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Abstract

One way of suggesting that an NP problem may not be NP-complete
is to show that it is in the promise class UP. We propose an analo-
gous new method—weaker in strength of evidence but more broadly
applicable—for suggesting that concrete NP problems are not NP-
complete. In particular, we introduce the promise class EP, the sub-
class of NP consisting of those languages accepted by NP machines
that, when they accept, always have a number of accepting paths that
is a power of two. We show that FewP, bounded ambiguity poly-
nomial time (which contains UP), is contained in EP. The class EP
applies as an upper bound to some concrete problems to which previ-
ous approaches have never been successful, for example the negation
equivalence problem for OBDDs (ordered binary decision diagrams).

1. Introduction

NP languages can be defined via machines that reject when they have zero accepting pe
and accept by having a number of accepting paths that belongs to tfie 2€3, .. .}. A
number of researchers have sought to refine the class NP by shrinking the path-cardina
set signifying acceptance, while retaining the requirement that rejection be associated w
having zero accepting paths. We will call any such classticted counting class. The most
common restricted counting classes in the literature are random polynomial time (denot
R) and ambiguity-bounded classes such as UP and FewP. Ambiguity-bounded classes
be of central interest to us in the present paper.

Valiant's class UP (unambiguous polynomial tim29], which is known to differ from P
exactly if one-way functions exisi p], has the acceptance gk}, and so is a restricted count-
ing class. Acceptance sets of the forfais2, 3, ..., n% D} and{1, 2}, {1,2, 3}, ... define,
respectively, the class FewP|[and the classes UB, UPg3, ... [3], and thus these too are
restricted counting classes. (Note: JPUP<» € UP<3 C --- C UPg(1) € FewPC NP,
where URy(1) = Uk>1 UP«i.) These classes are also connected to the existence of on
way functions and have been extensively studied in a wide variety of contexts, such as cl:
containments [14£3], complete set2[l], boolean hierarchy equivalencé8], complexity-
theoretic analogs of Rice’s theorem PAQ], and upward separations [26].
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Restrictive acceptance suffices

Of course, the litmus test of NP refinements such as R, UR,U&hd FewP ishe extent
to which they allow us to refine the upper bounds on the complexity of natural NP problem
Of these classes, R and UP have been quite successful in this regard. R is well-kno
to provide an upper bound on the complexity of primality testing. UP is well-known to
provide an upper bound on the complexity of (a language version of) the discrete logarith
problem, and UP (indeed URPcoUP) is also well-known to provide an upper bound on the
complexity of primality testing.

However, there are certain NP problems whose richness of structure has to date def
attempts to put them in UP or even FewP, yet that nonetheless intuitively seem to use I
than the full generality of NP’s acceptance mechanism. To try to categorize these probler
we introduce the class EP, which is intermediate between FewP and NP E&HRC NP.

In particular, EP is the NP subclass whose acceptance{8&tiss N},N = {0,1,2,3,...}.

In Section2, we provide improved upper bounds on the complexity of the problem:
OBDD (ordered binary decision diagram) negation equivalence, 2-dag interchange equi
lence, and boolean negation equivalence. These three problems are trivially in, respectiv
NP, NP, and NBP. We provide upper bounds of, respectively, EP, EP, aftfEPhe prob-
lems are not known to belong to (and do not seem obviously to belong to), respective
FewP, FewP, and FeW®.

In Section3, we prove a general result regarding containment of FewP in certain re
stricted counting classes. In particular, we obtain a sufficient condition for establishin
when restricted counting classes contain FewP. From our result it follows that EP contai
FewP; moreover, our result subsumes as special cases some previously known results f
the literature. In Sectiod, we list open questions related to our work.

2. Concrete problems andP

In this section, we provide concrete problems known to be in NP (S¥)NRand we
prove they are in fact in EP (or E48). We now define the class EP (mnemonic: the num-
ber of accepting computation paths is restricted to being either 0 or some power (sor
exponentiation) of 2). For any nondeterministic polynomial-time Turing macNirend
any stringx, let #acgy (x) denote the number of accepting computation patha/ ain
inputx. Our alphabek will be {0, 1}. For any stringc € ~*, let|x| denote the length of.

Definition 2.1. EP denotes the class of all languadgdsr which there is a nondeterministic
polynomial-time Turing machin& such that, for each input e **,

x ¢ L — #acgy(x) =0, and
x € L = #acoy(x) € {2/ |i € NJ.

