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Portfolio Optimization with Mental Accounts

Sanjiv Das, Harry Markowitz, Jonathan Scheid, and Meir Statman*

Abstract

We integrate appealing features of Markowitz’s mean-variance portfolio theory (MVT)
and Shefrin and Statman’s behavioral portfolio theory (BPT) into a new mental accounting
(MA) framework. Features of the MA framework include an MA structure of portfolios,
a definition of risk as the probability of failing to reach the threshold level in each mental
account, and attitudes toward risk that vary by account. We demonstrate a mathematical
equivalence between MVT, MA, and risk management using value at risk (VaR). The ag-
gregate allocation across MA subportfolios is mean-variance efficient with short selling.
Short-selling constraints on mental accounts impose very minor reductions in certainty
equivalents, only if binding for the aggregate portfolio, offsetting utility losses from er-
rors in specifying risk-aversion coefficients in MVT applications. These generalizations of
MVT and BPT via a unified MA framework result in a fruitful connection between investor
consumption goals and portfolio production.

I. Introduction

Economic analysis regularly separates consumption decisions from produc-
tion decisions. This separation underlies the insight of comparative advantage.
In Ricardo’s famous example, Portugal has a comparative advantage in the pro-
duction of wine while England has a comparative advantage in the production of
cloth. People in each country are made better off by producing according to their
relative advantage, whether wine or cloth, and trading what they produce for the
combination of wine and cloth that maximizes their consumption utility.

Separation of production from consumption also underlies Markowitz’s
(1952) mean-variance portfolio theory (MVT). Each mean-variance investor has
a consumption utility function that depends on the expected return of her overall
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portfolio and its standard deviation, the measure of risk in MVT. Each mean-
variance investor faces a production function in the form of the mean-variance
efficient frontier and each chooses to consume from among the efficient portfolios
the one that maximizes her utility, combining expected returns and risk in the
optimal proportions.

Placing the consumption function of wine and cloth next to the mean-
variance consumption function of expected returns and risk highlights the dif-
ference between the two. Wine and cloth are consumption goods, but expected
returns and risk are only stations on the way to ultimate consumption goals. Ulti-
mately, individual investors want their portfolios to satisfy goals such as a secure
retirement, college education for the children, or being rich enough to hop on a
cruise ship whenever they please. Institutional investors want to satisfy goals such
as paying promised benefits to beneficiaries and adding new benefits.

Investors are attracted to MVT by its logic and practical application. It seems
logical to choose portfolios based on their overall expected return and risk, and the
mean-variance optimizer is a practical tool, quick at drawing the efficient frontier.
But MVT does not answer many of investors’ questions. How does one create a
portfolio that is best at satisfying one’s goals? Is such a portfolio on the mean-
variance efficient frontier? What is one’s attitude toward risk? How does one
apply MVT if one has many attitudes toward risk that vary by goal? For instance,
one is very averse to risk with the portion of one’s portfolio devoted to the re-
tirement goal, but one is much less averse to risk with the portion devoted to the
college education goal, and one is willing to take any risk, even be risk seeking,
with the portion devoted to getting rich. And what is one’s optimal portfolio if one
perceives risk not as the standard deviation of the return of the overall portfolio
but as the probability of not reaching the threshold of each particular goal? Our
purpose in this paper is to answer these questions.

While MVT is silent about ultimate portfolio consumption goals, such goals
are central in the behavioral portfolio theory (BPT) of Shefrin and Statman (2000).
These investors do not consider their portfolios as a whole. Instead, investors
consider their portfolios as collections of mental accounting (MA) subportfolios
where each subportfolio is associated with a goal and each goal has a thresh-
old level. BPT investors care about the expected return of each subportfolio and
its risk, measured by the probability of failing to reach the threshold level of
return. Each mental account has an efficient frontier that reflects the trade-off be-
tween expected returns and the probability of failing to reach the threshold level
of that mental account. A BPT subportfolio is dominated when there is another
subportfolio with the same expected return and a lower probability of failing to
reach the threshold level. Investors choose subportfolios on the efficient frontier
by their trade-off between expected returns and the probability of failing to reach
the threshold level. It is important to note that risk seeking can be optimal for BPT
investors, while MVT investors are always risk averse.

Much work on portfolio optimization is devoted to attempts to maximize
out-of-sample performance. For example, DeMiguel, Garlappi, and Uppal (2009)
show that a 1/n rule yields an ex post efficiency level higher than that obtained
by conventional MVT techniques. Our work is different—we integrate appealing
features of MVT and BPT into a new framework. We call that framework the MA
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framework to distinguish it from both the MVT and the BPT frameworks. Fea-
tures of the MA framework include an MA structure of portfolios, a definition
of risk as the probability of failing to reach the threshold level in each mental ac-
count, and attitudes toward risk that vary by account. We do not integrate into MA
the BPT feature where investors might be risk seeking in their mental accounts.’
This extension is left for future research.

The canonical MVT optimization comprises minimizing the variance of a
portfolio, min,, w’ X'w, subject to i) achieving a specified level of expected return
E = w'y and ii) being fully invested (i.e., w'l = 1), where w € R" is a vector
of portfolio weights for n assets, X € R"*" is the covariance matrix of returns
of the choice assets, and ;1 € R" is the vector of n expected returns. The unit
vector is denoted 1. Varying E results in a set of solutions {w(E)} to this problem,
delivering portfolios that are mean-variance efficient. Represented graphically in
mean-variance space, this set {w(E)} traces out the MVT “efficient frontier” (see
Figure 1).2

FIGURE 1
The MVT Efficient Frontier and Mental Account Portfolios

The curve in Figure 1 is the MVT efficient frontier when there are no short-selling constraints. The three diamond-shaped
points on the line correspond to the three mental account portfolios presented in Table 1. The dot on the line (third point from
the left) comprises a portfolio that mixes 60% of the first portfolio and 20% each of the second and third. This aggregate
of three mental account portfolios is also mean-variance efficient and resides on the frontier.
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In MA the threshold return is denoted as H, and the canonical problem is to
maximize expected return, max,, w’u, subject to a specified maximum probability
of failing to reach the threshold (i.e., Prob[r(p) < H] < «). Here r(p) denotes
the portfolio’s return, and « is the maximum probability of failing to reach the

ISee work by De Giorgi, Hens, and Mayer (2005) for the relation of this problem to prospect
theory and two-fund separation. The mean-variance problem with expected shortfall constraints has
been analyzed in Jaeger, Rudolf, and Zimmermann (1995).

