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Pisot Numbers from {0, 1}-Polynomials

Keshav Mukunda

Abstract. A Pisot number is a real algebraic integer greater than 1, all of whose conjugates lie strictly

inside the open unit disk; a Salem number is a real algebraic integer greater than 1, all of whose con-

jugate roots are inside the closed unit disk, with at least one of them of modulus exactly 1. Pisot

numbers have been studied extensively, and an algorithm to generate them is well known. Our main

result characterises all Pisot numbers whose minimal polynomial is derived from a Newman polyno-

mial — one with {0, 1}-coefficients — and shows that they form a strictly increasing sequence with

limit (1 +
√

5)/2. It has long been known that every Pisot number is a limit point, from both sides, of

sequences of Salem numbers. We show that this remains true, from at least one side, for the restricted

sets of Pisot and Salem numbers that are generated by Newman polynomials.

1 Introduction

A Pisot (or Pisot–Vijayaraghavan) number is a real algebraic integer α > 1, all of

whose conjugates lie inside the open unit disk. A real algebraic integer α > 1 is a

Salem number if all of its conjugate roots are inside the closed unit disk, and at least

one of these conjugate roots has modulus exactly 1. The set of all Pisot numbers

is usually denoted by S, and the set of all Salem numbers is denoted by T. Many

results are known about the set S. For example, S is known to be closed [9], and

its minimum is known to be the largest root of z3 − z − 1, which is approximately

1.3247179· · · [10].

A Newman polynomial [3] is a polynomial with both constant term and leading

coefficient equal to 1, and whose remaining coefficients are all either 0 or 1. In this

paper we consider Newman polynomials that give rise to either Pisot numbers or

Salem numbers. Since a Newman polynomial does not have positive real roots, it

cannot have a Pisot or a Salem number as a root. This leads us to define the related

set of monic polynomials

Nd = { (−1)dh(−z) : h ∈ Z[z] is a Newman polynomial of degree d}.

If f (z) ∈ Nd and f (z) =

∑d
k=0 akzk, then a0 = (−1)d and for 1 < k < d, ak ∈ {0, 1}

if k and d are of the same parity and ak ∈ {0,−1} if they are of opposite parity. We

also set N =

⋃∞
d=1 Nd.

We can now define a Newman Pisot number to be a Pisot number whose minimal

polynomial is in N. We define a Newman Salem number slightly differently; a real

number β > 1 is a Newman Salem number if it is a Salem number and it is the root of

a polynomial in N. We do not require the polynomial to be irreducible in this case.

Received by the editors March 15, 2007.
Published electronically December 4, 2009.
AMS subject classification: 11R06, 11R09, 11C08.

140

https://doi.org/10.4153/CMB-2010-028-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-028-7


Pisot Numbers from {0, 1}-Polynomials 141

The following two theorems will be proved in Sections 3 and 4 of this paper, and

in addition, some results concerning the largest element of the set of all roots of

polynomials from Nd appear in Section 5.

Theorem 1.1 The set of all Newman Pisot numbers forms a sequence {νn}, for odd

n ≥ 3, where the minimal polynomial of νn is given by

P(z) = zn − zn−1 − zn−3 − · · · − z2 − 1.

The sequence {νn} is strictly increasing and has limit point (1 +
√

5)/2.

Thus, for each odd n ≥ 3, there exists precisely one polynomial in Nn that is a

minimal polynomial for a Pisot number νn. When n is even, no such polynomials

exist in Nn.

The fact that every point of S is a limit of points of T from both sides has been

known for many years [9]. We prove here that this remains partially true for the

more restricted set of Pisot and Salem numbers arising from N.

Theorem 1.2 Every Newman Pisot number is a limit point, from below, of Newman

Salem numbers.

Based on the work of Dufresnoy and Pisot [4], Boyd constructed an algorithm

that determines all Pisot numbers in a given interval [a, b] of the real line [2]. A

description of the algorithm can be found in [2, 7]; in this paper we very briefly

outline the steps of the algorithm, using the same notation as in [7].

2 The Algorithm

For a given α ∈ S with monic minimal polynomial p(z) of degree d, we consider the

set C of rational functions of the form f (z) = r(z)/p∗(z), where p∗(z) = zd p(1/z)

and r(z) satisfies the two conditions r(0) > 0 and |r(z)| 6 |p∗(z)| for |z| = 1. For

any f ∈ C, if |z| < α−1, then we can write f (z) = u0 + u1z + u2z2 + · · · , where each

ui is an integer and 1 6 u0, u2
0 − 1 6 u1 and wn 6 un 6 w+

n for n > 2. The values wn

and w+
n are determined by u0, . . . , un−1 and are finite except when u0 = 1, in which

case w+
2 = ∞. For each integer u0 ≥ 1, we can view the sequences {u j} of integers

as forming an infinite tree. The nodes of the tree at height n are finite subsequences

(u0, u1, . . . , un). If un = wn or un = w+
n , then such a node has no successors, and

if wn < un < w+
n , then its successors are all the subsequences (u0, u1, . . . , un, un+1),

where wn+1 ≤ un+1 ≤ w+
n+1.