We pass on a comment of an anonymous referee who noted that EP is probably 1
robust under definitional perturbations; for example, the analog of EP based on any pov
of 3 is probably a different class. However, in Sectiynwe will prove a result general
enough so as to apply also to many restricted counting classes other than EP (including
just-mentioned analog of EP).

Now, consider the following well-known problem.
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Problem: Boolean negation equivalence (BNE) (se/][and [10]).

Input: Two boolean functions (input as boolean formulas using variable names and tt
symbols{A, v, =, (,)}), f(x1,...,x,) andg(xq, ..., x,), over the same boolean vari-
ables.

Question: Are f andg negation equivalent? That is, can one negate some of the input
of g such thatf and the modified functiog’ are equivalent? (The notion of boolean func-
tion equivalence underlying the definition of negation equivalence is the standard one. T\
boolean functions (over the same variables) are equivalent if they have the same truth va
for every assignment to their variables. Testing the equivalence of pairs of boolean formul
is in coNP.) For concreteness as a language problem, BNE, g) | / andg are negation
equivalent}.

For example, the two boolean functions described by the formulasx; v x3 and
X1V —x2 V —x3 are negation equivalent by negatingandxz. Regarding lower bounds,
Borchert, Ranjan, and StephatD] have shown that the problem USAG][polynomial-
time many-one reduces to BNE, so BNE is coNP-hard. Regarding upper boundss BNE
NP\P [10] and BNE € coAMNP (combining [10] and [1]). It follows from the latter that
BNE is not NP'P-complete unless the polynomial hierarchy collapsé$, h the light
of[10,27]). Interestingly, neither of these two upper bounds¥Ri&nd coAM'P) is known
to imply the other.

We now prove that BNE= EPNP, which is neither known to imply nor known to be
implied by the coAM'P upper bound, but which clearly improves the WRipper bound
as EPP ¢ NPNP.

Theorem 2.2. BNE € EPYP.

Proof. Suppose that a given instance of BNE consistg aihdg, each over the variables
x1, ..., Xx,. A negation of some of the input variables gfas in the definition of BNE
can be represented by a vecfoe (c1, ..., ¢,) in the vector space GB)", where each

¢; is either 0 or 1 and; = 1 means that the variable will be negated. Leg; be the
boolean function resulting fromafter the application of the negations described jthat

is, gz (1) = g(¥ +u). Now it is easy to see (double negation equals identity, and addition ir
GF(2)" is associative) that, for each fixed boolean funcgothe set of negation vectotis
such thag equalsg; is a linear subspack, of GF(2)". Itis not hard to see that il is any
negation vector such thgt= g, then the affine subspaae+ V, is the set ol negation
vectors witnessing the negation equivalence @fndg.

Of coursew + V, will be of the same cardinality as the subspaggas addition by
induces a bijection between @GB" and itself), and as afrdimensional vector space over
the field GR2) has exactly 2vectors,w + V, will contain exactly 2 vectors, wheren is
the dimension o¥/,. So the following nondeterministic program shows that BNE is in EP
with an NP oracle: read the two input functiofisandg (checking that they are both over
the same number of variables and that the variables have the same naming scheme), g
a negation vector and accept if and only if the oracle confirms tifais equal tog altered
by the negation vectar. This shows that BNE is in ¥, since if f andg are not negation
equivalent, then there is no accepting path, and otherwise there are eXaetbec@pting
paths, wheren is the dimension of the affine subspace discussed above. O

There are ways of describing boolean functions such that the equivalence problemisin
The most prominent such way is by means of ordered binary decision diagrams (OBDD:
So, essentially by the same type of discussion found in the proof of Thedrgnthe
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following computational problem, OBDD negation equivalence, is in (nonrelativized) EP
given a pair(e, f) of OBDDs, are the boolean functions describedelgnd f negation
equivalent?

(It was Fortune, Hopcroft, and Schmidt [15] who proved that equivalence for OBDDs i
in P. OBDDs have recently become a structure of interest to theoretical computer scienti
in a variety of settings; see, for exampla38[13]. For general background on OBDDs see,
for example, the survey by Bryant [11].)

Corollary 2.3. OBDD negation equivalence EP.

Consider the following graph-theoretic problem, which we will @&tlag interchange
equivalence. First, we need some definitions.

A 2-dagis a directed acyclic graph having a unique root, and satisfying the conditio
that every node either has no successor, or has two ordered outgoing edges, where one
is labeled 0, the other edge is labeled 1, and the two edges may lead to the same succe
node. Each nodeof a given 2-dag is assigned a depth, namely the length of a shortest pa
from the root tov. (Thus, for example, the root is at depth zero.)