2A sizable literature related to MVT succeeds these main results of Markowitz (1952). For a
small sampling relevant to this paper, see Markowitz (1976), Levy and Markowitz (1979), Markowitz
(1983), Markowitz (1991), Basak and Shapiro (2001), DeMiguel et al. (2009), Alexander and Baptista
(2008), and Alexander, Baptista, and Yan (2007).
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threshold. In MA, overall investor goals are subdivided into subportfolio goals. An
investor following MA might specify that she would like her retirement portfolio,
currently worth Py, to accumulate to a threshold dollar amount P after T years,
implying a threshold return per year of {[P;/Po]'/T — 1} = H, and failing to
meet this threshold with probability a.. Keeping threshold H fixed, and solving
the problem repeatedly for different levels of «, gives corresponding maximized
expected return levels (w'p); the plot of expected return against « for fixed H
results in the MA portfolio frontier. We obtain one frontier for every threshold
level H (see Figure 2). As we will see, there is a mathematical connection between
these two problems.

FIGURE 2
Efficient Frontiers in MA

Figure 2 presents derived MA frontiers for the inputs chosen in Table 1. This frontier is generated by solving equations (7)
and (8) for changing levels of probability () of failing to reach the threshold H. In Graph A, H= —10%. A higher expected
return comes with a higher probability of not reaching this threshold. In Graph B, H = 0%. Similar features are evident.
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The focus of this paper is the integration of portfolio production and con-
sumption by combining the features of MVT and MA into a unified framework.
The main results are as follows:

i) Problem Equivalence

a) We show that portfolio optimization over two moment distributions
where wealth is maximized subject to reaching a threshold level of re-
turn with a given level of probability (i.e., the MA problem) is math-
ematically equivalent to MVT optimization. This is also equivalent to
optimization under a safety-first criterion as in Telser (1956).

b) This equivalence has three consequences: First, that MA optimal port-
folios always lie on the MVT efficient frontier. Second, that each MA
problem’s constraint specifies a mapping into an “implied” risk-aversion
coefficient in the MVT problem. Third, as we will see, a many-to-one
mapping where many MA portfolios may map into a single mean-
variance efficient portfolio.
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The trade-off between risk and return in MA embodies a value-at-risk
(VaR) type constraint. We show how MVT, MA, and risk management
using VaR are connected, providing an analytic mapping between the
different problem formulations.®> We also show that the VaR-analogous
representation provides an analytical approach to check for feasibility of
MA portfolios, because a combination of high threshold levels and low
maximum probabilities of failing to reach them might not be feasible
with an available set of assets.

ii) Mental Account Subportfolios

a)

b)

c)

The framework is predicated on two assumptions. First, that investors
are better at stating their goal thresholds and probabilities of reach-
ing thresholds in MA (the consumption view) than their risk-aversion
coefficients in MVT (the production view). Second, that investors are
better able to state thresholds and probabilities for subportfolios (e.g.,
retirement, bequest, education, etc.) than for an aggregate portfolio. We
present simulations to show that better problem specification delivers
superior portfolios.*

The MA framework results in no loss in MVT efficiency when short sell-
ing is permitted. As is known, combinations of MVT-efficient subport-
folios result in an efficient aggregate portfolio (see Sharpe, Alexander,
and Bailey (1999), Huang and Litzenberger (1988) for a proof).” Since
MA portfolios are mathematically equivalent to MVT portfolios, com-
bining optimal MA subportfolios also results in an aggregate portfolio
that is on the MVT frontier.

If no short sales are allowed, subportfolio optimization results in a few
basis points (bp) loss in efficiency relative to optimizing a single ag-
gregate portfolio (see also Brunel (2000)). However, this loss is small
compared to the loss that occurs from investors inaccurately specifying
their risk aversions. We present simulations and robustness checks that
show little or no degradation in Sharpe ratios when MA optimization is
applied. We show that the efficiency loss declines as investors become
increasingly risk averse.

The paper proceeds as follows. Section II presents the MVT setting in a
form where risk aversion is explicitly specified. An example used throughout the
paper is set up. Section III derives the explicit relationship between MVT and

3Qur alternative representation complements work examining biases in optimization with VaR
constraints, discussed in Basak and Shapiro (2001), Alexander and Baptista (2008), and Alexander
et al. (2007).

“4Barsky, Juster, Kimball, and Shapiro (1997) find that eliciting preference parameters over specific
behaviors yields risk tolerance levels that are borne out in tangible behavior. They also find substantial
preference heterogeneity across individuals, thereby emphasizing that the need to better understand
individual preferences is crucial in portfolio formation.

SThis was pointed out in the original text by William Sharpe. We cite the 6th edition here. The
point is made on p. 194.
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MA portfolios and also makes clear the relation of these problems to VaR. Fea-
sibility restrictions in MA are also analyzed. Section IV analyzes the loss in effi-
ciency from misspecification of risk aversion in a standard mean-variance set up.
Section V specifically examines portfolio efficiency in the MA framework when
short-selling restrictions are imposed. We conclude in Section VI.

[I.  Mean-Variance Optimization of Mental Account Portfolios

We first present an alternate solution to the mean-variance optimization prob-
lem that will help make the connection between MVT and MA more explicit, an-
alytically derived in Section III. In the canonical MVT problem, stated somewhat
more generally, the objective function is to minimize (y/2)Var(p), subject to the
constraint E[r(p)] = E, where the risk-aversion coefficient v = 1; Var(p) stands
for the variance of portfolio p’s return, and the expected return on the portfolio
E[r(p)] is set equal to a fixed level E. We solve instead an analogous restated
problem where we maximize E[r(p)] — (/2)Var(p), with different y > 0, each
solution corresponding to a portfolio on the efficient frontier.

Many forms of mean-variance optimization exist, but in general they all offer
good approximations to most common utility functions (see Levy and Markowitz
(1979), Markowitz (1991)). Here our mean-variance utility function contains a
single parameter for risk aversion, denoted v, balancing investor trade-offs in
mean-variance space.

