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Abstract

One way of suggesting that an NP problem may not be NP-complete
is to show that it is in the promise class UP. We propose an analo-
gous new method—weaker in strength of evidence but more broadly
applicable—for suggesting that concrete NP problems are not NP-
complete. In particular, we introduce the promise class EP, the sub-
class of NP consisting of those languages accepted by NP machines
that, when they accept, always have a number of accepting paths that
is a power of two. We show that FewP, bounded ambiguity poly-
nomial time (which contains UP), is contained in EP. The class EP
applies as an upper bound to some concrete problems to which previ-
ous approaches have never been successful, for example the negation
equivalence problem for OBDDs (ordered binary decision diagrams).

1. Introduction

NP languages can be defined via machines that reject when they have zero accepting paths,
and accept by having a number of accepting paths that belongs to the set{1,2, 3, . . .}. A
number of researchers have sought to refine the class NP by shrinking the path-cardinality
set signifying acceptance, while retaining the requirement that rejection be associated with
having zero accepting paths. We will call any such class arestricted counting class. The most
common restricted counting classes in the literature are random polynomial time (denoted
R) and ambiguity-bounded classes such as UP and FewP. Ambiguity-bounded classes will
be of central interest to us in the present paper.

Valiant’s class UP (unambiguous polynomial time) [29], which is known to differ from P
exactly if one-way functions exist [16], has the acceptance set{1}, and so is a restricted count-
ing class. Acceptance sets of the forms{1,2, 3, . . . , nO(1)} and{1,2}, {1,2, 3}, . . . define,
respectively, the class FewP [2] and the classes UP62, UP63, . . . [3], and thus these too are
restricted counting classes. (Note: UP⊆ UP62 ⊆ UP63 ⊆ · · · ⊆ UPO(1) ⊆ FewP⊆ NP,
where UPO(1) = ⋃

k>1 UP6k.) These classes are also connected to the existence of one-
way functions and have been extensively studied in a wide variety of contexts, such as class
containments [14,23], complete sets [21], boolean hierarchy equivalences [19], complexity-
theoretic analogs of Rice’s theorem [7,20], and upward separations [26].
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Restrictive acceptance suffices

Of course, the litmus test of NP refinements such as R, UP, UP6k, and FewP isthe extent
to which they allow us to refine the upper bounds on the complexity of natural NP problems.
Of these classes, R and UP have been quite successful in this regard. R is well-known
to provide an upper bound on the complexity of primality testing. UP is well-known to
provide an upper bound on the complexity of (a language version of) the discrete logarithm
problem, and UP (indeed UP∩ coUP) is also well-known to provide an upper bound on the
complexity of primality testing.

However, there are certain NP problems whose richness of structure has to date defied
attempts to put them in UP or even FewP, yet that nonetheless intuitively seem to use less
than the full generality of NP’s acceptance mechanism. To try to categorize these problems,
we introduce the class EP, which is intermediate between FewP and NP: FewP⊆ EP⊆ NP.
In particular, EP is the NP subclass whose acceptance set is{2i |i ∈ N},N = {0, 1,2, 3, . . .}.

In Section2, we provide improved upper bounds on the complexity of the problems
OBDD (ordered binary decision diagram) negation equivalence, 2-dag interchange equiva-
lence, and boolean negation equivalence. These three problems are trivially in, respectively,
NP, NP, and NPNP. We provide upper bounds of, respectively, EP, EP, and EPNP. The prob-
lems are not known to belong to (and do not seem obviously to belong to), respectively,
FewP, FewP, and FewPNP.

In Section3, we prove a general result regarding containment of FewP in certain re-
stricted counting classes. In particular, we obtain a sufficient condition for establishing
when restricted counting classes contain FewP. From our result it follows that EP contains
FewP; moreover, our result subsumes as special cases some previously known results from
the literature. In Section4, we list open questions related to our work.

