] concerning the best possible constant in an estimate of the

above type. We take the liberty to point out that the gap between our

general theorem and the particular Bernstein polynomial approach due to

Schurer and Steutel was bridged in our paper [7] by using the least concave

majorant of w(/', •) .
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The next example shows that our theorem yields a higher degree of

approximation for differentiable functions than the theorem of Mond and

Vasudevan does provided that i(|e -x\ , x) is small in comparison to

V * )
2 , x)f .

EXAMPLE. If we consider the classical Hermite-Fejer polynomials

H (f, •) of Fejer [5] interpolating a function / € IR ' at the zeros

of the Cebysev polynomials T and having a derivative equal to zero at

these points, that i s ,

n

fc=l

[l-xxA-T(x)

where

for

hold:

xk = COS((2/C-1)IT/2M) ,

CT[-1, 1] , x € [-1, 1] and n 2; 2 , the following inequalities

( i )

\H(f, x)-f(x)\ j i \T• (x) • T Ax)\ • H / ' l l + - T \T(x)\

(l+v 1-a; • log n) • w f,
l+V 1-x -lognJ

i i

Here C. and C are suitable constants.

Proof. In order to evaluate H [\e,-x|, x] we use a recent result of

Goodenough and Mills [S] (see also Amel'kovic C H ) ; from their Theorem 7

we obtain (with real numbers C , C, , ... J the inequalities
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<• —2- I T (T\ I • li + ii a-- n \-L
n\

s:}\ \x+\i-x

Using the equa l i t i e s (see [ 6 ] , [74])

logn) .

and

ff f k - x ) 2 , x i = i - 2 ^ ( x )n^1- 1 J ' j w nv

our above theorem y ie lds the estimate (0 < h S 2)

l* n ( / , *)-/(*) I ^ • |rn(x) • ^ ( a r ) ! * ll/'ll

• |Tn(x)| • (l+(l-x2)^ • log n) * ± • i•

Choosing

5 1 for T (x) / 0

1+V 1-x «log»

we a r r ive at

\Hn(f, x)-f(x)\ f i • \Tn(x) • ^ (

log n) • J / ' ,

V 1+V 1-x2 •logn-'

Due t o the fact tha t H f in terpola tes a t the zeros of T t h i s

inequa l i ty is also t rue i f T (x) = 0 . This gives statement ( i ) in our

example.

The uniform asser t ion under ( i i ) follows from the pa r t i cu l a r choice

h = l / ( l o g n) . Proceeding in exactly the same way as above we get for a l l

x € [ - 1 , 1] ,
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\Hn(f, x)- /(x)| 5 J • H/'ll + -£• (log(e.n) + log n) • » ( / ' , 3

s - • Wf'W * 2 n [J ' lognj

COROLLARY. If f (. C^t- l , 1] sue^ tha t f' € Lip a , 0 < a 5 1 ,

then

Thus the estimate in our second example gives a pointwise extension of

the theorem of Goodenough and Mills to continuously differentiable

functions in the sense that it takes both aspects into account: it

expresses the fact that we are dealing with interpolation operators and at

the same time reproduces the best available order of approximation of

functions whose derivative is in Lip a . This emphasizes - once again -

the need for theorems on how close the estimate in the corollary is to best

possible.
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