Investors choose portfolio weights w = [wy, ..., w,]" for n assets, where the
assets have a mean return vector . € R" and a return covariance matrix X' € R"*".
The full statement of the MVT problem is as follows:

(1) max w p— % w X w,
subject to the fully invested constraint
(2) w1l = 1,

where 1 =[1,1,...,1) € R".
The solution to this optimization problem in closed form is (see the Appendix
for the full derivation)

1 VX —~
3 = —y! - —— 1 c R
© wo= g [“ ( U511 H

This optimal solution w is an n-vector and is easily implemented given it is analyt-
ical. In this version of the Markowitz problem, we specify ~y, while in the standard
problem we specify expected return. Of course, there is a mapping from one to
the other.

Note that we may trace out the mean-variance efficient frontier by choosing
different values for v > 0 and resolving the problem.® Knowing the risk-aversion

6 Alternatively, we may solve the original Markowitz problem to generate the frontier as well. The
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coefficient v for each investor implies the point on the frontier that maximizes
mean-variance investor utility.

Example. We introduce a numerical example that will be used to illustrate the
results in the rest of the paper. Suppose we have three assets with mean vector and
covariance matrix of returns

0.05 0.0025 0.0000 0.0000
4 p = 0.10 |, Y = 0.0000 0.0400 0.0200
0.25 0.0000 0.0200 0.2500

The first asset is a low-risk asset, analogous to a bond. It has low return and
low variance compared to the other two more “risky” assets, analogous to a low-
risk stock and a high-risk stock. In an MA framework, investors choose to divide
their aggregate portfolios into subportfolios. To make this more specific, suppose
an investor divides an aggregate portfolio into three subportfolios: retirement,
education, and bequest. She is risk averse in the retirement subportfolio and her
risk-aversion coefficient for this subportfolio is v = 3.7950. She is somewhat less
risk averse in the education subportfolio and her risk-aversion coefficient for it is
v = 2.7063. She is even less risk averse in the bequest subportfolio, with risk-
aversion coefficient v = 0.8773.

Table 1 shows the optimal portfolio weights for the three subportfolios com-
puted using equation (3). The standard deviation of the retirement subportfolio is
12.30%, and that of the education subportfolio is 16.57%. The standard deviation
of the bequest subportfolio is highest, 49.13%. The aggregate portfolio based on a
60:20:20 division of investable wealth across the three subportfolios is also shown
in the table, with a standard deviation of 20.32%.

As the coefficient of risk aversion  declines, less is invested in the bond and
more in the two stocks. In the bequest subportfolio, risk aversion has dropped very
low and now the investor leverages her portfolio by taking a short position in the
bond and increasing the long positions in the two stocks. Note that the aggregate
portfolio is still unlevered.

Markowitz problem is

E(R),

!
min —w’ Zw s.t. w
w 2

w1l = 1.

The first constraint requires that a fixed level of expected return be met for the minimized level of
portfolio variance. This constraint mimics the effect of choosing «y in our modified formulation of the
problem. The second constraint requires that all moneys be invested, also known as the fully invested
constraint. The well-known solution to this problem is (see Huang and Litzenberger (1988) for one
source):

w o= AT lpeyxT,
CE—A B—AE
A= ) v o= )
D D
A = U's 'y, B = y¥'p
c = 1x 1, D = BC-A~

The frontier is traced by repeatedly solving this problem for different values of E(R).
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TABLE 1
Holdings of Mean-Variance Efficient Portfolios for Varying Risk Aversion

In Table 1, the portfolio weights are provided for three assets computed using the solution in equation (3). Risk aversion
is decreasing as ~ decreases. We also show the aggregate portfolio comprising a 60:20:20 mix of the three subportfolios.
The three subportfolios correspond to the retirement, education, and bequest accounts. The expected returns m of each
individual subportfolios, as well as the standard deviations s, are also shown.

Risk Aversion: v = 3.7950 vy = 2.7063 v =0.8773 60:20:20 Mix
Retirement Education Bequest Aggregate

Assets Subportfolio Subportfolio Subportfolio Portfolio

1 (bond) 0.53943 0.37873 -0.78904 0.2416

2 (low-risk stock) 0.26562 0.34986 0.96200 0.4217

3 (high-risk stock) 0.19495 0.27141 0.82704 0.3367

Total weights 1 1 1 1

Expected return (rj) 10.23% 12.18% 26.35% 13.84%

Std. dev. (sj) 12.30% 16.57% 49.13% 20.32%

This section presented the MVT problem in a form that is necessary for the
analysis of the main contributions of the paper in subsequent sections. We next
examine the linkage between the MVT problem and other problem formulations.

[ll. Mental Accounts, VaR, and Mean-Variance Optimal
Portfolios

In this section, we derive the equivalence between MVT and MA, and we
demonstrate the linkage to VaR.

It is easy to chart the mean-variance frontier of MVT. However, stating one’s
~ with precision is difficult. Therefore, financial planning firms elicit risk attitudes
using questionnaires that do not ask about ~y directly. Two refinements of this ap-
proach are of interest. First, eliciting risk attitudes for MA subportfolios is easier
than eliciting the risk attitude for an aggregate portfolio. Second, investors are
better at stating their threshold levels for each goal and maximum probabilities of
failing to reach them than stating their risk-aversion coefficients.

For instance, in MA an investor may specify that the return on a portfolio
should not fall below a level H with more than « probability. This is equivalent
to optimizing portfolios using Telser’s (1956) criterion. For normal distributions,
this is connected to VaR and is the same as saying that the VaR, = H in the
language of risk managers. In Shefrin and Statman’s (2000) BPT, investors maxi-
mize expected returns subject to a constraint that the probability of failing to reach
a threshold level H not exceed a specified maximum probability «. This is the
same as expected wealth optimization with a VaR constraint. In this section, we
will see that when investors are quadratic utility maximizers or returns are mul-
tivariate normal, this problem maps directly into the Markowitz mean-variance
problem, thereby resulting in optimal portfolios that are mean-variance efficient.
Thus there is a mathematical mapping between investor goals (consumption) and
mean-variance portfolios (production) via the medium of mental accounts.

Consider an investor with threshold level H = —10% in one of her mental
accounts. She wants to maximize expected return subject to the constraint that
the maximum probability of failing to reach this level of return does not exceed
a = 0.05. Or consider the same investor in a different mental account, where
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H = 10% and she wishes to maximize return subject to the constraint that the
probability of failing to reach H not exceed 0.05. Hence, the investor acts as if
she has different risk preferences in each of the mental accounts. We will show
here how these separate specifications of the MA constraint imply a mapping into
different risk preference parameters under MVT.