2. Concrete problems andEP

In this section, we provide concrete problems known to be in NP (or NPNP), and we
prove they are in fact in EP (or EPNP). We now define the class EP (mnemonic: the num-
ber of accepting computation paths is restricted to being either 0 or some power (some
exponentiation) of 2). For any nondeterministic polynomial-time Turing machineN and
any stringx, let #accN(x) denote the number of accepting computation paths ofN on
inputx. Our alphabet6 will be {0, 1}. For any stringx ∈ 6∗, let |x| denote the length ofx.

Definition 2.1. EP denotes the class of all languagesL for which there is a nondeterministic
polynomial-time Turing machineN such that, for each inputx ∈ 6∗,

x 6∈ L H⇒ #accN(x) = 0, and

x ∈ L H⇒ #accN(x) ∈ {2i | i ∈ N}.

We pass on a comment of an anonymous referee who noted that EP is probably not
robust under definitional perturbations; for example, the analog of EP based on any power
of 3 is probably a different class. However, in Section3, we will prove a result general
enough so as to apply also to many restricted counting classes other than EP (including the
just-mentioned analog of EP).

Now, consider the following well-known problem.
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Problem: Boolean negation equivalence (BNE) (see [17] and [10]).
Input: Two boolean functions (input as boolean formulas using variable names and the
symbols{∧, ∨, ¬, (, )}), f (x1, . . . , xn) andg(x1, . . . , xn), over the samen boolean vari-
ables.
Question: Are f andg negation equivalent? That is, can one negate some of the inputs
of g such thatf and the modified functiong′ are equivalent? (The notion of boolean func-
tion equivalence underlying the definition of negation equivalence is the standard one. Two
boolean functions (over the same variables) are equivalent if they have the same truth value
for every assignment to their variables. Testing the equivalence of pairs of boolean formulas
is in coNP.) For concreteness as a language problem, BNE= {(f, g) | f andg are negation
equivalent}.

For example, the two boolean functions described by the formulasx1 ∨ x2 ∨ x3 and
x1 ∨ ¬x2 ∨ ¬x3 are negation equivalent by negatingx2 andx3. Regarding lower bounds,
Borchert, Ranjan, and Stephan [10] have shown that the problem USAT [6] polynomial-
time many-one reduces to BNE, so BNE is coNP-hard. Regarding upper bounds, BNE∈
NPNP [10] and BNE∈ coAMNP (combining [10] and [1]). It follows from the latter that
BNE is not NPNP-complete unless the polynomial hierarchy collapses ([1], in the light
of [10,27]). Interestingly, neither of these two upper bounds (NPNP and coAMNP) is known
to imply the other.

We now prove that BNE∈ EPNP, which is neither known to imply nor known to be
implied by the coAMNP upper bound, but which clearly improves the NPNP upper bound
as EPNP ⊆ NPNP.

Theorem 2.2. BNE ∈ EPNP.

Proof. Suppose that a given instance of BNE consists off andg, each over the variables
x1, . . . , xn. A negation of some of the input variables ofg as in the definition of BNE
can be represented by a vectorEv = (c1, . . . , cn) in the vector space GF(2)n, where each
ci is either 0 or 1 andci = 1 means that the variablexi will be negated. LetgEv be the
boolean function resulting fromg after the application of the negations described byEv; that
is,gEv(Eu) = g(Ev + Eu). Now it is easy to see (double negation equals identity, and addition in
GF(2)n is associative) that, for each fixed boolean functiong, the set of negation vectorsEv
such thatg equalsgEv is a linear subspaceVg of GF(2)n. It is not hard to see that ifEw is any
negation vector such thatf = g Ew, then the affine subspaceEw +Vg is the set ofall negation
vectors witnessing the negation equivalence off andg.

Of course,Ew + Vg will be of the same cardinality as the subspaceVg (as addition byEw
induces a bijection between GF(2)n and itself), and as aǹ-dimensional vector space over
the field GF(2) has exactly 2` vectors,Ew + Vg will contain exactly 2m vectors, wherem is
the dimension ofVg. So the following nondeterministic program shows that BNE is in EP
with an NP oracle: read the two input functionsf andg (checking that they are both over
the same number of variables and that the variables have the same naming scheme), guess
a negation vectorEv and accept if and only if the oracle confirms thatf is equal tog altered
by the negation vectorEv. This shows that BNE is in EPNP, since iff andg are not negation
equivalent, then there is no accepting path, and otherwise there are exactly 2m accepting
paths, wherem is the dimension of the affine subspace discussed above.

