
TPLP: Page 1–19. c© The Author(s), 2025. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100264

1

ASP-FZN: A Translation-Based Constraint Answer
Set Solver∗

THOMAS EITER, TOBIAS GEIBINGER AND NYSRET MUSLIU
TU Wien, Vienna, Austria

(e-mails: thomas.eiter@tuwien.ac.at, tobias.geibinger@tuwien.ac.at,

nysret.musliu@tuwien.ac.at)

JOHANNES OETSCH
Jönköping University, Jönköping, Sweden

(e-mail: johannes.oetsch@ju.se)

TOBIAS KAMINSKI
Bosch Center for AI, Renningen, Germany

(e-mail: tobias.kaminski@de.bosch.com)

submitted 28 July 2025; revised 28 July 2025; accepted 29 July 2025

Abstract

We present the solver asp-fzn for Constraint Answer Set Programming (CASP), which extends
ASP with linear constraints. Our approach is based on translating CASP programs into
the solver-independent FlatZinc language that supports several Constraint Programming and
Integer Programming backend solvers. Our solver supports a rich language of linear constraints,
including some common global constraints. As for evaluation, we show that asp-fzn is com-
petitive with state-of-the-art ASP solvers on benchmarks taken from past ASP competitions.
Furthermore, we evaluate it on several CASP problems from the literature and compare its
performance with clingcon, which is a prominent CASP solver that supports most of the asp-fzn
language. The performance of asp-fzn is very promising as it is already competitive on plain
ASP and even outperforms clingcon on some CASP benchmarks.

Keywords: answer set programming, constraint programming, integer programming

1 Introduction

Answer Set Programming (ASP) is a popular rule-based formalism for various AI appli-

cations and combinatorial problem-solving, where a problem is represented by an ASP

program whose answer sets (models) represent the solutions, potentially also under

∗ This work was supported by funding from the Bosch Center for AI at Renningen, Germany. Tobias
Geibinger is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Institute of
Logic and Computation at the TU Wien.

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264
https://orcid.org/0000-0001-6003-6345
https://orcid.org/0000-0002-0856-7162
https://orcid.org/0000-0002-3992-8637
mailto:thomas.eiter@tuwien.ac.at
mailto:tobias.geibinger@tuwien.ac.at
mailto:nysret.musliu@tuwien.ac.at
https://orcid.org/0000-0002-9902-7662
mailto:johannes.oetsch@ju.se
mailto:tobias.kaminski@de.bosch.com
https://doi.org/10.1017/S1471068425100264

T. Eiter et al.2

certain optimization criteria. Especially for modeling industrial problems, Constraint

Answer Set Programming (CASP), which adds reasoning over linear constraints to ASP,

proved to be quite effective, for example, for scheduling problems (Balduccini 2011;

Geibinger et al. 2021).

While efficient CASP solvers are available, cf. the recent survey by Lierler (2023), they

still often lag behind state-of-the-art Constraint Programming (CP) or Mixed Integer

Programming (MIP) solvers for certain problem domains. CASP solvers are either based

on dedicated algorithms or translations into related formalisms such as Satisfiability

Modulo Theory (SMT). The latter approach is inspired by similar works for solving

plain ASP programs, but has the downside that SMT solvers generally lack optimization

features and are thus not applicable for many problems appearing in practice. This begs

the question why, instead of targeting SMT, the translation is not aimed at FlatZinc

(Nethercote et al . 2007), which is a solver-independent intermediate language that offers

those lacking optimization features and works with many modern CP and MIP solvers

as backend engines. The lack of such an approach was also noted by Lierler (2023).

To fill this gap, we present the CASP solver asp-fzn, which translates CASP programs

into FlatZinc, thereby leveraging decades of CP and MIP solver engineering for efficient

(optimal) solution finding. To support modern CASP encodings featuring not only linear

constraints but also specific scheduling constraints and ASP constructs like variables,

aggregates, choice, and disjunction, we utilize gringo’s theory interface (Gebser et al .

2019; Kaminski et al . 2023) to obtain a simplified program format. Our approach then

combines and extends ideas from translation-based ASP solving (Alviano and Dodaro

2016; Janhunen 2023) to create a FlatZinc representation encompassing all mentioned

constructs. By the richness of FlatZinc, incorporating complex global constraints and

hybrid optimization of both ASP weak constraints and objectives over linear variables is

easy. Notably, those features are not yet fully supported by other state-of-the-art CASP

solvers like clingcon (Banbara et al . 2017; Cabalar et al . 2023).

Our main contributions are briefly summarized as follows:

• We present a translation Tr(P) of head-cycle-free CASP programs P into a low

level constraint language, which can be parsed by several state-of-the-art CP and

MIP solvers.

• Our translation extends and combines existing concepts from the literature and

supports not only linear constraints but also choice rules, weight rules, disjunction,

and optimization.

• We show that Tr(P) captures all answer sets of P , with a one-to-one or many-to-one

mapping to its models, depending on the presence of correspondence constraints.

• We introduce our solver asp-fzn, which implements the described translation

and utilizes external grounding and a parametric backend solver for answer-set

optimization.

• We evaluate asp-fzn using different backend solvers against state-of-the-art (C)ASP

solvers, finding that it is competitive on plain ASP and outperforms clingcon on

some CASP benchmarks.

The solver asp-fzn thus enables solving expressive (C)ASP programs via CP and MIP

solvers, leveraging their strengths. As with SAT-based ASP solvers, this approach benefits

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 3

from the substantial engineering behind these solvers, future advancements, and the

decoupling of (C)ASP solving from specialized, maintenance-heavy algorithms.

2 Preliminaries

We consider propositional ASP (Brewka et al . 2011) with programs P that are sets of

rules r of the form
H←B (1)

where H is the head of the rule and B its body , also denoted by H(r) and B(r), respec-

tively; by AP we denote the set of all propositional atoms occurring in P . We distinguish

two types of rules: 1) disjunctive rules and 2) choice rules , where H has the form

a1 | · · · | an (disjunctive head) (2)

respectively {a1, . . . , am} (choice head) (3)

where all ai are atoms. Intuitively, ”|” stands for logical disjunction, that is, at least one

of the atoms must hold, while for choice, any number of ai can be true if H is true. A

disjunctive rule is a constraint rule if H(r) = ∅ and a normal rule if |H(r)|= 1.

Furthermore, we consider two types of rule bodies: 1) normal rule bodies of the form

b1, . . . , bk,¬bk+1, . . . ,¬bn (4)

where all bi are atoms, ¬ is negation as failure, and “,” is conjunction, and 2) weighted

rule bodies

l≤ {b1 :w1, . . . , bk :wk,¬bk+1 :wk+1, . . . ,¬bn :wn} (5)

where all bi are atoms, all wi are integer weights , and l is the integer lower bound ; we let

B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bn}.
By slight abuse of notation, a∈H(r) denotes that atom a occurs in H(r) and l ∈B(r)

that literal l, that is, an atom or its negation, occurs in B(r). We further let wr
b denote

the weight of atom b in the body of rule r, let � denote an empty conjunction, and let

⊥ denote an empty rule head.