For any 2-dags” and G, we say thatF and G areisomorphicif there is a bijective
mappingr from the nodes of onto the nodes aff such that for every two nodes w in
F it holds that, fori € {0, 1}, an edge labeledleads fromv to w in F if and only if an
edge labeled leads fromm (v) to 7 (w) in G.

For any 2-dagsF and G, we say thatF and G are interchange equivalenif there
is a (possibly empty) set of nonnegative integgfs ..., d,,} such that, for each depth
d € {d1, ..., d,}andforeach nodeof depthd in G, if the labels of the two outgoing edges
of v (if any such edges exist) are interchanged, then the modified Zzd&gisomorphic
to F. The corresponding computational problem (2-dag interchange equivalence) is: giv
two 2-dagsF andG, areF andG interchange equivalent?

Theorem 2.4, 2-dag interchange equivaleneeEP.

Proof. This proof is reminiscent of the proof of Theoréh?. Let F andG be any given
2-dags. If they differ in their maximum depths then they are not interchange equivaler
Otherwise, leb be the maximum depth of the nodesin Any set of nonnegative integers
{d1, ..., d,} dictates a length vector (whose positions we will index as 0,.1,, b — 1)
via having a “1” at positiongs, ..., d,, and a “0” at the other positions (numbefsthat
are greater than or equalao not matter). As in the proof of Theore2r?, it is easy to see
that the set of length vectors that yield a 2-dag’ isomorphic toG is a linear subspace
of the vector space GB)”. Hence, the dimension of this linear subspace is some power o
two. Also, the set of all length vectors that turrG into a 2-dagG’ isomorphic toF is an
affine subspace of GB)” with the same dimension.

Note that the isomorphism problem for 2-dags can be solved in deterministic polynomi
time, the ordering making this job easy.

Summarizing, an EP algorithm for 2-dag interchange equivalence proceeds as follow
given two 2-dagsF and G, guess a vector from GH2)?; for eachv guessed, apply
to G, which givesG’; check whethelG’ and F are isomorphic; accept if this is the case,
otherwise reject. O

Note also that the 2-dag interchange equivalence problem can easil§} beeduced to
directed graph isomorphism via a reduction that maps 2-dags that are trees to (directed) tre
and many standare /), -reductions from directed graph isomorphism to graph isomorphism
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map directed trees to trees (see [24]). Since tree isomorphism is in P [24], clearly 2-d
interchange equivalence for trees is in P. Though, as just noted, some restricted subcla:
of 2-dags have the property that their interchange equivalence problems are in P, the autt
know of no P algorithm for the general 2-dag interchange equivalence problem. Even refin
group-theoretic or graph-theoretic methods such as those descri@2ddB], for example,

do not seem to be applicable.

3. Location ofEP

We state a general result that our technique gives, regarding the containment of FewF
restricted counting classes. We need some additional definitions.

Definition 3.1. Let S be any set of positive integers. Define tiestricted counting class
RCs as follows.L € RCg if and only if there exists a nondeterministic polynomial-time
Turing machineV such that, for every € ¥*,

1. if x € L then #acg (x) € S, and
2. if x ¢ L then #acg (x) = 0.

For example, Valiant’s extensively studied class UP equalg,R&nd, for eaclt > 2,
the class ModZP of Beigel, Gill, and Hertrampf [5] equals RC,|@peN) [a=b-k]}- NOtE
that, for every nonempty sétof positive integers, UP is clearly contained in RCheorem
3.4below will establish a condition on sefsufficient to ensure that even FewP is contained
in RCs.

A set is non-gappy if it has only small holes.

Definition 3.2. Let S be any set of positive integers. We say thias non-gappyif S £ ¢
and(3k > 0)(Vrn € S)(Am € S)[m > n Am/n < k).

Definition 3.3. [18] Let L be any subset oE*. We say thatl is P-printable if there
is a deterministic Turing maching that runs in polynomial time such that, for every
nonnegative integer, M (0") prints out the sefx | x € L A |x| < n}.

Theorem 3.4. LetT be any set of positive integers such tiidias a non-gappyr-printable
subset. ThekrewP < RCy.