There are ways of describing boolean functions such that the equivalence problem is in P.
The most prominent such way is by means of ordered binary decision diagrams (OBDDs).
So, essentially by the same type of discussion found in the proof of Theorem2.2, the
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following computational problem, OBDD negation equivalence, is in (nonrelativized) EP:
given a pair(e, f ) of OBDDs, are the boolean functions described bye andf negation
equivalent?

(It was Fortune, Hopcroft, and Schmidt [15] who proved that equivalence for OBDDs is
in P. OBDDs have recently become a structure of interest to theoretical computer scientists
in a variety of settings; see, for example, [28,13]. For general background on OBDDs see,
for example, the survey by Bryant [11].)

Corollary 2.3. OBDD negation equivalence∈ EP.

Consider the following graph-theoretic problem, which we will call2-dag interchange
equivalence. First, we need some definitions.

A 2-dag is a directed acyclic graph having a unique root, and satisfying the condition
that every node either has no successor, or has two ordered outgoing edges, where one edge
is labeled 0, the other edge is labeled 1, and the two edges may lead to the same successor
node. Each nodev of a given 2-dag is assigned a depth, namely the length of a shortest path
from the root tov. (Thus, for example, the root is at depth zero.)

For any 2-dagsF andG, we say thatF andG are isomorphicif there is a bijective
mappingπ from the nodes ofF onto the nodes ofG such that for every two nodesv, w in
F it holds that, fori ∈ {0, 1}, an edge labeledi leads fromv to w in F if and only if an
edge labeledi leads fromπ(v) to π(w) in G.

For any 2-dagsF and G, we say thatF and G are interchange equivalentif there
is a (possibly empty) set of nonnegative integers{d1, . . . , dm} such that, for each depth
d ∈ {d1, . . . , dm} and for each nodev of depthd in G, if the labels of the two outgoing edges
of v (if any such edges exist) are interchanged, then the modified 2-dagG′ is isomorphic
to F . The corresponding computational problem (2-dag interchange equivalence) is: given
two 2-dagsF andG, areF andG interchange equivalent?

Theorem 2.4. 2-dag interchange equivalence∈ EP.

Proof. This proof is reminiscent of the proof of Theorem2.2. LetF andG be any given
2-dags. If they differ in their maximum depths then they are not interchange equivalent.
Otherwise, letb be the maximum depth of the nodes inG. Any set of nonnegative integers
{d1, . . . , dm} dictates a lengthb vector (whose positions we will index as 0, 1,. . ., b − 1)
via having a “1” at positionsd1, . . . , dm, and a “0” at the other positions (numbersdi that
are greater than or equal tob do not matter). As in the proof of Theorem2.2, it is easy to see
that the set of lengthb vectors that yield a 2-dagG′ isomorphic toG is a linear subspace
of the vector space GF(2)b. Hence, the dimension of this linear subspace is some power of
two. Also, the set of all lengthb vectors that turnG into a 2-dagG′ isomorphic toF is an
affine subspace of GF(2)b with the same dimension.

Note that the isomorphism problem for 2-dags can be solved in deterministic polynomial
time, the ordering making this job easy.

Summarizing, an EP algorithm for 2-dag interchange equivalence proceeds as follows:
given two 2-dagsF andG, guess a vectorv from GF(2)b; for eachv guessed, applyv
to G, which givesG′; check whetherG′ andF are isomorphic; accept if this is the case,
otherwise reject.

Note also that the 2-dag interchange equivalence problem can easily be6p
m -reduced to

directed graph isomorphism via a reduction that maps 2-dags that are trees to (directed) trees,
and many standard6p

m -reductions from directed graph isomorphism to graph isomorphism
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map directed trees to trees (see [24]). Since tree isomorphism is in P [24], clearly 2-dag
interchange equivalence for trees is in P. Though, as just noted, some restricted subclasses
of 2-dags have the property that their interchange equivalence problems are in P, the authors
know of no P algorithm for the general 2-dag interchange equivalence problem. Even refined
group-theoretic or graph-theoretic methods such as those described in [22,25], for example,
do not seem to be applicable.