Example 1.

Consider the program P1 = { {a, b}← c, ⊥← 3≤ {a : 1, b : 2}, c←¬d }. The first rule of

P1 is a choice rule with normal body, the second rule is a constraint rule with a weighted

body, and the last rule is a normal rule.

Semantics. An interpretation of a program P is a set I ⊆AP of atoms, which satisfies

a disjunctive head (2) if ai ∈ I for some i∈ [1, m], and satisfies every choice rule head (3).

Given a rule r and an interpretation I, I |=H(r) denotes that I satisfies the head

of r. Satisfaction of the body B(r) by I, denoted I |=B(r), is as follows: 1) for a normal

rule body (4), bi ∈ I for every i∈ [1, k] and bj
∈ I for every j ∈ (k, n] must hold; 2) for a

weighted rule body (5), the following linear inequality must hold: l ≤∑
i∈[1,k],bi∈I wi +∑

j∈(j,n],bj �∈I wj .

An interpretation I satisfies a rule r, denoted I |= r, whenever I |=B(r) implies I |=
H(r) and I is a model of program P , denoted I |= P , if I |= r for all r ∈ P .

Answer sets. The (FLP) reduct P I of program P w.r.t. interpretation I is the pro-

gram containing, for each r ∈ P s.t. I |=B(r), the following rules: (1) if r is disjunctive,

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.4

H(r)←B, and (2) if r is a choice rule, for each a∈H(r) the rule a←B+(r) if B(r)

is normal and a← l′ ≤ {b1 :w1, . . . , bk :wk} if B(r) is a weighted body (4), where

l′ =max (0, l−∑
j∈(k,n],bj �∈I wj).

Finally, an interpretation I is an answer set of program P if I is a ⊆-minimal model

of P I . The set of all answer sets of P is denoted by AS (P).

Example 2.

Program P1 from Example 1 has AS (P1) = {{c}, {c, a}, {c, b}}.
We allow programs P to contain also a single minimization statement (Priority levels

can be added and compiled to this form using known techniques):

min a1 :w1, . . . , ak :wk,¬ak+1 : ak+1, . . . ,¬bn :wn (6)

The cost of interpretation I is cP (I) =
∑

i∈[1,k],ai∈I wi +
∑

j∈(k,n],aj �∈I wj and 0 if P has

no minimization. An answer set I of P is optimal if cP (I) is minimal over AS (P).

2.1 Constraint answer set programming

We next introduce linear constraints and variables in our programs, thus turning to

CASP . We consider a countable set V of linear variables. Each v ∈ V has a domain D(v),

that is, assumed to be an integer range, which defaults to [−∞,+∞]; it can be restricted

by a domain constraint of the form

v ∈ [l, u] (7)

where l and u, l≤ u, are integer lower and upper bounds. In general, bounding the linear

variables is not required but the CASP solver might infer bounds or fallback to some

default values.

A linear constraint is of the form

a↔ v1 ·w1 + · · ·+ vn ·wn ◦ g (8)

where a is an atom, each vi is a linear variable, each wi and g are integer constants, and

◦ ∈ {<,>,=,
=,≤,≥} is a comparison operator. Intuitively, a is constrained to the truth

value of the linear constraint. Syntactically, a can appear in the bodies of standard ASP

rules (1). For any CASP program P , we denote by VP and AP
lin the sets of all linear

variables and all propositional atoms occurring in linear constraints of P , respectively.

We additionally allow a CASP to contain global constraints. An alldifferent constraint

is of the form

&distinct{v1, . . . , vn} (9)

where each vi is a linear variable and all are constrained to be pair-wise different. A

cumulative constraint is of the form

&cumulative{(s1, l1, r1), . . . , (sn, ln, rn)} ≤ g (10)

where si is a linear variable representing the start of each interval, li is a linear variable

representing the length, ri is a linear variable denoting the resource usage, and g is

an integer bound. The constraint then enforces that at each time point, the sum of the

resource usages of the overlapping intervals does not exceed g. A global disjoint constraint

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 5

is of form &disjoint{(s1, l1), . . . , (sn, ln)} and can be seen as a special case of a constraint

(10) where ri and g are assumed to be 1.

Semantics. An extended (e-) interpretation for a CASP program P is a tuple I = 〈I, δ〉
where I is a set of propositional atoms and δ : VP →Z is an assignment of integers to

linear variables VP . Satisfaction I |= φ, where φ is a head, body, rule, program etc., is

defined as above via I.

An e-interpretation I = 〈I, δ〉 is a constraint answer set of P if (1) I is an answer set of

P ∪ {{a}← | a∈AP
lin}, (2) for each domain constraint (7) in P , δ(v)∈ [l, u], and (3) for

each linear constraint (8) in P , a∈ I if
∑

1≤i≤n δ(vi) ·wi ◦ g. By slight abuse of notation

we also use AS (P) to refer to the constraint answer sets of a CASP program P .

Example 3

(Ex. 1 cont’d).Let P2 = P1 ∪ {x∈ [0, 2], y ∈ [0, 1], d↔ x · 1 + y · 1
= 3}. Clearly, P2

is a CASP program with AS (P2) = { 〈{c}, {(x, 2), (y, 1)}〉, 〈{b, c}, {(x, 2), (y, 1)}〉,
〈{a, c}, {(x, 2), (y, 1)}〉, 〈{d}, {(x, 0), (y, 0)}〉, 〈{d}, {(x, 1), (y, 0)}〉, 〈{d}, {(x, 2), (y, 0)}〉,
〈{d}, {(x, 1), (y, 1)}〉, 〈{d}, {(x, 0), (y, 1)}〉 }.
For CASP programs, we allow minimization over the linear variables with statements

min v1 ·w1 + · · ·+ vn ·wn (11)

where each vi is a linear variable and each wi is an integer constant. The cost cP (I) of an
e-interpretation I of a CASP program P is the sum of the costs determined by statements

(6) and (11), and optimal constraint answer sets are, mutatis mutandis , analogous to

optimal answer sets.

3 Supported models and ranked interpretations

Prior to the translation, we introduce a few auxiliary concepts. The positive dependency

graph of a (C)ASP program P is DG+
P = (V, E) with nodes V =AP and edges (a, b)∈E.

for all atoms a, b s.t. a∈H(r) and b∈B+(r) for some rule r ∈ P . A program P is tight

if DG+
P is acyclic; a rule r ∈ P is locally tight if H(r)∩B+(r) = ∅. We denote for a∈AP

by SCCP (a) its strongly connected component (SCC) in DG+
P , which is non-trivial if

|SCCP (a)|> 1. A program P is head-cycle free (HCF) if every rule r ∈ P and distinct

a
= b∈H(r) fulfill b /∈ SCCP (a).