(Thoughthisresultis stated in arelatively general format, we mention in passing that ev
the restriction employed can be relaxed to the case of nonempty sets of positive integers
which, for some uniform constant, given any integer in the set finding another larger but
most multiplicatively-constantly-larger integer in the set is a polynomial-time task. One ca
even slightly relax the growth rate, but one has to be very careful to avoid a ‘bootstrappin
growth-explosion effect via clocking growth rates always with respect to the input. In an
case, we feel that the current statement of the theorem is general enough to capture
generality of the result without being so technical as to obscure its essence.)

Our proof technique builds (for example, by adding a rate-of-growth argument) on thz
used by Cai and Hemachandt&] to prove that FewRC ®P, wheredP as is standard
is the class of languagds such that, for some nondeterministic polynomial-time Turing
machineN, on eachx it holds thatx € L <<= #accy(x) = 1 (mod 2. We note
that Kdbler, Schoning, Toda, and Toran [23] interestingly built on that technique in thei
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proof that FewP< C_P, where CP [30] is the class of languagdssuch that there is a
polynomial-time functionf and a nondeterministic polynomial-time Turing machi¥ie
such that for eacly, x € L if and only if #accy(x) = f(x). More recently, this proof
technique was useful in establishing a&/B-Turing-hardness lower bound for nontrivial
counting properties of boolean circuita(], a result that represents the strongest current
complexity-theoretic analog of Rice’s theorem.

We now give the proof of Theore®4.

Proof. Let S be a hon-gappy, P-printable subseffofLetk > 0 be, forS, some constant
satisfying Definition3.2.

Let L be any language in FewP. L&tbe a machine witnessing thate FewP, and let
p be a polynomial bounding the nondeterministic ambiguityothat is, for each input,
#acg, (x) < p(|x]). To show thatl. € RCr, we describe a nondeterministic polynomial-
time Turing machingV that acceptd. via the RG acceptance mechanism.

On inputx, machineN choosesp(|x|) natural numbersy, cz, ..., ¢p(x)) as follows.
Initially, we assume that;, which is defined to be the least elemenfofs hard-coded into
the program ofV. Successively, foi = 2, ..., p(|x]), machineN operates on input as
follows.

e Letcs, ..., ¢;—1 be the constants that have already been chosen. Dﬁﬁﬁe(i)cl +

(ot -+ Jein

¢ Letg; be the least element ¢fsuch that; < q;.

e Setc; =a; — b;.

After having chosen these constamis (still on input.x) will operate as follows. It will
nondeterministically guess an intedee {1,2, ..., p(|x|)} and, for each guessed, non-
deterministically guess each (unorderediple of distinct paths ol (x). On each patky
resulting from such a guess seridix) sees whether thipaths ofN (x) that were guessed
one are all accepting paths. If all are accepting paths, thengatta trivial nondetermin-
istic guesses, splits itself intg accepting paths. On the other hand, if at least one of the
guessed paths is a rejecting path, then patimply rejects. This completes the description
of N.

The intuition behind the construction of is that for each input the following holds.
N(x) hasci accepting paths for each accepting pathtfc); N(x) hasc, additional
accepting paths for each pair of distinct accepting pathd @f); and so on. So, if €
L, N(x) haSC#ac%(x) additional accepting paths for the (one) #acc)-tuple of distinct

accepting paths ol (x). However, if for some with #acg, (x) < z < p(|x|) az-tuple of

distinct paths ofV (x) was guessed on a pathof N (x), thena must contain a rejecting
path of N (x), and thusN (x) will have no accepting paths relatedda This intuition is
expressed formally thus:

#acoy(x) = <#ac?§’(X))C1 + <#a0(2;\7 (X)> co+ -+ <ZZE2§,$;)C#“%(X).
Assume that € L. Thus, O< #acg (x) < p(|x]). Sincec#ac%(x) was chosen so that
#acg, (x) = 1 = #acqy(x) = c1, and
#acG; (x) > 2 = #acQy(x) = byacg, (x) + Cracg (x) = d#acg (x)»

and since botlry anda#ac%(x) are elements of, it follows that #acg (x) € T. On the
other hand, ifc ¢ L then #acg (x) = 0, and so #agg(x) = 0.
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So now, to prove that. € RCr, it suffices to establish an exponential (¥{) upper
bound on the value of max,x)) ¢;-

We will consider, forj > 2, what bounds hold on the valuegf By construction ofv
and sinces is non-gappy, we hawg < a; < kb;. Regarding the latter inequality, note that
b; is not necessarily an element®fHowever, for eacly, we haver; < b;; so for eacly,
there exists &; € S such thab; < b; andb; is the greatest such integer§n Sinceq; is
defined to be the least element$such thab; < a;, we have ¢ < kb; < kb;.