3. Location ofEP

We state a general result that our technique gives, regarding the containment of FewP in
restricted counting classes. We need some additional definitions.

Definition 3.1. Let S be any set of positive integers. Define therestricted counting class
RCS as follows.L ∈ RCS if and only if there exists a nondeterministic polynomial-time
Turing machineN such that, for everyx ∈ 6∗,

1. if x ∈ L then #accN(x) ∈ S, and

2. if x 6∈ L then #accN(x) = 0.

For example, Valiant’s extensively studied class UP equals RC{1}, and, for eachk > 2,
the class ModZkP of Beigel, Gill, and Hertrampf [5] equals RCN−{a|(∃b∈N) [a=b·k]}. Note
that, for every nonempty setS of positive integers, UP is clearly contained in RCS . Theorem
3.4below will establish a condition on setsS sufficient to ensure that even FewP is contained
in RCS .

A set is non-gappy if it has only small holes.

Definition 3.2. Let S be any set of positive integers. We say thatS is non-gappyif S 6= ∅
and(∃k > 0)(∀n ∈ S)(∃m ∈ S)[m > n ∧ m/n 6 k].

Definition 3.3. [18] Let L be any subset of6∗. We say thatL is P-printable if there
is a deterministic Turing machineM that runs in polynomial time such that, for every
nonnegative integern, M(0n) prints out the set{x | x ∈ L ∧ |x| 6 n}.

Theorem 3.4. LetT be any set of positive integers such thatT has a non-gappy,P-printable
subset. ThenFewP⊆ RCT .

(Though this result is stated in a relatively general format, we mention in passing that even
the restriction employed can be relaxed to the case of nonempty sets of positive integers for
which, for some uniform constant, given any integer in the set finding another larger but at
most multiplicatively-constantly-larger integer in the set is a polynomial-time task. One can
even slightly relax the growth rate, but one has to be very careful to avoid a ‘bootstrapping’
growth-explosion effect via clocking growth rates always with respect to the input. In any
case, we feel that the current statement of the theorem is general enough to capture the
generality of the result without being so technical as to obscure its essence.)

Our proof technique builds (for example, by adding a rate-of-growth argument) on that
used by Cai and Hemachandra [12] to prove that FewP⊆ ⊕P, where⊕P as is standard
is the class of languagesL such that, for some nondeterministic polynomial-time Turing
machineN , on eachx it holds thatx ∈ L ⇐⇒ #accN(x) ≡ 1 (mod 2). We note
that Köbler, Schöning, Toda, and Torán [23] interestingly built on that technique in their
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proof that FewP⊆ C=P, where C=P [30] is the class of languagesL such that there is a
polynomial-time functionf and a nondeterministic polynomial-time Turing machineN

such that for eachx, x ∈ L if and only if #accN(x) = f (x). More recently, this proof
technique was useful in establishing a UPO(1)-Turing-hardness lower bound for nontrivial
counting properties of boolean circuits [20], a result that represents the strongest current
complexity-theoretic analog of Rice’s theorem.

We now give the proof of Theorem3.4.

Proof. Let S be a non-gappy, P-printable subset ofT . Let k > 0 be, forS, some constant
satisfying Definition3.2.

Let L be any language in FewP. LetN̂ be a machine witnessing thatL ∈ FewP, and let
p be a polynomial bounding the nondeterministic ambiguity ofN̂ ; that is, for each inputx,
#acc

N̂
(x) 6 p(|x|). To show thatL ∈ RCT , we describe a nondeterministic polynomial-

time Turing machineN that acceptsL via the RCT acceptance mechanism.
On inputx, machineN choosesp(|x|) natural numbersc1, c2, . . . , cp(|x|) as follows.

Initially, we assume thatc1, which is defined to be the least element ofS, is hard-coded into
the program ofN . Successively, fori = 2, . . . , p(|x|), machineN operates on inputx as
follows.