The bounds wn and w+
n are calculated recursively, assuming that the values u0, u1,

. . . , un−1 are known. Set Dn(z) = −zn + d1zn−1 + · · · + dn and En(z) = −znDn(1/z),

where we select d1, d2, . . . , dn so that the first n coefficients of the Maclaurin series

for Dn(z)/En(z) are the given u0, u1, . . . , un−1. Then wn is simply the coefficient of zn

in this series. Similarly, let D+
n (z) = zn + d+

1 zn−1 + · · · + d+
n and E+

n (z) = znD+
n (1/z),

where we select d+
1 , . . . , d+

n so that the first n coefficients of the series for D+
n (z)/E+

n (z)

are the given u0, u1, . . . , un−1. Again, w+
n is the coefficient of zn in this series. We can

extend this construction to define w1 = u2
0 − 1 and w+

1 = 1 − u2
0. Thus, both wn and

w+
n are defined for n ≥ 1, although the inequality u1 ≤ w+

1 does not necessarily hold.
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A node in the infinite tree of integer sequences {u j} that has no successors is called

a terminal node. There are three possible ways for a node (u0, u1, . . . , un) to be a

terminal node:

(i) wn < un < w+
n , but there are no integers in [wn+1, w+

n+1] and hence no candi-

dates for un+1,

(ii) un = wn (or w+
n ), but the polynomial Dn (or D+

n ) does not have integer coeffi-

cients, or

(iii) un = wn (or w+
n ), and Dn (or D+

n ) does have integer coefficients.

This third type of terminal node is in one-to-one correspondence with the points of S

if we exclude the quadratics (c + (c2 −4)1/2)/2 for c ≥ 3, which come from reciprocal

quadratic polynomials of the form 1− cz + z2. More specifically, if the terminal node

(u0, u1, . . . , un) is of the third type, then the polynomial −Dn(or D+
n ) is the minimal

polynomial for a Pisot number.

We will make use of some of the many recursive relations between the polynomials

defined above, and so we reproduce them here from [7, Section 2]. More details can

be found in [1, Chapter 7]. We have

Dn+1(z) = (1 + z)Dn(z) − un − wn

un−1 − wn−1

zDn−1(z) for n ≥ 2,(2.1)

D+
n+1(z) = (1 + z)D+

n (z) − w+
n − un

w+
n−1 − un−1

zD+
n−1(z) for n ≥ 4,(2.2)

and also

D+
n+1(z)En(z) − Dn(z)E+

n+1(z) = (un − wn)zn(1 + z),(2.3)

D+
n+2(z)E+

n (z) − D+
n (z)E+

n+2(z) = (un − w+
n )zn(1 − z2).(2.4)

The concise recursive relation

(2.5) w+
n+1 − wn+1 =

4(w+
n − un)(un − wn)

w+
n − wn

will also be useful [1, 2].

Finally, a path to infinity in the tree described above corresponds to an infinite

sequence {u j} which satisfies w j < u j < w+
j for all j ≥ 2, and thus to limit points

of the set S. Such a limit point α ′ appears as the simple pole 1/α ′ of the rational

function F(z) =

∑∞
i=0 uiz

i .

3 The Set of Newman Pisot Numbers

Applying the algorithm of the previous section to the set N, we can prove Theo-

rem 1.1. The following two lemmas will be used to restrict appropriately the infinite

tree of sequences {u j} in our proof. The first is a classical result due to Cauchy (see,

[6]).

https://doi.org/10.4153/CMB-2010-028-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-028-7


Pisot Numbers from {0, 1}-Polynomials 143

Lemma 3.1 All the zeroes of the polynomial f (z) = a0 + a1z + · · · + anzn, an 6= 0, lie

in the circle

|z| < 1 + max |ak/an|, k = 0, 1, 2, . . . , n − 1.

The next lemma bounds the coefficients in the Maclaurin expansion of the ratio

of polynomials that appears in the algorithm.

Lemma 3.2 Suppose f (z) =

∑d
j=0 a jz

j is in Nd with f ∗(z) = zd f (1/z) and let

ǫ = ±1. Let

G(z) =

ǫ f (z)

f ∗(z)
=

∑

i≥0

eiz
i ,

so that ei ∈ Z for i ≥ 0. Suppose that 1 ≤ k ≤ d, and that e0 > 0 and ei ≥ 0 for

1 ≤ i ≤ k − 1. Then ek ≤
∑(k−1)/2

i=0 e2i when k is odd, and ek ≤ 1 +
∑k/2

i=1 e2i−1 when

k is even.