Before proceeding to the technical specifics, we highlight two theoretical
features of the problem in this section. First, we show that portfolio optimization
in the MA framework with VaR constraints yields an optimal portfolio that re-
sides on the MVT-efficient frontier, consistent with the results in Telser (1956).
We extend this result by showing that each VaR constraint in the MA framework
corresponds to a particular implied risk-aversion coefficient in the MVT frame-
work. Alexander et al. (2007) solve a mean-variance problem with VaR and CVaR
(conditional VaR) constraints and find that the frontier is impacted inwards with
the constraint. In their model, v = 1. What we show instead is that the same prob-
lem with the VaR constraint may be translated into an unconstrained problem
with an implicitly higher v. There is no inconsistency between the models, for the
former one keeps ~y fixed and shows that the mean-variance trade-off is impacted
adversely with the imposition of the VaR constraint. The latter model imposes
the mean-variance impact by altering . Thus, in our paper, the VaR-constrained
problem has an alternate representation.’

Second, since an MA investor divides her portfolio optimization into sub-
portfolio optimizations, there is the natural question of the efficiency of the aggre-
gate of the subportfolios. We show that the aggregated portfolio is also analogous
to a mean-variance portfolio with a risk-translated ~ coefficient with short sell-
ing, resulting in no loss of mean-variance efficiency, even after imposing the MA
structure. This is true when short selling in the aggregate portfolio is permitted.
The case with short-selling constraints is solved in Section V.

We now show that solving the MA problem is analogous to solving a stan-
dard mean-variance problem with a specific “implied” risk-aversion coefficient.
Consider a threshold level of return H for portfolio p, and the maximum proba-
bility of the portfolio failing to reach return r(p) as «. In other words,

(5) Problr(p) <H] < a.

If we assume that portfolio returns are normally distributed, then this statement
implies the following inequality:

(6) H < wp+d (a)[wZw]'/?

where &(-) is the cumulative standard normal distribution function. We note that
the assumption of normality is without loss of generality. We impose normality
for convenience because it is a common practical choice. Since this optimization
problem may be infeasible, we provide a full discussion of feasibility in Section
II1.B.

7See Basak and Shapiro (2001) for continuous-time dynamic portfolio problems with VaR con-
straints.
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The goal of the investor is to choose the best portfolio (in mean-variance
space) that satisfies the constraint in equation (6). Recalling that the optimal
weights w are given by equation (3), these may be substituted into equation (6),
and we obtain an equation that we can solve for the “implied” risk aversion ~y of
the investor for this particular mental account. Noting that the constraint in equa-
tion (6) is an equality when optimality is achieved, we have the solution to the
investor’s implied risk aversion ~y and the optimal weights w(-y) embedded in the
following equations:

7 H = wy)u+@ (o) w) 2wy)]'?,
where

1 Y 'y—~y
®) w(y) = 721{!“<1'2—11>1]'

The solution to equation (7) is easily obtained to find +y, the implied risk aversion
for the mental account, after equation (8) has been substituted into equation (7).
Note that in equation (8) the portfolio weights are nonlinear in the risk-aversion
coefficient.

Hence, the portfolio optimization problem for an MA investor is specified
by a threshold level of return H and a probability level «.. There is a semianalytic
solution to the MA portfolio problem that uses the MVT formulation. When an
investor specifies her MA preferences for each subportfolio through the parameter
pair (H, a), she is implicitly stating what her risk preferences () are over the
given portfolio choice set (i, X). We may thus write the implied risk aversion
for each mental account as a mapping function y(u, X' ; H, ). We illustrate these
results by returning to our numerical example.

Example. Assume an investor with three mental accounts as before. The portfo-
lio choice set is the same as in equation (4) that provides the input values of p, X.
In the first mental account, suppose we have that H = —0.10 and o = 0.05. That
is, the investor stipulates that she does not want the probability of failing to reach
H=-10% to exceed a=0.05. Then solving equation (7) results in an implied risk
aversion of y; =3.9750. When we change these values to H=—5% with a=0.15,
then we get v, = 2.7063 as the solution to equation (7). If we choose H = —15%
and a=0.20, then the implied risk-aversion coefficient is v =0.8773. (Recall that
these were the three values of - for which we reported MVT weights in Table 1.)
This illustrates the mapping from MA parameters into MVT risk-aversion coef-
ficients. The portfolio weights in Table 1 are exactly those obtained here in the
three mental accounts we optimized in MA.

Therefore, an MA investor behaves in a compartmentalized manner, where
mental accounts are associated with varying levels of risk aversion. However, this
is not a departure from optimality within the MA framework. It is important to
note that because of the mapping from the MA constraint into MVT risk aversion,
each portfolio is mean-variance efficient and resides on the portfolio frontier. We
show this graphically in Figure 1.

As a corollary, the aggregate portfolio of MA subportfolios is also mean-
variance efficient, because combinations of portfolios on the efficient frontier are
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mean-variance efficient. As in Table 1, suppose the first portfolio is allocated
60%, the second 20%, and the third 20% of the investor’s wealth. The aggregate
portfolio has a mean return of 13.84% with a standard deviation of 20.32%. This
portfolio lies on the efficient frontier and is depicted in Figure 1 as a small dot (the
third portfolio from the left of the graph). Hence, we see that even when the in-
vestor divides her aggregate portfolio production problem into three separate MA
problems based on consumption characteristics, the component mental account
portfolios and aggregated portfolio are all on the MVT efficient frontier.

We note further that the investor can look at the probability of failing to
reach various thresholds once the subportfolio has been optimized. This is also
true in the mean-variance setting. Table 2 shows the combinations of threshold
return levels and probabilities of failing to reach them for the three subportfo-
lios in Table 1. We see that the probability that the investor would have negative
returns in the three portfolios is 20%, 23%, and 30%, respectively. These corre-
spond to decreasing risk aversions in the three subportfolios. The probability of
a negative return in the aggregate portfolio is 25%. Since the portfolio weights
are not linearly proportional to the risk-aversion coefficient v (see equation (3)),
the risk-aversion coefficient implied in the aggregate portfolio is different from
the weighted average of the risk-aversion coefficients of the three subportfolios.