Clearly, a tight program has no non-trivial SCCs and are HCF, while a non-tight

program may or may not be HCF. In the sequel, we assume that all programs are HCF;

while this excludes some programs, it still allows us with minimization to embrace the

class of NP-optimization problems1 as follows from (Eiter et al ., 2007), and thus most

problems appearing in practice.

Recall that for an ASP program P , an interpretation I is a supported model of P if (1)

I |= P and (2) for each a∈ I some rule r ∈ P exists such that I |=B(r), a∈H(r), and

H(r)∩ I = {a} if r is disjunctive. For tight ASP programs, supported models and answer

sets coincide (Erdem and Lifschitz 2003). For non-tight HCF programs, we consider

ranked supported models as follows.

1 see https://complexityzoo.net/Complexity˙Zoo

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.6

We assume that VP includes for each atom a∈AP a variable �a not occurring in P ;

intuitively, it denotes the rank (or level) of a. An e-interpretation I = 〈I, δ〉 is ranked ,

if for each a∈AP , δ(�a) =∞ if a
∈ I and δ(�a)<∞ otherwise. A rule r supports atom

a∈ I, if a∈H(r), H(r)∩ I = {a} if r is disjunctive, and B(r) fulfills: 1) if B(r) is normal

(form (4)), (i) δ(�bi)< δ(�a) for each i∈ [1, k] and (ii) bj
∈ I for each j ∈ (k, n] and 2) if

B(r) is a weighted rule body,

l ≤
∑

b∈B+(r),δ(�b)<δ(�a)

wr
b +

∑

b∈B−(r),b �∈I

wr
b . (12)

Definition 1.

A ranked supported model of program P is a ranked interpretation I = 〈I, δ〉 of P such

that I |= P and each a∈ I is supported by some rule r ∈ P .

We then obtain:

Proposition 1.

For every HCF program P , I ∈AS (P) if 〈I, δ〉 is a ranked supported model of P for

some δ.

We can refine this characterization by considering the modular structure of answer sets

along the SCCs. A ranked interpretation 〈I, δ〉 of program P is modular , if each a∈ I
fulfills δ(�a)≤ |SCCP (a)|; hence true atoms in trivial components must have rank 1. We

say a rule r scc-supports a∈ I by changing in “r supports a” above for B(r) condition (i)

in case 1) to “bi ∈ I for each i∈ [1, k] where δ(�bi)< δ(�a) if bi ∈ SCCP (a),” and condition

(12) in case 2) to

l ≤
∑

b∈B+(r)\SCCP (a)

wr
b +

∑

b∈B+(r)∩SCCP (a),δ(�bi)<δ(�a)

wr
b +

∑

b∈B−(r)\I
wr

b ,

and define scc-supported models analogous to supported models. We then can show:

Proposition 2.

For every HCF program P , I ∈AS (P) if 〈I, δ〉 is a modular ranked scc-supported model

of P for some level assignment δ.

4 Translation

In this section, we describe our translation of a (C)ASP program P into a constraint

program. We assume that the considered program adheres to the following property.

Definition 2.

A HCF program P is called partially shifted if every rule r ∈ P with a weighted body B(r)

fulfills either |H(r)| ≤ 1 or H(r)∩ SCCP (a) = ∅ for every a∈B+(r).

The property is named so because any HCF program can be transformed into partially

shifted form by applying the well-known shifting operation (Ben-Eliyahu and Dechter

1994) to the violating rules, resulting in two rules that satisfy the property.

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 7

For CASP programs, the translation simply includes the theory atoms as reified con-

straints and the domain constraints are used as bounds of the introduced variables. If

there are no bounds, we simply declare the variables as integer and delegate the handling

of unbounded variables to the underlying FlatZinc solver. Minimization statements must

be combined into a single objective, which is trivial in absence of priority levels. For

priority level minimization, we rely on well-known methods to compile them away.

4.1 Translation constraints

The translation, Tr(P) consists of several groups of constraints, which encode different

aspects of an answer set of a (C)ASP program P :

• ranking constraints TrRk(P), which encode the level ranking constraint;

• rule body constraints TrBd(r), which encode the satisfaction of rules bodies;

• rule head constraints TrHd(r), which must be satisfied when rule bodies fire; and

• supportedness constraints TrSupp(P), ensuring that true atoms are supported.

The complete translation for a program Tr(P) is then given by

Tr(P) =TrRk(P)∪⋃r∈P TrRule(r)∪TrSupp(P) ,

where TrRule(r) =TrBd(r)∪TrHd(r) is the combined body and head translation of r.

Ranking constraints TrRk(P). First, we introduce some auxiliary atoms to handle

the level ranking constraints, which follows the formulation given by Janhunen (2023).

Note that we assume that there are no tautological rules, that is, DG+
P has no self-loops.

For each atom a such that |SCC(a)|> 1, we introduce an integer variable �a with

domain [1, |SCC(a)|+ 1] and add the following reified constraint to the translation:

�a ≤ |SCC(a)| ↔ a (13)

The constraint enforces that atom a has rank |SCC(a)|+ 1 if a is set to false. Now, for

all b∈ SCC (a) such that DG+
P has an edge (a, b), we add a boolean auxiliary variable

depa,b and

�a − �b ≥ 1 ↔ depa,b (14)

which ensures that depa,b is true if a has higher rank than b. The rank defined by

these constraints is not strict , i.e., an answer set may have multiple rankings. To enforce

strictness, we add

�a − �b ≥ 2 ↔ ya,b (15)

a∧ b∧ ya,b ↔ gapa,b (16)

where gapa,b is a Boolean variable indicating a gap in the ranks of true atoms a and b.

We denote the ranking constraints (13)–(16) by TrRk(P); if P is tight, TrRk(P) = ∅.
Body translation TrBd(r). Next, for each r ∈ P , we perform a body translation

TrBd(r). Suppose first that r is a constraint. If B(r) is normal, that is, of form (4), then

we add the clause
∨

b∈B+(r) ¬b∨
∨

b∈B−(r) b , (17)

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.8

whereas if B(r) is weighted (5), we add the constraint
∑

b∈B+(r) b ·wr
b +

∑
b∈B−(r) ¬b ·wr

b ≤ l− 1 . (18)

Note that this is a pseudo-Boolean constraint, which our intended formalism does not

support, and likewise Boolean variables in linear constraints. To circumvent this, we

introduce new 0-1 integer variables for each literal and link their values; for better read-

ability, we will leave this implicit. We similarly use auxiliary variables for negated atoms

in conjunctions and leave this also implicit.