Proof of Lemma 3.2 Since ǫ f (z) = f ∗(z)G(z), we match coefficients of zk and find

that ǫak =

∑k
j=0 e jad−k+ j , which we can rewrite as

−adek = −ǫak +

k−1
∑

j=0

e jad−k+ j

= −ǫak +

k−1
∑

j=0
j≡k mod 2

b je j −
k−1
∑

j=0
j 6≡k mod 2

b je j ,

where b j = |ad−k+ j | is either 0 or 1. Thus

ek = ǫak +

k−1
∑

j=0
j 6≡k mod 2

b je j −
k−1
∑

j=0
j≡k mod 2

b je j .

Since by assumption e0 > 0, we have that ǫ = a0 and so ǫak takes value (−1)k or 0.

Thus ek ≤ e0 + e2 + · · · + ek−1 when k is odd, and ek ≤ 1 + e1 + e3 + · · · + ek−1 when

k is even.

Proof of Theorem 1.1 By Lemma 3.1 we know that all the zeroes of a Newman poly-

nomial must lie in the circle |z| < 2. Thus, all Newman Pisot numbers must lie in

the real interval [1, 2].

The algorithm described in Section 2 will be used to construct the set of Newman

Pisot numbers. In what follows, we use the same notation from that section.

Let fm denote the m-th Fibonacci number, and recall that f0 = 0, f1 = 1, and

fm = fm−1 + fm−2 for m ≥ 2. We claim that the subtree constructed by the following

three formulas for k ≥ 1, produces all Newman Pisot numbers:

(3.1) Dk(z) =

{

1 + z2 + z4 + · · · + zk−1 − zk if k is odd,

a0,k + a1,kz + · · · + ak−1,kzk−1 − zk if k is even,

https://doi.org/10.4153/CMB-2010-028-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-028-7


144 K. Mukunda

where the coefficients a j,k are given by

a j,k =

{

j+1
k+2

if j is odd,

1 − j
k+2

if j is even.

Next, we have that

(3.2) wk =

{

fk+1 − 1 if k is odd,

fk+1 − k+4
k+2

if k is even.

And finally, we have

(3.3) w+
k =

{

fk+1 + (k+2)2−5
k2−5

if k is odd,

fk+1 + k
k−2

if k 6= 2 is even.

This would mean that fk+1 − 2 < wk < fk+1 − 1 when k is even, and that fk+1 + 1 <
w+

k < fk+1 + 2, for k ≥ 6.

We will prove (3.1), (3.2), and (3.3) by induction on k, and we work out the first

few cases (k ≤ 7) as examples. Figure 1 illustrates the subtree being constructed up

to height 7.

Since 1 ≤ u0 and we wish to restrict Dk(z) to the set N, we have that u0 = 1. Thus

D1(z) = u0 − z = 1− z and E1(z) = 1− z as well. So D1(z)/E1(z) = 1, meaning that

w1 = 0. Similarly, D+
1 (z) = u0 + z = 1 + z and thus E+

1 (z) = 1 + z giving us w+
1 = 0.

Next, suppose D2(z) = −z2 + d1z + d2, so that E2(z) = −d2z2 − d1z + 1 and

D2(z)/E2(z) = 1 + u1z + w2z2 + · · · . By clearing the denominator and comparing

coefficients, we find that d2 = 1, d1 = u1/2, and w2 = u2
1/2. Thus D2(z) = −z2 +

u1

2
z + 1. Suppose the roots of D2(z) are τ2 and −τ−1

2 , where τ2 is a Pisot number, so

that 1 < τ2 < 2. Then 0 < τ2 − τ−1
2 < 3/2 implies that 0 < u1/2 < 3/2, which

implies that u1 = 1 or u1 = 2. By Lemma 3.2, the maximum possible value of u1 is

1. So we select u1 = 1, and thus D2(z) = −z2 + 1
2
z + 1 and also w2 =

1
2
.

Now we cannot compute w+
2 in this manner, since u0 = 1 means that w+

2 = ∞.

But, using Lemma 3.2, we have that u2 ≤ 1 + u1 = 2. So, 1
2

< u2 ≤ 2, meaning that

u2 = 1 or u2 = 2. In either case, w2 < u2 < w+
2 . We consider the two possible values

of u2 in turn.

If u2 = 1, then from (2.1) we have D3(z) = 1 + z − z3. So E3(z) = 1 − z2 − z3

and w3 = 1. Solving simultaneously using (2.3) and (2.4), we have that D+
3 (z) =

z3 − 2z2 − z + 1 and E+
3 (z) = z3 − z2 − 2z + 1, with w+

3 = 3. By Lemma 3.2,

the maximum value of u3 is u0 + u2 = 2. If u3 = w3 = 1, we have a terminal

node and 1 + z − z3 corresponds to a Pisot number. But this is not a Newman Pisot

number, since z3 − z − 1 is not in N. With the non-terminal value u3 = 2, we have

D4(z) = 1 + z3 − z4, with w4 = 2, and D+
4 (z) = 1 − 2z2 − z3 + z4 with w+

4 = 4.