TABLE 2
Threshold Return Levels and Corresponding Probabilities of Not Reaching Them

Table 2 is based on the three portfolios shown in Table 1. Each portfolio is the one that maximizes the expected return
while attaining the threshold H with the specified level of probability c.

Risk Aversion: v = 3.7950 v = 2.7063 ~+ =0.8773 60:20:20 Mix
Retirement Education Bequest Aggregate
Subportfolio Subportfolio Subportfolio Portfolio
Threshold (H) Prob[r < H] Prob[r < H] Prob[r < H] Prob[r < H]
-25.00% 0.00 0.01 0.15 0.03
-20.00% 0.01 0.03 0.17 0.05
-15.00% 0.02 0.05 0.20 0.08
-10.00% 0.05 0.09 0.23 0.12
-5.00% 0.11 0.15 0.26 0.18
0.00% 0.20 0.23 0.30 0.25
5.00% 0.34 0.33 0.33 0.33
10.00% 0.49 0.45 0.37 0.42
15.00% 0.65 0.57 0.41 0.52
20.00% 0.79 0.68 0.45 0.62
25.00% 0.89 0.78 0.49 0.71
Mean return 10.23% 12.18% 26.35% 13.84%
Std. dev. 12.30% 16.57% 49.13% 20.32%

A. Trading Off Thresholds and Probabilities

BPT emphasizes the trade-off between thresholds and the probability of fail-
ing to reach them. In MA, as in BPT, investors maximize expected wealth subject
to a maximum probability of failing to reach a threshold level of return, while in
MVT they minimize variance, subject to a level of return.

Efficient frontiers in MA have expected returns on the y-axis and probabil-
ities of not reaching a specified threshold on the x-axis. Graph A of Figure 2
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presents the derived MA frontier for the retirement subportfolio in Table 1. The
frontier is generated by solving equations (7) and (8) for various levels of prob-
ability of failing to reach the threshold H. For example, we set H = —10%. The
expected return increases as we increase the maximum probability of failing to
reach this threshold. We see that expected return is convex in the probability of
failing to reach the threshold, the MA measure of risk.

Graph B of Figure 2 shows the frontier generated by MA portfolios where
H = 0%, a common threshold because it is the dividing line between gains and
losses. Again, we see that increasing probabilities of failing to gain allow higher
expected return.

Figure 3 shows the probabilities of failing to reach a threshold H and the
expected returns when risk aversion (vy) varies, for different threshold levels. The
figure comprises four panels of two plots each, one for the probability of failing to
reach thresholds and the other for the expected return. We see how the probability
of failing to reach the threshold (upper plot) and the expected return (lower plot)
change as risk aversion increases. Graph A presents the case when H = —5%.

FIGURE 3

Probability of Failing to Reach Threshold Returns H and Expected Returns E(R) when Risk
Aversion () Varies

Figure 3 comprises four graphs of two plots each; each graph is comprised of a plot for the Prob[r < H] and one of the
expected return E(R) below it. Each set relates to a threshold level in the set H = { —5%, 0%, +5%, +10% }. Risk aversion
~ is varied on the x-axis.
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An increase in risk aversion leads to a lowering of the probability of failing to
reach a threshold but also to a lower expected return. Graph B presents the case
where H = 0% and has the same inference. In Graph D, H = 10%. Here, the
probability of failing to reach the threshold is increasing in risk aversion, while
the expected return is decreasing. MA investors require compensation in the form
of higher expected returns for a higher probability of failing to reach a threshold
return. Hence the portfolio that is most to the left of the plot dominates all other
portfolios, and the efficient frontier consists of only that portfolio. Finally, Graph
C is for H = 5%. The probability of failing to reach this threshold declines at
first as risk aversion increases, but then it increases. Efficient portfolios lie in the
range where the probability of failing to reach the threshold is declining, and all
portfolios in the range beyond this point are dominated.

MA frontiers are plotted with fixed threshold levels with the probability of
failing to reach the threshold on the x-axis, and the expected return on the y-axis.
For each level of the threshold H we obtain a different MA frontier. Figure 4
shows our three MA portfolios, which have different thresholds. As thresholds
increase, we shift from the lowest frontier to the highest one. Our three mental
accounts reside on separate MA frontiers because they are optimized for different
thresholds, but all portfolios on these frontiers reside on the mean-variance effi-
cient frontier (in standard deviation and expected return space). Hence, there is a
one-to-many mapping from a single MVT frontier to a set of MA frontiers and
vice versa. For example, the retirement portfolio occupies a single point on the
MVT frontier but corresponds to many sets of (H, a), as seen in Table 2.

FIGURE 4
MA Frontiers as Thresholds H Are Varied

Figure 4 presents derived MA frontiers for the inputs chosen in Table 1. This frontier is generated by solving equations (7)
and (8) for changing levels of the probability of failing to reach the threshold («). H is set, in turn, to —5%, —10%, and
—20%. Expected return rises with the probability of failing to reach the threshold. Hence, the frontier moves to the right as
H declines. The three portfolios are for three mental accounts with the following thresholds (H) and probabilities of failing
to reach the threshold («): The left-most point on the middle frontier above is for (H, a) = (—10%, 0.05), the second point
from the left on the lowest frontier is for (H, «) = (—5%, 0.15), and the right-most point on the highest frontier is for (H, a)=
(—15%, 0.20).
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B. Feasibility in MA

Achieving particular combinations of thresholds, probabilities of failing to
reach them, and expected returns may not always be feasible with a given set of
assets. The MA problem has a feasible solution when

) H < wWp+d (a)w w2

The problem has no feasible solution when H > w'u + &~ (a)[w' Zw]'/2.
One way to find if the problem has a feasible solution is to maximize the value of
the right-hand side of equation (9) and check if it is greater than H. This results
in the following optimization program:

(10) maxQ = w o+ 3 a) W Zw]'/2,
subject to
(n w1l = 1.

The Lagrangian for this problem is

(12) max Q0 = W+ @ (o)W Zw]? + \[1 — w'l].

W?

The first-order conditions are

13) —gQ = pu+d a)WEW2Zw—-A1 = 0,
w
00 P

(14) - 1-w1 = 0.

We premultiply all terms in equation (13) by X~ and, defining [w' Zw]~!/? = M,
we get, after rearranging,

(15) A1 = Zlu+ o (a)Mw,

(16) M2 = VS p+da)Ml'w.