• Let c1, . . . , ci−1 be the constants that have already been chosen. Definebi = (
i
1

)
c1 +(

i
2

)
c2 + · · · + (

i
i−1

)
ci−1.

• Let ai be the least element ofS such thatbi 6 ai .

• Setci = ai − bi .

After having chosen these constants,N (still on input x) will operate as follows. It will
nondeterministically guess an integeri ∈ {1,2, . . . , p(|x|)} and, for eachi guessed, non-
deterministically guess each (unordered)i-tuple of distinct paths of̂N(x). On each pathα
resulting from such a guess series,N(x) sees whether thei paths ofN̂(x) that were guessed
onα are all accepting paths. If all are accepting paths, then pathα, via trivial nondetermin-
istic guesses, splits itself intoci accepting paths. On the other hand, if at least one of thei

guessed paths is a rejecting path, then pathα simply rejects. This completes the description
of N .

The intuition behind the construction ofN is that for each inputx the following holds.
N(x) hasc1 accepting paths for each accepting path ofN̂(x); N(x) hasc2 additional
accepting paths for each pair of distinct accepting paths ofN̂(x); and so on. So, ifx ∈
L, N(x) hasc#acc

N̂
(x) additional accepting paths for the (one) #acc

N̂
(x)-tuple of distinct

accepting paths of̂N(x). However, if for somez with #acc
N̂

(x) < z 6 p(|x|) a z-tuple of

distinct paths ofN̂(x) was guessed on a pathα of N(x), thenα must contain a rejecting
path ofN̂(x), and thusN(x) will have no accepting paths related tocz. This intuition is
expressed formally thus:

#accN(x) =
(

#acc
N̂

(x)

1

)
c1 +

(
#acc

N̂
(x)

2

)
c2 + · · · +

(
#acc

N̂
(x)

#acc
N̂

(x)

)
c#acc

N̂
(x).

Assume thatx ∈ L. Thus, 0< #acc
N̂

(x) 6 p(|x|). Sincec#acc
N̂

(x) was chosen so that

#acc
N̂

(x) = 1 H⇒ #accN(x) = c1, and

#acc
N̂

(x) > 2 H⇒ #accN(x) = b#acc
N̂

(x) + c#acc
N̂

(x) = a#acc
N̂

(x),

and since bothc1 anda#acc
N̂

(x) are elements ofS, it follows that #accN(x) ∈ T . On the
other hand, ifx 6∈ L then #acĉ

N
(x) = 0, and so #accN(x) = 0.
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So now, to prove thatL ∈ RCT , it suffices to establish an exponential (in|x|) upper
bound on the value of maxi6p(|x|) ci .

We will consider, forj > 2, what bounds hold on the value ofcj . By construction ofN
and sinceS is non-gappy, we havecj 6 aj 6 kbj . Regarding the latter inequality, note that
bj is not necessarily an element ofS. However, for eachj , we havec1 6 bj ; so for eachj ,
there exists âbj ∈ S such thatb̂j 6 bj andb̂j is the greatest such integer inS. Sinceaj is
defined to be the least element ofS such thatbj 6 aj , we have aj 6 kb̂j 6 kbj .

From the above and the definition ofbj , we have:

cj 6 k

((
j

1

)
c1 +

(
j

2

)
c2 + · · · +

(
j

j − 1

)
cj−1

)
6 k(j − 1)

(
j

d j
2e

)
max

16i6j−1
ci . (1)

The factorj − 1 in inequality (1) is the number of terms inbj , and the coefficient
( j

d j
2e

)
is

the biggest binomial coefficient of any term inbj .
Recall that once we were givenS ⊆ T we fixedk. For all sufficiently largej the following

holds:

k(j − 1)

(
j

d j
2e

)
6

(
j

d j
2e

)2

6
(
2j

)2
. (2)

In particular, letjbad = jbad(k) be the largestj for which the above inequality fails to hold.
(If it always holds, setjbad = 1.) LetIbad = max16i6jbad ci . From inequalities (1) and (2),
we clearly have that
(a) for j > jbad, cj 6 Ibad · ∏

jbad<i6j 22i , and
(b) for j 6 jbad, cj 6 Ibad.