If r is not a constraint, we divide H(r) into T = {a∈H(r) | SCCP (a)∩B+(r) = ∅} and
H(r) \ T , where T are the head atoms that are locally tight. If T
= ∅, we perform the

standard Clark’s completion (Clark 1977) to r, that is, if B(r) is normal, we add
∧

b∈B+(r) b∧
∧

b∈B−(r) ¬b ↔ bdr ; (19)

and if B(r) is weighted, we add
∑

b∈B+(r) b ·wr
b +

∑
b∈B−(r) ¬b ·wr

b ≥ l↔ bdr . (20)

Furthermore, for each a∈ T such that |SCCP (a)|> 1, we add the following constraint,

which enforces that a has rank 1 if both a and bdr are true, where sa = |SCCP (a)|+ 1:

sa · bdr + sa · a+ 1 · �a ≤ 2 · sa + 1 , (21)

and for each a∈H(r) \ T , we add constraints as follows: for a normal B(r) of form (4),

∧

b∈B+(r)\SCCP (a)

b ∧
∧

b∈B+(r)∩SCCP (a)

depa,b ∧
∧

b∈B−(r)

b ↔ bda
r (22)

¬bda
r ∨

∨

b∈B+(r)∩SCCP (a)

¬gapa,b, (23)

whereas for a weighted B(r) of form (5), we add
∑

b∈B+(r)\SCCP (a)

b ·wr
b +

∑

b∈B−(r)

¬b ·wr
b ≥ l ↔ extar (24)

∑

b∈B+(r)\SCCP (a)

b ·wr
b +

∑

b∈B+(r)∩SCCP (a)

depa,b ·wr
b +

∑

b∈B−(r)

¬b ·wr
b ≥ l ↔ intar (25)

∑

b∈B+(r)\SCCP (a)

b ·wr
b +

∑

b∈B+(r)∩SCCP (a)

gapa,b ·wr
b +

∑

b∈B−(r)

¬b ·wr
b ≤ l− 1 ↔ auxa

r (26)

extar ∨ auxa
r ∨¬intar (27)

sa · extar + sa · a+ 1 · �a ≤ 2 · sa + 1 (28)

extar ∨ intar ↔ bda
r . (29)

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 9

Overall, the rule body translation follows the intuition of the original completion by

Clark (1977). Namely, we introduce an auxiliary variable for each rule and constrain it to

be true if the rule body is true. For each head atom a from the SCC of some body atom,

we follow the approach by Janhunen (2023) and introduce an auxiliary atom bdr
a for the

pair of a and the rule body of r. The atom bdr
a is set true exactly when the rule body

“fires” without need of cyclic support, which is achieved by considering the dependency

variables instead of the atoms, cf. (22). For weighted rule bodies, we follow Janhunen

(2023) and introduce auxiliary variables for external (24) and internal (25) support of

a rule body and a head atom. The former can be seen as the fact that the rule body

fires regardless of any atoms in the SCC of the head atom, while the latter expresses rule

firing despite some potentially cyclic dependencies. Constraint (29) defines an auxiliary

variable denoting that the rule supports the head atoms, which is true whenever internal

or external support exists. The constraints (21), (23), (27), and (28) ensure a strict

ranking, that is, no gaps in the level mapping.

Head translation TrHd(r). To capture the semantics of a rule r, that is, if B(r)

holds then H(r) hold as well, we need further constraints in the translation TrHd(r).

For each a∈H(r), we use a new Boolean variable spa
r to denote that r supports a.

Suppose first r is a disjunctive rule and |H(r)|> 1. Recall that by our assumption, every

a∈H(r) is locally tight, so we only need to consider the single body variable bdr.

Inspired by Alviano and Dodaro’s (2016) disjunctive completion, we add for each

ai ∈H(r):

bdr ∧
∧

aj∈H(r),i�=j ¬aj ↔ spa
r (30)

Furthermore, we add the following clause ensuring that the rule is satisfied:
∨

a∈H(r) a ∨¬bdr (31)

Otherwise, r is a choice rule or |H(r)|= 1. For each a∈H(r) we add the constraint

spa
r ↔ bdr if SCCP (a)∩B+(r) = ∅ (32)

and spa
r ↔ bda

r otherwise. (33)

Note that these constraints define the support variables as the respective rule bodies,

and thus would make them redundant. However, we keep them to ease readability and

for formulating further constraints. Furthermore, if r is not a choice rule, we add:

spa
r → a (34)

Supportedness constraints TrSupp(P). It remains to encode the supportedness

condition of a model. This is achieved by adding for each a∈AP \AP
lin the following

clause to TrSupp(P):
∨

r∈P,a∈H(r) sp
a
r ∨¬a (35)

4.2 Correctness

That Tr(P) captures the answer sets of a CASP program P faithfully in a 1-1 correspon-

dence is shown in several steps. We view e-interpretations as models of Tr(P) with the

usual semantics. The following lemma is useful (cf. Def. 2 for partially shifted programs).

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.10

Lemma 1.

For every partially shifted HCF program P , if 〈I, δ〉 |=Tr(P) then 〈I ∩AP , δ
′〉 is a mod-

ular ranked scc-supported model of P , where δ′(�a) = 1 for a∈ I s.t. |SCCP (a)|= 1 and

δ′(�a) =∞ for a∈AP \ I.
Based on this lemma and Proposition 2, we obtain that the translation is sound.

Theorem 1

(Soundness of Tr(P)). For every partially shifted HCF program P , if 〈I, δ〉 |=Tr(P)

then 〈I ′, δ′〉 ∈AS (P), where I ′ = I ∩AP and δ′(v) = δ(v) for each v ∈ VP .
Conversely, we show also completeness.

Theorem 2

(Completeness of Tr(P)). For every partially shifted HCF program P and answer set

〈I, δ〉 of P , there exists some e-interpretation I ′ = 〈I ′, δ′〉 s.t. I ′ ∩AP = I ∩AP , δ
′(v) =

δ(v) for v ∈ VP , and I ′ |=Tr(P).

Theorems 1 and 2 establish a many-to-one mapping between the models of the translation

and the answer sets of the program. That the mapping is in fact 1-1 is achieved through

correspondence constraints given by (15), (16), (21), (23), (26), (27), (28), and the gap

variables, which – as for Janhunen (2023) – ensure that the level mapping is strict , that

is, has no gaps and starts at 1.

Lemma 2.

Suppose P is a partially shifted HCF program and I = 〈I, δ〉, I ′ = 〈I ′, δ′〉 are models of

Tr(P). Then I ∩AP = I ′ ∩AP implies δ(�a) = δ′(�a) for every a∈AP .

Theorem 3

(1-1 model correspondence between P and Tr(P)). For a partially shifted HCF program

P , AS (P) corresponds 1-1 to the models of Tr(P).

For the implementation and the experiments, we also consider a non-strict version of

the translation without the mentioned constraints, where Theorem 3 does not hold.

5 Implementation

The translation Tr(P) is available via the tool asp-fzn, which is implemented in Rust2

the source code is online accessible.3 As mentioned above, Tr(P), as described, is not

in the Integer Programming standard form (Wolsey 2021). However, using well-known

transformations and 0-1 variables instead of Booleans, it can be easily cast into this form.