Noting that 1'w = 1, we get
'Y '+ Ya)M
'y-11
Substitute the solution for A into equation (15) and rearrange to get the
equation for portfolio weights:

B 1 1 'Y 'u+od Y a)M
I L v =

(17) A =

Note however, we have eliminated A but we have obtained an equation with w €
R" on both sides, since M = [w' Xw] !/, giving us

_ 1 1 VX i+ &' (o)W Ew] !/
A9 w = @‘l(a)[w’Ew]"/ZE {M_< 'z )1]
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This is a system of n implicit equations, best solved numerically. Once we get the
solution and plug it back into the objective function Q = w'pu+d~! (a)[w' Xw]'/?
to get the maximized value, we can check if H < Q. If not, then the problem
is infeasible with the current portfolio choice set, and other assets need to be
considered or H reduced.

IV. Efficiency Loss from Misspecification of Risk Aversion

Mean-variance investors are advised to determine their optimal aggregate
portfolio on the efficient frontier by balancing their aversion to risk with their
preference for high returns. But investors find it difficult to specify their optimal
aggregate portfolio for two reasons. First, investors have more than one level of
risk aversion. In our example the level of risk aversion associated with money
dedicated to retirement is high but the level of risk aversion associated with money
dedicated to education is lower and their risk aversion with money dedicated to
bequest is even lower. Investors who are asked for their level of risk aversion
in the aggregate portfolio must weight their three levels of risk aversion by the
proportion dedicated to each in the aggregate portfolio. This is a difficult task
unless investors are guided to begin by breaking down the aggregate portfolio into
the three MA subportfolios and determine the proportions of each in the aggregate
portfolio. Investors who skip the mental accounts subportfolios stage are likely to
misspecify their level of risk aversion in the aggregate portfolio.

Moreover, investors find it difficult to specify their levels of risk aversion
even in the mental accounts subportfolios when they are asked to specify their
level of risk aversion in units of variance, since variance offers investors little
intuitive meaning. This adds to the likelihood of misspecification of optimal ag-
gregate portfolios. Investors are better able to specify their level of risk aversion in
units of thresholds for each of the MA subportfolio and the probabilities of failing
to reach them.

One of the benefits of the mental account framework is that risk preferences
are specified better. It is nevertheless useful to examine the loss in mean-variance
efficiency that occurs when our investor misspecifies her risk aversion (7). Using
the same example as before, we present in Table 3 (and depict geometrically in

TABLE 3

Degradation in Expected Return When Risk-Aversion Coefficients
Are Misspecified by Investors

Table 3 reports the basis points loss from using a misspecified ~. The comparison is made using the utility loss translated
into basis points as shown in Figure 5. Numbers in the table are computed as the average of loss from an upward and
downward perturbation of the risk-aversion coefficient by the percentage error. The three risk-aversion levels correspond
to those in Table 1. We can see that losses increase as investors become less risk averse.

Misspecification of the
Risk-Aversion Coefficient

Risk Aversion () 10% 20% 30%
3.7950 2.50 10.94 28.72
2.7063 3.50 15.34 40.27
0.8773 5.29 23.15 44.22

(numbers in basis points)
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Figure 5) the loss in aggregate utility (translated into basis points of return) when
the investor misspecifies her risk aversion. Losses are in the range of 5 bp to 40 bp.
Losses are higher for investors who are less risk averse.

FIGURE 5
Degradation in Expected Return when Risk Aversion is Misspecified by an Investor

Figure 5 shows the MVT frontier and the point on the frontier that the investor would choose if he could specify correctly
his risk-aversion coefficient (). The tangential indifference curve is also presented. The point to the right is efficient, but
it lies on a lower indifference curve. On the y-axis, we see the difference between the indifference curves with respect to
the expected return.
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Since it is easier for investors to specify their risk-return trade-offs in specific
goal-based subportfolios than in a single aggregate portfolio, they do not incur
the costs of misspecification, as is shown in this numerical example. Hence, MA
portfolios do better if they result in better specification of investor goals. However,
they result in a loss in portfolio efficiency because the aggregate of optimized
subportfolios is not always mean-variance efficient. In the next section we show
that this loss of efficiency is very small.

V. Loss of Efficiency with Short-Selling Constraints

So far we have assumed that short sales are allowed with no constraints. We
found that MA portfolios reside on the mean-variance efficient frontier. Hence,
solutions to the MVT and MA problems coincide. In this section, we assess the
MVT and MA problems when short selling is constrained.

Portfolio optimization in practice entails a quadratic objective function in-
volving expected returns and constraints that are linear in portfolio weights for
being fully invested. The MA problem adds a nonlinear constraint, namely, that
the probability of failing to reach threshold H not be greater than . However,
with no short-sale constraints, we demonstrated a tractable representation of the
problem and a simple solution procedure (as shown in equations (3) and (7); an
alternate solution was provided in equation (19)). In short, our previous results de-
veloped full or semianalytic solutions that did not call for quadratic programming
(QP) optimizers.
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Short-selling constraints complicate the QP problem when taken in conjunc-
tion with the nonlinear MA constraint in addition to short-selling constraints.
While standard QP software usually requires linear constraints, the addition of
the MA constraint did not hamper us in the previous sections, since we bypassed
the use of QP with semianalytic solutions. This was possible partly because all
the constraints we imposed were equality constraints. With the introduction of
inequality (short-selling) constraints on the portfolio weights in this section, we
have to resort to QP numerical approaches and also deal with the nonlinear MA
constraint. We show how a reformulation of the problem allows us to obtain the
efficiencies of standard QP algorithms with linear constraints.

The MA portfolio optimization problem with additional short-selling con-
straints is as follows:

(20) max wpu s.t.
(21) wp+d Ha)VwEw > H,
22) w1l = 1,
(23) w > L
(24) w < U.

Here w € R" is the vector of constrained portfolio weights. The upper and lower
bound vectors are {U,L} € R", such that L < w < U. In order to employ
powerful QP routines, we recast the problem above into the program below, where
we embed the nonlinear constraints into a subsidiary objective function, resulting
in a QP with only linear constraints. The full problem statement is as follows:

(25) Solve, w(y)p+® (a)y/wy)EZw(y) = H,

where w(y) is the solution to the following optimization program:

~y

(26) max  w'p — EWIEW s.t.
27) w1l = 1,
(28) w > L,
(29) w < U.