This implies thatcj = 2O(j2). Thus, for the fixedk associated withS ⊆ T , the value of
maxi6p(|x|) ci is indeed bounded by an exponential function in|x|. Hence,L ∈ RCT , and
thus FewP⊆ RCT .

From Theorem3.4 it immediately follows that FewP⊆ EP, since EP= RC{2i |i∈N} and
{2i | i ∈ N} is clearly a P-printable, non-gappy set.

Corollary 3.5. FewP⊆ EP.

The comments attached to our on-line technical report version [8] give some of the
history of the proof of our results, and of some valuable comments made by R. Beigel, in
particular that FewP is also contained in the EP analog based on any integern (note that the
acceptance sets for such classes are P-printable and non-gappy).

Note that since Corollary3.5 in fact relativizes, and as it is well-known that there are
relativized worlds in which UP and FewP differ, it follows immediately that there are
relativized worlds in which EP is not equal to UP. We note also that it is immediate from
the definition that the class EP is closed under intersection.

Cai and Hemachandra’s result FewP⊆ ⊕P [12] has been generalized to FewP⊆
ModZkP, for eachk > 2 [5]. This generalization also follows as a special case of Theorem3.4
since ModZkP = RCN−{a|(∃b∈N) [a=b·k]} as mentioned above.

Proposition3.6below shows that EP is contained in C=P. (After seeing an earlier draft of
this paper, R. Beigel communicated to the authors in February, 1998 that he observed that
EP is even contained in the class LWPP [14]. Since it is known from the work of Fenner,
Fortnow, and Kurtz [14] that SPP⊆ LWPP ⊆ C=P, this improves upon our result, and in
particular shows that EP is PP-low (that is, PP= PPEP), where PP denotes probabilistic
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polynomial time.) In the light of Proposition3.6, Corollary3.5improves upon the result of
Köbler et al. that FewP⊆ C=P [23]—an improvement that seems neither to imply, nor to
be implied by, other improvements of their result such as Few⊆ SPP ([23]; see also [14]).

Proposition 3.6. EP⊆ C=P.

Proof. Let ES (which is the nonpromise version of EP) denote the class of all languagesL

for which there is a nondeterministic polynomial-time Turing machineN such that, for each
inputx ∈ 6∗,x ∈ L ⇐⇒ #accN(x) ∈ {2i |i ∈ N}. Note that, clearly, EP⊆ ES. However,
note that ES= C=P, as we now argue. ES⊆ {L |(∃A ∈ C=P)[L 6p

d A]} is immediately clear
from the definitions, where6p

d is polynomial-time disjunctive reducibility. So ES⊆ C=P,
as it is known that C=P = {L | (∃A ∈ C=P)[L 6p

d A]} [4]. To show that C=P ⊆ ES, consider
a C=P machineM, and the functionf giving the number of paths on which it would accept,
and a polynomialp such that on all inputs of each lengthn, M runs for at mostp(n)

steps. (Our model is thatM makes binary branching moves, so on each input of lengthn

machineM has at most 2p(n) accepting paths.) Consider the EP machine that on inputx

has 21+p(|x|) − f (x) paths that immediately accept, and that also has paths that simulate
the C=P machine. Note that this machine accepts the C=P language.

For a detailed discussion of the relation of EP to other complexity classes, and for open
questions in addition to those presented in Section4, we refer the reader to the technical
report and conference versions of this paper [8,9].

4. Open questions

Does EP equal NP? It would be nice to give evidence that such an equality would, for
example, collapse the polynomial hierarchy. However, UP⊆ EP⊆ NP, and at the present
time, it is open whether even the stronger assumption UP= NP implies any startling
collapses. Also, does EP, in contrast to most promise classes, have complete sets? We
conjecture that EP lacks complete sets (of course, if EP equals NP then EP has complete
sets).

EP clearly is closed under conjunctive reductions and under disjoint union, and (thus)
under intersection. Is EP closed under disjunctive reductions or union?

Acknowledgements.We thank two referees, R. Beigel, D. Kratsch, H. Müller, F. Stephan,
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