The asp-fzn tool translates a given CASP program P into a FlatZinc (Nethercote

et al . 2007) theory that has corresponding models. Program P can be either in ASPIF

format (Kaminski et al . 2023) as produced by gringo or as a non-ground ASP pro-

gram, which is then passed on to gringo for grounding. The FlatZinc theory can then

be processed externally or relayed by asp-fzn via an interface to MiniZinc with a back-

end solver as a parameter. Note that we do no preprocessing of the given ASPIF input,

2 https://www.rust-lang.org/
3 https://www.kr.tuwien.ac.at/systems/asp-fzn/

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 11

> cat example.lp
{a;b} :- c.
:- 3 <= #sum{1: a; 2: b}.
c :- not d.
&dom{ 0..2 } = x.
&dom{ 0..1 } = y.
d :- &sum{ x ; y } != 3.
val(x,V) :- &sum{ x } = V, V = 1..2.
val(y,V) :- &sum{ y } = V, V = 1..1.

> asp-fzn -s cp-sat -a example.lp

d val(y,1)

d val(y,1) val(x,1)

c val(y,1) val(x,2)

c a val(y,1) val(x,2)

c b val(y,1) val(x,2)

d val(x,2)

d

d val(x,1)

Fig 1. Running example (left) solved with asp-fzn (dashed lines separate answer sets).

as we generally expect the grounder (for us, gringo), to handle this step and investigating

further preprocessing is a topic of future work.

The tool supports linear constraints similar to the gringo-based CASP solver clingcon

(Banbara et al . 2017), but expects them to occur in rule bodies, and further several global

constraints, viz. alldifferent , disjunctive, and cumulative constraints. As for clingcon,

these constraints are specified via gringo’s theory interface (Kaminski et al . 2023); see

Appendix A for theory definitions. Minimization objectives over the linear variables are

akin to those in clingcon, yet asp-fzn allows to freely mix such objectives with plain weak

constraints, resp. minimization objectives, in ASP.

The asp-fzn tool can be run via command line:

> asp-fzn [OPTIONS] [INPUT_FILES]...

A complete description of the arguments can be found in the appendix or online.

Essentially, asp-fzn can be used either as a pure translation tool to convert ASPIF read

from stdin into FlatZinc (optionally including an output specification which can be given

to MiniZinc), or as a solver by specifying a backend solver for MiniZinc, which must be

installed on the system. If a MIP solver is used, the translation output is in standard

form and no further linearization is needed. By default, asp-fzn interprets input ASP files

as non-ground programs and uses gringo to first ground them.

Example 4.

Listing 1 shows the CASP program P2 from Ex. 3 in the language of gringo with the

asp-fzn theory definition and the output set to enumerate all answer sets.

6 Experiments

We now demonstrate the effectiveness of asp-fzn on benchmark problems. All experiments

were run on a cluster with 10 nodes, each having 2 Intel Xeon Silver 4314 (16 cores @ 2.40

GHz, 24 MB cache, no hyperthreading, 2 cores reserved for system, each core can use

1 MB L3 cache max.), running Ubuntu 22.04 (Kernel 5.15.0-131-generic), with memory

limit 30 GB and 20 min timeout. All encodings, instances, and logs are available at

https://doi.org/10.5281/zenodo.16267414.

6.1 ASP benchmarks

We compare asp-fzn 0.1.0 with ASP solvers clingo 5.7.1 (Gebser et al . 2019) and DLV

2.1.0 (Alviano et al . 2017) on benchmarks from ASP competitions (Alviano et al . 2013;

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.12

Calimeri et al . 2014; Calimeri et al . 2016). As backend solvers for asp-fzn, we used the

MIP solver Gurobi 12.0.1 (Gurobi Optimization, LLC, 2025) and CP solvers CP-SAT

9.12.4544 from Google OR-Tools (Perron et al . 2023) and Chuffed 0.13.2 (Chu 2011).

Both CP-SAT and Chuffed are lazy-clause generation based, which is a method taken

from SMT and has been highly effective for CP solving. In particular, CP-SAT has won

the gold medal in the MiniZinc Challenge4 for the last years. Gurobi on the other hand

is a state-of-the-art, proprietary MIP solver, which has a MiniZinc interface. We ran

all solvers using default settings, except for CP-SAT (interleaved search enabled). For

asp-fzn, we used gringo 5.7.1 for grounding and MiniZinc 2.9.2 (Nethercote et al . 2007)

to interface Gurobi and for output formatting, and we considered two settings: the strict

translation Tr(P) with a 1-1 mapping between the models of Tr(P) and AS (P), and the

non-strict many-to-one variant.

We included both decision and optimization problems in the benchmark, listed in

Table 1, with 31 problems and 772 instances in total. We used the encodings from the

competition, but replaced in few some parts with modern constructs like choice rules.

Note that the decision variants of all problems, except StableMarriage, are NP-hard and

several encodings are non-tight.

Table 2 presents the comparison of asp-fzn with clingo and DLV, and cactus plots

can be found in Appendix A. Here Score1 =
∑31

i=1 ci/ni ∗ 100 where ci is the number

of closed instances of domain Di, that is, shown to be (un)satisfiable for type d resp.

optimal for type o; the maximum score is 3100. Score2 measures the best performers, by

Score2 =
∑31

i=1 bi/ni ∗ 100, where bi is the number of instances from Di where the solver

either closed the instance or found a solution of best value among all solvers.

Lastly, Score3 =
∑31

i=1 ti/ni is the PAR10 score, where ti is the time the solver took

to complete instance i respectively 10× 1200 if the solver did not complete the instance.

Hence, here a lower number is better.

In single-threaded mode, clingo performs best on Score1 , but asp-fzn with CP-SAT as

backend is trailing closely behind, beating DLV. Under the non-strict translation, asp-

fzn performs slightly better on Score1 and significantly better on Score2 . Furthermore,

clingo also has the best Score3 , indicating it is also closing most instances quicker than

the rest; however, asp-fzn with CP-SAT under the non-strict translation is only 1.37%

worse than clingo. Gurobi and Chuffed as backends perform worse than CP-SAT, but

the non-strict variant is also better here. This difference between strict and non-strict

variants is similar to previous observations for translation-based ASP solving (Janhunen

et al . 2009). It seems non-strictness does not interfere with search-tree pruning.

For space reasons, we cannot give a detailed breakdown of the results over the partic-

ular problem domains, but unsurprisingly asp-fzn performs worse than clingo mostly on

domains which are non-tight or feature heavy usage of disjunctions. An exception here is

the Traveling Salesperson Problem where asp-fzn using CP-SAT or Gurobi outperforms

clingo. Except for a few further non-tight domains, like Bayesian Network Learning and

Systems Synthesis, Gurobi achieves worse results than CP-SAT as a backend solver.