Hence, we solve nonlinear equation (25) in variable + containing function w(~)
that comes from a numerical solution to the subsidiary maximization problem in
equations (26)—(29). We fix v and solve the QP in equations (26)—(29). Then we
check if equation (25) holds. If not, we move ~ in the appropriate direction and
resolve the QP. We search efficiently over v, and convergence is achieved rapidly.
If there is no convergence, then it also implies that the program in equations (20)—
(21) is infeasible.® The solution delivers the risk-aversion coefficient v implied by
the MA parameters (H, «).

8We undertake optimization using the R computing package (see http://www.r-project.org/). This
contains the minpack.Im and quadprog libraries, which we applied to this problem.
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We solved the short-selling constrained problem with the same inputs as be-
fore. First, we generated the portfolio frontier for the short-selling constrained
Markowitz problem. The frontier is plotted in Figure 6 and is the right most of
the two frontiers. This frontier is enveloped by the unconstrained portfolio fron-
tier (the left-most frontier), and the two frontiers coincide in the region where the
short-selling constraint is not binding. In the case of the retirement and educa-
tion mental accounts, the constraint is not binding, as may be seen from Table 1.
In the same table, since the optimal solution to the third mental account entails
short selling the first asset, we know that the solution will differ when the short-
sell constraint is imposed. We see this point as the right-most point in Figure 6.
This portfolio does not reside on the unconstrained efficient frontier but lies on
the constrained frontier and is efficient in the mean-variance space limited to port-
folios in which short selling is not permitted.

FIGURE 6
The MVT Frontier and Mental Account Portfolios (without and with short-selling constraints)

In Figure 6 the upper curve is the MVT frontier when there are no short-selling constraints. The lower curve is the MVT
frontier with short-selling constraints (see Section V), and hence, lies in a y-axis range that is bounded below by the asset
with the lowest return and bounded above by the asset with the highest return. The three squares correspond to the three
constrained mental account portfolios that lie on the constrained MVT frontier. The dot (third point from the left) comprises
a portfolio that mixes 60% of the first portfolio and 20% each of the second and third. One can see that the aggregate
portfolio is very close to the frontier, and the loss of MVT efficiency is small.
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In the presence of short-selling constraints, the aggregate portfolio is not
necessarily on the constrained portfolio frontier. Figure 6 shows the three short-
selling constrained mental account portfolios as well as the aggregate portfolio
formed from the weighted average of the three portfolios. The aggregate portfolio
has a mean return of 13.31% with a standard deviation of 19.89% and lies just
below the frontier. If the same portfolio were to lie on the constrained frontier at
the same standard deviation, it would return 13.43%. The loss of mean-variance
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efficiency because of the short-selling constraint is 12 bp.® Alexander and Baptista
(2008) show that VaR constraints mitigate the adoption of an inefficient portfo-
lio. The presence of such constraints in our model may explain why the loss in
efficiency amounts to only a few basis points.

At a practical level, we need only impose the short-selling constraint at the
aggregate portfolio level. Often the aggregate portfolio does not entail short sell-
ing even when some subportfolios do, as is evidenced in the portfolios in Table 1.
Imposition of the aggregate short-selling constraint results in an inefficient portfo-
lio relative to one in which no short-selling constraints are imposed only when the
unconstrained optimization of each subportfolio results in an aggregate portfolio
that entails short selling. Solving the MA portfolio problem with an aggregate
short-selling constraint is undertaken in the following manner: Optimize all the
individual subportfolios with no short-selling constraints. Check if the aggregate
portfolio entails short selling. If not, the process is complete. If the aggregate
portfolio has some securities that are in short positions, accept the holdings in
all portfolios that have no short sales as they are. These then provide the limits on
positions for the remaining subportfolios, which are optimized subject to residual
position limits.

Specifically, let subportfolios be indexed by k and assets by j. Subportfolio
asset weights are denoted wy;. The set of subportfolios that have no short sales
is {2y, and the set with short sales is {2;. The aggregate short-sales constraint is
given by Xwy; > 0,V), where X Yw,; = 1. We break down the problem into
two steps. First, optimize each subportfolio with no constraints and identify the
set {29, Compute residual positions R; = —Xic oWy, Vj. Second, optimize the
portfolios k € {2y such that Yico wy > R;,Vj. This two-step approach uses
the same technology as before.

Even if we impose short-selling constraints at the level of each individual
subportfolio, we will see that the loss in efficiency is very small. To explore this,
we examine a simple case with two subportfolios, each of equal weight in the
aggregate portfolio. For each subportfolio, we vary the risk aversion from 0 to 10.
This is the same range used by Mehra and Prescott (1985). However, we note
that most studies find that relative risk aversion lies in the range of 0 to 3. For
all combinations of risk aversion in the subportfolios, we compare the Sharpe
ratio of the subportfolio strategy against the Sharpe ratio of a single aggregate
optimized portfolio with the same average return as the subportfolio approach.
We report the percentage difference in Sharpe ratios in Figure 7. It is easy to see
that investors with low risk aversion will suffer more efficiency loss than investors
with high risk aversion if they invest using the MA framework. Nevertheless, the
worst case percentage reduction in Sharpe ratio is very small, under 6% of the
original Sharpe ratio. And the mean reduction in Sharpe ratio is much less than
1%. And when risk aversion is high and leverage is not sought, there is no loss in
efficiency at all, since the short-selling constraint is not binding.

9Brunel (2006) conducts an analysis of goal-based portfolios and finds that the risk-adjusted loss
is 8 bp. One may trace the origins of this idea to Markowitz (1983), who argues that a similar wedge
invalidates the capital asset pricing model theoretically but not materially. Even naive allocation (1/N)
strategies do almost as well as optimal allocations (see DeMiguel et al. (2009)).
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FIGURE 7

Loss of Efficiency in Terms of Percentage Decline in Sharpe Ratios
for Differing Levels of Risk Aversion

For two subportfolios, we varied the risk aversions («y1, v2) and obtained the subportfolio weights, assuming equal weights
for each subportfolio. We then solved for the single aggregate portfolio that delivered the same expected return as the
weighted average return of the subportfolios. The 3D plot presents the percentage difference in Sharpe ratios between the
Markowitz and mental account approaches. The worst case of efficiency loss occurs when the two subportfolios have very
low risk aversion. This is intuitive, since the tendency to want leverage is highest when risk aversion is low. If leverage is
not desired, then the short-sale constraint is not binding and in this case mental account optimization results in no loss of

efficiency. Nevertheless, the worst case percentage reduction in the Sharpe ratio can be seen to be around only 6%. The
graph also makes clear that the level of risk aversion is relevant and not the difference in risk aversions of the subportfolios.
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The parameters are the same as those in Figure 4.