From the above and the definition&f, we have:

J J J . J
er (e QL) ()

The factorj — 1 in inequality () is the number of terms iby;, and the coefficien([(_j,?]) is
2

the biggest binomial coefficient of any termén
Recall that once we were givénc T we fixedk. For all sufficiently largg the following

holds:
' T Y < (! i < (27 2

‘v D(r%w) N (réw) <) @
In particular, letjpag = Jjpad(k) be the largesj for which the above inequality fails to hold.
(If it always holds, sefhad = 1.) Let Ihag = Max i< jp,q Ci- From inequalities) and (2),
we clearly have that
(@ forj > joad ¢j < Ipad- Hjbad<i<j 22’! and
(b) for j < jbad ¢j < Ipad
This implies that; = 20U%). Thus, for the fixedk associated witt§ < T, the value of
max < p(x)) ¢i IS indeed bounded by an exponential functiomip Hence,L € RCr, and
thus FewPC RCr. O

From Theoren8.4it immediately follows that Fewk EP, since ER= RCy,i ;< and
{2' | i e N}is clearly a P-printable, non-gappy set.

Corollary 3.5. FewPC EP.

The comments attached to our on-line technical report versipgiye some of the
history of the proof of our results, and of some valuable comments made by R. Beigel,
particular that FewP is also contained in the EP analog based on any inf{egee that the
acceptance sets for such classes are P-printable and non-gappy).

Note that since Corollarg.5in fact relativizes, and as it is well-known that there are
relativized worlds in which UP and FewP differ, it follows immediately that there are
relativized worlds in which EP is not equal to UP. We note also that it is immediate fron
the definition that the class EP is closed under intersection.

Cai and Hemachandra’s result FewP @P [12] has been generalized to FewP
Modz, P, foreactk > 2[5]. This generalization also follows as a special case of The8rém
since ModZP = RCy_4|@peN) [a=b-k]} @S Mentioned above.

Propositior3.6below shows that EP is contained infC (After seeing an earlier draft of
this paper, R. Beigel communicated to the authors in February, 1998 that he observed t
EP is even contained in the class LWPRR]. Since it is known from the work of Fenner,
Fortnow, and Kurtz [14] that SPB LWPP € C_P, this improves upon our result, and in
particular shows that EP is PP-low (that is, BPPP=F), where PP denotes probabilistic
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polynomial time.) In the light of PropositioB.6, Corollary3.5improves upon the result of
Kobler et al. that FewP< C_P [23]—an improvement that seems neither to imply, nor to
be implied by, other improvements of their result such as Ee8PP ([23]; see alsd.f]).

Proposition 3.6. EP C C_P.

Proof. Let ES (which is the nonpromise version of EP) denote the class of all langhiages
for which there is a nondeterministic polynomial-time Turing mactnguch that, for each
inputx € *,x € L <= #acoy(x) € {2 |i € N}. Note that, clearly, ERZ ES. However,
notethatES= C_P,aswenowargue. ES {L |(3A € C_P)[L <§ Al}isimmediately clear
from the definitions, whergg is polynomial-time disjunctive reducibility. So ES C_P,
asitisknownthatP = {L | (3A € C_P)[L <5 Al} [4]. To show that CP C ES, consider

a C_P machineV, and the functiory giving the number of paths on which it would accept,
and a polynomialp such that on all inputs of each length M runs for at mostp(n)
steps. (Our model is tha# makes binary branching moves, so on each input of length
machineM has at most 2" accepting paths.) Consider the EP machine that on input
has 2+r0xD) — f(x) paths that immediately accept, and that also has paths that simula
the C.P machine. Note that this machine accepts the l@nguage. O

For a detailed discussion of the relation of EP to other complexity classes, and for op
questions in addition to those presented in Secfiowe refer the reader to the technical
report and conference versions of this pape®g|8,

4. Open questions

Does EP equal NP? It would be nice to give evidence that such an equality would, f
example, collapse the polynomial hierarchy. However,J EP C NP, and at the present
time, it is open whether even the stronger assumption=tJ/P implies any startling
collapses. Also, does EP, in contrast to most promise classes, have complete sets?
conjecture that EP lacks complete sets (of course, if EP equals NP then EP has comp
sets).

EP clearly is closed under conjunctive reductions and under disjoint union, and (thu
under intersection. Is EP closed under disjunctive reductions or union?
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