Since clingo, Gurobi, and CP-SAT support parallel solving, we ran the benchmark on

them using 8 threads. Again, clingo was best, cf. Table 2; while asp-fzn performed better

4 https://www.minizinc.org/challenge/

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

A
S
P
-F

Z
N

13

Table 1. ASP problems, n instances, type T = (o)ptimization | (d)ecision, (∗) non-tight

Problem Domain n T Problem Domain n T Problem Domain n T

BayesianNL∗ 60 o Knight Tour With Holes∗ 20 d Sokoban 20 d
Bottle Filling Problem 20 d Labyrinth∗ 20 d Solitaire 20 d
Combined Configuration∗ 20 d MarkovNL∗ 60 o o Stable Marriage 20 d
Connected Maximum- 20 o MaxSAT 20 o Steiner Tree∗ 20 o
Density Still Life∗ Maximal Clique Problem 20 o Supertree 60 o
Crew Allocation 52 d Nomistery 20 d System Synthesis∗ 20 o
Crossing Minimization 20 o Partner Units 20 d Traveling Sales Person∗ 20 o
Graceful Graphs 20 d Permutation Pattern- 20 d Valves Location Problem∗ 20 o
Graph Colouring 20 d Permutation Pattern- Matching 20 d Video Streaming 20 o
Hanoi Tower 20 d Qualitative Spatial-Reasoning 20 d Visit-all 20 d
Incremental Scheduling 20 d Ricochet Robots 20 d Weighted Sequence Problem 20 d

https://doi.org/10.1017/S1471068425100264 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.14

Table 2. Comparison of asp-fzn with ASP solvers on plain ASP benchmarks. The symbols
next to the score indicate whether a higher value (↑) or lower value (↓) is better

single thread

Score1 ↑ Score2 ↑ Score3 ↓

asp-fzn (CP-SAT)/(CP-SAT, non-strict) 1840.0/1871.7 1888.3/1978.3 153738.5/149807.9
asp-fzn (Chuffed)/(Chuffed, non-strict) 782.4/812.4 782.4/812.4 279592.2/275942.3
asp-fzn (Gurobi)/(Gurobi, non-strict) 1185.0/1265.0 1196.7/1290.0 231543.2/222057.8
clingo 1890.4 1992.1 147786.8
DLV 1524.4 1604.4 191445.8

8 threads

Score1 ↑ Score2 ↑ Score3 ↓
asp-fzn (CP-SAT)/(CP-SAT, non-strict) 2025.0/2051.7 2051.7/2101.7 131003.7/128072.7
asp-fzn (Gurobi)/(Gurobi, non-strict) 1441.7/1478.3 1445.0/1486.7 201661.7/196921.8
clingo 2351.2 2511.2 92028.5

with Gurobi and CP-SAT, the gap to clingo widened. Nonetheless, the benchmarks show

that asp-fzn with the right backend solver is competitive with known ASP solvers.

6.2 CASP benchmarks

We now turn our attention to CASP. We look at three problem domains with ASP

benchmark instances from the literature that can be modeled with CASP. We compare

asp-fzn against clingcon 5.2.1 (Banbara et al . 2017) as it supports a similar language.

Parallel Machine Scheduling Problem (PMSP) was first studied with ASP by

Eiter et al . (2023), who provided a benchmark set of 500 instances. The task is assigning

jobs with release dates and sequence-dependent setup times to capable machines. The

objective is minimizing the total makespan, that is, the maximal completion time of

any job.

Table 3 shows the results for PMSP on the 500 instances using the (non-tight) CASP

encoding which for space reasons is given in the appendix. In single-threaded solving,

asp-fzn with CP-SAT and the non-strict translation is again superior, closing 40 instances

and achieving the best result for 166; the strict translation is slightly worse but closes the

same number of instances. The solver clingcon closed 36 instances, which is more than

asp-fzn with any of the other backend solvers.

Looking at the PAR10 score, cf. Section 6.1, we see that asp-fzn with CP-SAT achieves

the best score, indicating that it can close the instances faster than clingcon. Interestingly,

the strict translation does better here but the difference is marginal.

The picture changes for multi-threaded solving: here clingcon achieved the top value for

best with 298 instances versus 167 by asp-fzn with CP-SAT for the non-strict translation.

The latter setting closed the second most instances (54); changing to the strict translation

closed one instance but decreased best results. The large number of best results found

by clingcon can be explained by its strength in finding feasible solutions for PMSP in

parallel mode, while asp-fzn struggles. However, when a solution is found, asp-fzn and

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 15

Table 3. asp-fzn vs. clingcon on PMSP (strict / non-strict)

single thread 8 threads

closed best PAR10 closed best PAR10

asp-fzn (CP-SAT) 40/ 40 140/ 166 11050.6/11051.4 55/54 155/167 10699.0/10719.5
asp-fzn (Chuffed) 18/20 18/20 11570.5/11525.0 – – –
asp-fzn (Gurobi) 26/27 26/29 11379.1/11355.8 28/28 36/41 11330.7/11330.4
clingcon 36 36 11147.8 31 298 11264.0

&dom{R..D} = start(J) :- job(J), release(J, R), deadline(J, D).
&dom{R..D} = end(J) :- job(J), release(J, R), deadline(J, D).
&dom{L..H} = duration(J) :- job(J), L = #min{ T : durationInMode(J, _, T) },

H = #max{ T : durationInMode(J, _, T) }.
1 {modeAssign(J, M) : modeAvailable(J, M)} 1 :- job(J).
:- job(J), modeAssign(J, M), durationInMode(J, M, T), &sum{ duration(J) } != T.
:- job(J), &sum{end(J); -start(J); -duration(J)} != 0.
:- precedence(J,K), &sum{start(J); -end(K)} < 0 .

...
&disjoint{ start(J)@duration(J) : workbenchAssign(J,W) } :- workbench(W).
&disjoint{ start(J)@duration(J) : empAssign(J,W) } :- employee(W).
&disjoint{ start(J)@duration(J) : equipAssign(J,W) } :- equipment(W).

#minimize{1,E,J,s2 : job(J), empAssign(J, E), not employeePreferred(J, E) }.
#minimize{1,E,P,s3 : project(P), empAssign(J, E), projectAssignment(J, P)}.
&dom{0..H} = delay(J) :- job(J), horizon(H).
:- job(J), due(J, T), &sum{end(J)} > T, &sum{-1*delay(J); end(J)} != T.
:- job(J), due(J, T), &sum{end(J)} <= T, &sum{delay(J)} != 0.
&minimize{delay(J) : job(J)}.

...

Fig 2. Partial TLSPS encoding used by asp-fzn.

CP-SAT typically provide the best final result and as the PAR10 score shows, it also

takes the least CPU time to prove optimality.