To stress the same example further, we induce greater leverage by reducing
the return on the risk-free asset and increasing the returns on the risky assets. The
results are shown in Figure 8. The magnitude of the efficiency loss remains small
and is slightly smaller now that the baseline Sharpe ratios have increased.

As a final robustness test, we optimized portfolios on the following choice
set of assets: the market return, a value portfolio (HML), and the risk-free as-
set. Therefore, we employed real data in the numerical simulations. Using annual
data from 1927 to 2007, we computed the mean returns and covariance matrix
and then repeated the comparison of mental accounts versus aggregate portfolio
optimization. The results are in Figure 9 and show even smaller losses in effi-
ciency than in the previous examples.

VI. Summary and Conclusions

While mean-variance portfolio theory (MVT) of Markowitz (1952) is silent
about ultimate portfolio consumption goals, such goals are central in the behav-
ioral portfolio theory (BPT) of Shefrin and Statman (2000). BPT investors do not
consider their portfolios as a whole. Instead, BPT investors consider their port-
folios as collections of mental account subportfolios where each subportfolio is
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FIGURE 8

Loss of Efficiency in Terms of Percentage Decline in Sharpe Ratios
for Differing Levels of Risk Aversion

For two subportfolios, we varied the risk aversions (+y1, v2) and obtained the subportfolio weights, assuming equal weights
for each subportfolio. We then solved for the single aggregate portfolio that delivered the same expected return as the
weighted average return of the subportfolios. The 3D plot presents the percentage difference in Sharpe ratios between
the Markowitz and mental account approaches. The worst case percentage reduction in the Sharpe ratio can be seen to
be around only 3.5%. The parameters are as follows: the mean returns are {0.04, 0.11, 0.30}. The covariances are (row
by row) {[0.00225, 0, 0], [0, 0.044, 0.022], [0, 0.022, 0.275] } . Compared to the parameters in Figure 7, here the return on
the low-risk asset has been reduced and that on the risky assets has been increased. The variance of the low-risk asset
has been reduced and that on the risky assets has been increased by 10% of the previous values to correspond to the
changes in return.

% diff in Sharpe ratio

associated with a goal and each goal has a threshold level. BPT investors care
about the expected return of each subportfolio and its risk, measured by the prob-
ability of failing to reach the threshold level of return.

We integrate appealing features of MVT and BPT into a new mental account-
ing (MA) framework. Features of the MA framework include an MA structure of
portfolios, a definition of risk as the probability of failing to reach the threshold
level in each mental account, and attitudes toward risk that vary by account.

Once the investor specifies her subportfolio threshold levels and probabili-
ties, the problem may be translated into a standard mean-variance problem with
an implied risk-aversion coefficient. Aggregate portfolios composed of mean-
variance efficient subportfolios are also mean-variance efficient. However, these
portfolios are not identical to portfolios that are optimized by the rules of MVT
with a weighted average of risk-aversion coefficients across mental accounts.
When constraints are placed on short selling, aggregates of subportfolios are in-
efficient in comparison to a single optimal portfolio by only a few basis points.
Portfolio inefficiency that arises from investors’ inability to specify accurate mean-
variance trade-offs in the aggregate portfolio level could be much larger.

The MA framework developed here provides a problem equivalence among
MVT, MA, and risk management using VaR. This offers a basis for sharpening
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FIGURE 9

Loss of Efficiency in Terms of Percentage Decline in Sharpe Ratios
for Differing Levels of Risk Aversion

For two subportfolios, we varied the risk aversions («y1, v2) and obtained the subportfolio weights, assuming equal weights
for each subportfolio. We then solved for the single aggregate portfolio that delivered the same expected return as the
weighted average return of the subportfolios. The 3D plot presents the percentage difference in Sharpe ratios between the
Markowitz and mental account approaches. The worst case percentage reduction in the Sharpe ratio can be seen to be
around 0.25% (very small). The choice assets are the market return, the value (HML) portfolio, and the risk-free asset. The
parameters are as follows: the mean returns are {0.1200, 0.0515, 0.0378}. The covariances are (row by row) {[0.0405,
0.0033, —0.0002], [0.0033, 0.0199, 0.0001], [—0.0002, 0.0001, 0.0009]}. These are based on annual data from 1927 to
2007.
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aggregate portfolio choice through subportfolio optimization with preferences ex-
pressed in the intuitive language of thresholds and probabilities of failing to reach
them. These generalizations of MVT and BPT via a unified MA framework re-
sult in a fruitful connection between investor consumption goals and portfolio
production.

Extensions to this work involve extending the mental account optimization
framework to nonnormal multivariate distributions of asset returns, to introducing
products that have option-like features, and to optimization with background risks
such as labor and real estate. !

Appendix. Derivation of Equation (3)

To solve this maximization problem, we set up the Lagrangian with coefficient A:

(A-1) meka = w’u—%w'2w+)\[1—w'l].

10For the latter extension, see related work by Baptista (2008).
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The first-order conditions are

(A2) g—L C p—Swe Al = O,
w
(A3) % ~ 1-w1 = o

Note that equation (A-2) is a system of n equations. Rearranging equation (A-2) gives
1

(A-4) Swo= —u= A,
Y

and premultiplying both sides of this equation by X' gives
1
(A-5) w o= =X '[u—Al].
v
The solution here for portfolio weights is not yet complete, as the equation contains A,

which we still need to solve for. Premultiplying equation (A-5) by 1’ gives

1

(A-6) 1w = ;1’2“ [ — M),
(A-7) 1 = l[1’2‘1p -’71,
gl

which can now be solved for A to get

VY 'y—~
A- A = —
(A-8) 1'x-11

Plugging A back into equation (A-5) gives the closed-form solution for the optimal portfo-

lio weights:
1 VS '\p—~ .
= X == 1 R".
v ~ {“ ( s-1 <
This optimal solution w is an n-vector and is easily implemented, given that it is analytical.
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