Test Laboratory Scheduling Problem (TLSPS) is a variant of a scheduling prob-

lem due to Mischek and Musliu (2018), that is, efficiently solvable using a CASP encoding

(Geibinger et al . 2021; Eiter et al . 2024). As the encoding is tight, the strict and the

non-strict translation are the same.

TLSPS concerns scheduling jobs in a test lab by assigning them an execution mode, a

starting time in its time window, and required resources from a set of qualified resources.

The overall objective has several components, like assigning preferred employees for cer-

tain jobs, minimizing the number of employees on a project, reducing tardiness, and

minimizing the project duration.

For clingcon, we essentially use Eiter et al .’s (2024) encoding employing ASP mini-

mization. The asp-fzn encoding, shown partially in Listing 2 (full version in Appendix

A), mixes minimization of plain ASP and linear variables; clingcon does not support the

latter, but allows for a more natural encoding of the objective. Also, the asp-fzn encoding

uses global disjunctive constraints to enforce unary resource usage; this is not possible

in clingcon but proved to be quite effective.

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.16

Table 4. asp-fzn vs. clingcon on TLSPS

single thread 8 threads

closed best PAR10 closed best PAR10

asp-fzn (CP-SAT) 55 76 6741.5 64 76 5850.1
asp-fzn (Chuffed) 11 11 10940.0 – – –
clingcon 7 22 11329.1 77 90 4553.3

Table 5. asp-fzn vs. clingcon on MAPF

single thread 8 threads

closed PAR10 closed PAR10

asp-fzn (CP-SAT) 224 7116.6 233 6913.4
asp-fzn (Chuffed) 159 8553.7 – –
asp-fzn (Gurobi) 194 7766.5 194 7762.9
clingcon 177 8138.1 209 7428.2

Our benchmark consisted of 123 instances from Mischek and Musliu (2018) of which

3 are real-world; the instances were converted to ASP facts (see supplementary data).

The results, collected in Table 4, show that asp-fzn performed very well. Column closed

lists how many instances were solved and proven optimal, and best lists the number

of solutions that were best among all solvers; instances for which no solver found any

solution were discarded. Our tool asp-fzn with backend CP-SAT performed best for

TLSPS in single-threaded mode as it solved 55 instances to optimality and produced

for 76 instances the best result. Furthermore, it also achieved the lowest, and thus best,

PAR10 score. With backend Chuffed, asp-fzn performed significantly worse but produced

always best results; also clingcon lagged significantly behind. Gurobi was not used as it

does not support disjunctive global constraints. With multi-threaded solving, clingcon

outperformed asp-fzn and CP-SAT, closing more instances and more often yielding the

best result, while also taking less time to prove optimality on average.

Multi agent path finding (MAPF) was recently studied by Kaminski et al . (2024),

who provided an instances and a generator. The task is planning the routes of several

agents to reach their goals without colliding. Our tight CASP encoding (see Appendix A)

is similar to Kaminski et al .’s (2024) but uses linear constraints for the event ordering.

For our comparison, we selected 547 MAPF instances from one of the sets by Kaminski

et al . The results are shown in Table 5, listing the number of instances for which a

plan was found (MAPF has no optimization objective). With Gurobi and CP-SAT as

backends, asp-fzn closed more instances than clingcon, but it closed fewer with Chuffed.

The best result is achieved by asp-fzn and CP-SAT with 224 instances solved; it also

achieves the best PAR10 score. For parallel solving (8 threads), asp-fzn with CP-SAT

closed the most instances (233, 9 more than single-threaded). Gurobi did not benefit

from parallelism while it improved the clingcon results. However, the latter still lagged

behind CP-SAT.

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 17

6.3 Summary

Overall, asp-fzn with CP-SAT as backend achieved decent results, being competitive as a

plain ASP solver and performing better than clingcon for TLSPS and MAPF. However,

we note that CP-SAT has a rather high memory footprint. The average total memory

usage of clingo on the plain ASP benchmark was five times lower than the one of asp-fzn

with CP-SAT and the latter hit the memory limit for several instances. This is not only

due to the translation itself, but a high memory usage of CP-SAT in general.

Regarding strict versus non-strict translation, it appears beneficial to use the non-

strict translation by default, except when solution enumeration is requested. The time it

takes to translate the gringo output to FlatZinc, this never took longer than a couple of

seconds and was dwarfed by the grounding time.

7 Related work and conclusion

For a thorough survey of CASP solvers, we refer to Lierler’s (2023) survey. Closest related

to asp-fzn is clingcon (Banbara et al . 2017) as it features a similar language and is based

on clingo (Gebser et al ., 2019). Notably, while clingcon supports some global constraints,

their usage is often limited. For example, variables occur in disjunctive constraints uncon-

ditionally, that is, whether a linear variable is active depends only on the truth of atoms

determined at grounding time. This excludes disjunctive constraints as used for TLSPS

in asp-fzn. Further, clingcon lacks cumulative constraints and disallows mixing ASP min-

imization and minimization over linear variables. Closely related to clingcon is clingo-dl

(Janhunen et al . 2017), which is not a full CASP solver as it only supports difference con-

straints , a special type of linear constraint. As we consider unrestricted linear constraints,

we did not feature clingo-dl in the evaluation.

EZSMT+ (Shen and Lierler 2019) is also a translation-based CASP solver but targets

SMT. As it does not support optimization, we did not feature it in the comparison. As

a further impediment to a direct comparison, EZSMT+ uses the language of EZCSP

(Balduccini, 2011), which is quite different from asp-fzn and clingcon’s theory language.

In difference to clingcon and EZSMT+, EZCSP has slightly different semantics, as the

linear constraints are evaluated for each answer set that may be pruned on violation.

Another translation-based CASP solver is mingo (Liu et al ., 2012), which translates

a CASP program into MIP. While mingo does feature optimization, it also differs in

language from asp-fzn and was not compatible with Gurobi.

As for translation-based plain ASP, our approach borrows heavily from Alviano and

Dodaro (2016) and Janhunen (2023). Janhunen extended the level mapping formula-

tion to programs with weight rules but provided no implementation, while Alviano and

Dodaro introduced completion for disjunctive rules not as a translation-based approach

per se but for DLV (Alviano et al . 2017). Finally, Rankooh and Janhunen’s (2024) trans-

lation of ASP into MIP relies on prior normalization and an acyclicity transformation

that explicitly represents dependencies among atoms by auxiliary variables and encodes

supported models; answer sets are obtained by adding acyclicity constraints.

Outlook. A promising avenue for future work is the investigation of vertex elimination,

as used by Rankooh and Janhunen in their translation. While it does not guarantee a

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

T. Eiter et al.18

1-1 correspondence, it has shown potential for improving performance on standard ASP

optimization benchmarks. Additional directions for future research include incorporating

more global constraints or exploring novel language constraints that can be modeled in

FlatZinc. Another possibility is evaluating metaheuristic FlatZinc solvers, such as using

CP-SAT as a purely local-search-based solver. Finally, CASP semantics was aligned more

with stable reasoning, moving away from interpreting linear constraints classically, in

Cabalar et al . (2016, 2020); Eiter and Kiesel (2020). A modified translation modeling

those semantics would be another highly interesting avenue for future work.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/

S1471068425100264.

References

Alviano, M., Calimeri, F., Charwat, G., et al. 2013. The fourth answer set programming
competition: Preliminary report. In Proc. of LPNMR 2013, Vol. 8148 of LNCS, Springer,
42–53. https://doi.org/10.1007/978-3-642-40564-8_5.

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F., Veltri,
P. and Zangari, J. 2017. The ASP system DLV2. In Proc. of LPNMR 2017, Vol. 10377 of
LNCS, Springer, 215–221.

Alviano, M. and Dodaro, C. 2016. Completion of disjunctive logic programs. In Proc. of IJCAI
2016, IJCAI/AAAI Press, 886–892.

Balduccini, M. 2011. Industrial-size scheduling with ASP+CP. In Proc. of LPNMR 2011, Vol.
6645 of LNCS, Springer, 284–296.

Banbara, M., Kaufmann, B., Ostrowski, M. and Schaub, T. 2017. Clingcon: The next
generation. Theory and Practice of Logic Programming 17, 4, 408–461.

Ben-eliyahu, R. andDechter, R. 1994. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence 12, 1-2, 53–87.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Cabalar, P., Fandinno, J., Schaub, T. and Wanko, P. 2020. An ASP semantics for constraints
involving conditional aggregates. In Proc. of ECAI 2020, G. De Giacomo et al ., Eds. IOS Press,
664–671.

Cabalar, P., Fandinno, J., Schaub, T. and Wanko, P. 2023. On the semantics of hybrid ASP
systems based on clingo. Algorithms 16, 4, 185.

Cabalar, P., Kaminski, R., Ostrowski, M. and Schaub, T. 2016. An ASP semantics for
default reasoning with constraints. In Proc. of IJCAI 2016, IJCAI/AAAI Press, 1015–1021.

Calimeri, F., Gebser, M., Maratea, M. and Ricca, F. 2016. Design and results of the fifth
answer set programming competition. Artificial Intelligence 231, 151–181.

Calimeri, F., Ianni, G. and Ricca, F. 2014. The third open answer set programming
competition. Theory and Practice of Logic Programming 14, 1, 117–135.

Chu, G. 2011. Improving combinatorial optimization. Ph.D. thesis, University of Melbourne,
Australia.

Clark, K. L. 1977. Negation as failure. In Logic and Data Bases, Plemum Press, New York,
293–322.

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

ASP-FZN 19

Eiter, T., Faber, W., Fink, M. and Woltran, S. 2007. Complexity results for answer set
programming with bounded predicate arities and implications. Annals of Mathematics and
Artificial Intelligence 51, 2-4, 123–165. https://doi.org/10.1007/s10472-008-9086-5.

Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skocovský, P. and Stepanova, D.
2023. Answer-set programming for lexicographical makespan optimisation in parallel machine
scheduling. Theory and Practice of Logic Programming 23, 6, 1281–1306.

Eiter, T., Geibinger, T., Ruiz, N. H., Musliu, N., Oetsch, J., Pfliegler, D. and
Stepanova, D. 2024. Adaptive large-neighbourhood search for optimisation in answer-set
programming. Artificial Intelligence 337, 104230.

Eiter, T. and Kiesel, R. 2020. ASP(AC): Answer set programming with algebraic constraints.
Theory and Practice of Logic Programming 20, 6, 895–910.

Erdem, E. and Lifschitz, V. 2003. Tight logic programs. Theory and Practice of Logic
Programming 3, 4-5, 499–518.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving with
clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Geibinger, T., Mischek, F. and Musliu, N. 2021. Constraint logic programming for real-world
test laboratory scheduling. In Proc. of AAAI 2021, AAAI Press, 6358–6366.

Gurobi Optimization, LLC. 2025. Gurobi Optimizer Reference Manual.

Janhunen, T. 2023. Generalizing level ranking constraints for monotone and con-
vex aggregates. In ICLP 2023 Tech. Comm., Vol. 385 of EPTCS, 101–115.
https://doi.org/10.4204/EPTCS.385.12.

Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P. and Schaub, T.
2017. Clingo goes linear constraints over reals and integers. Theory and Practice of Logic
Programming 17, 5-6, 872–888.

Janhunen, T., Niemelä, I. and Sevalnev, M. 2009. Computing stable models via reduc-
tions to difference logic. In Proc. of LPNMR 2009, Vol. 5753 of LNCS, Springer,
142–154.

Kaminski, R., Romero, J., Schaub, T. and Wanko, P. 2023. How to build your own ASP-based
system?!. Theory and Practice of Logic Programming 23, 1, 299–361.

Kaminski, R., Schaub, T., Son, T. C., Svancara, J. and Wanko, P. 2024. Routing and
scheduling in answer set programming applied to multi-agent path finding: Preliminary report.
CoRR: abs/2403.12153. https://arxiv.org/abs/2403.12153.

Lierler, Y. 2023. Constraint answer set programming: Integrational and translational (or SMT-
based) approaches. Theory and Practice of Logic Programming 23, 1, 195–225.

Liu, G., Janhunen, T. and Niemelä, I. 2012. Answer set programming via mixed integer
programming. In Proc. of KR 2012, AAAI Press.

Mischek, F. and Musliu, N. 2018. The test laboratory scheduling problem. Technical Report
CD-TR 2018/1, Christian Doppler Lab for AI and Optimization for Planning and Scheduling,
TU Wien, Austria.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G. 2007.
MiniZinc: Towards a standard CP modelling language. In Proc of CP 2007, Vol. 4741 of LNCS,
Springer, 529–543.

Perron, L., Didier, F. and Gay, S. 2023. The CP-SAT-LP solver. In Proc. of CP 2023,
Vol. 280 of LIPIcs, Schloss Dagstuhl – LZI, 3:1- 3:2.

Rankooh, M. F. and Janhunen, T. 2024. Improved encodings of acyclicity for translating
answer set programming into integer programming. In Proc. of IJCAI 2024, ijcai.org, 3369–
3376.

Shen, D. and Lierler, Y. 2019. SMT-based constraint answer set solver EZSMT+. CoRR:
abs/1905.03334. https://arxiv.org/abs/1905.03334.

Wolsey, L. 2021. Integer Programming. John Wiley & Sons.

https://doi.org/10.1017/S1471068425100264 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100264

	Introduction
	2 Preliminaries
	Constraint answer set programming

	3 Supported models and ranked interpretations
	4 Translation
	Translation constraints
	Correctness

	5 Implementation
	6 Experiments
	ASP benchmarks
	CASP benchmarks
	Summary

	7 Related work and conclusion
	References