Again, neither polynomial corresponds to a Newman Pisot number, and so we select

u4 = 3.

Notice that both w+
3 − w3 = 2 and w+

4 − w4 = 2. Indeed, by (2.5) we can see that

w+
n − wn = 2 when n ≥ 4, and that there is only one non-terminal choice of un in
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Figure 1: Nodes up to height 7 in the tree of integer sequences {u j}.

each case. Thus the iterative formulas (2.1) and (2.2) become

Dn+1(z) = (1 + z)Dn(z) − zDn−1(z)(3.4)

and

D+
n+1(z) = (1 + z)D+

n (z) − zD+
n−1(z)(3.5)

for n ≥ 4. With n = 4, we easily compute D5(z) = 1− z2 + z3 + z4 − z5 and D+
5 (z) =

1 − z2 − z3 − z4 + z5. Notice that the coefficients of z2 and z0 are of different signs in

both cases, and so neither polynomial corresponds to a Newman Pisot number. The

same situation occurs with n = 5; the polynomial D6(z) = 1 − z2 + z4 + z5 − z6,

and D+
6 (z) = 1 − z2 − z4 − z5 + z6. In fact, by (3.4) we see that if both Dn(z) and

Dn−1(z) begin with the terms 1−z2, then so does Dn+1(z). The same argument, using

(3.5), applies to D+
n+1(z). This means that none of the terminal nodes encountered

here correspond to Newman Pisot numbers. Thus the choice of u2 = 1 does not

produce any Newman Pisot numbers. We next try u2 = 2. This means (2.1) that

D3(z) = 1 + z2 − z3 and E3(z) = 1 − z − z3, implying that w3 = 2. Also, by (2.3)

and (2.4) we have D+
3 (z) = 1 − 2z − 3z2 + z3 and E+

3 (z) = 1 − 3z − 2z2 + z3, and so

w+
3 = 8. By Lemma 3.2, w3 = 2 ≤ u3 ≤ u0 + u2 = 3. If u3 = 2 = w3, we have a

terminal node with D3(z) corresponding to a Newman Pisot number. If u3 = 3, we

have w3 < u3 < w+
3 , so we can continue.

By (2.1), D4(z) = 1 + 1
3
z + 2

3
z2 + 2

3
z3 − z4, so E4(z) = 1 − 2

3
z − 2

3
z2 − 1

3
z3 − z4,

with w4 =
11
3

. We can now use (2.5) to get w+
4 =

11
3

+ 20
6

= 7. By Lemma 3.2,

w4 < 4 ≤ u4 ≤ 5 < 7 = w+
4 . Again, we consider both values of u4 in turn. If u4 = 4,
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then (2.1) gives D5(z) = 1 + z + z2 + z3 − z5 and so E5(z) = 1 − z2 − z3 − z4 − z5,

with w5 = 6 and w+
5 = 7 1

5
. This gives us two possible choices for u5, namely 6 or 7.

However, with u5 = 6 = w5 we have a terminal node with D5(z) corresponding to a

Pisot number, but not to a Newman Pisot number. So we select the value u5 = 7 and

continue to get D6(z) = 1− z + z2 − z4 + 2z5 − z6. This gives w6 = 11 and w+
6 = 11 2

3
.

Thus the only choice for u6 here is the terminal value 11, which once again does not

yield a Newman Pisot number. Therefore, the choice of u4 = 4 leads to terminal

nodes with no Newman Pisot numbers, and so we select u4 = 5.

With this value, we have D5(z) = 1 + z2 + z4 − z5 and E5(z) = 1 − z − z3 − z5,

with w5 = 7. From (2.5) we have w+
5 = 10 1

5
. Lemma 3.2 gives w5 = 7 ≤ u5 ≤

u0 + u2 + u4 = 8; if u5 = 7 = w5, we have a terminal node with D5(z) corresponding

to a Newman Pisot number, and if u5 = 8, we have w5 < u5 < w+
5 , so we continue.

Using (2.1),

D6 = 1 +
1

4
z +

3

4
z2 +

1

2
z3 +

1

2
z4 +

3

4
z5 − z6,

E6 = 1 − 3

4
z − 1

2
z2 − 1

2
z3 − 3

4
z4 − 1

4
z5 − z6,

w6 = 11
3

4
.

By (2.5), w+
6 = 14 1

2
. Lemma 3.2 gives w6 < 12 ≤ u6 ≤ 13 < w+

6 . The choice of u6 =

12 gives D7(z) = 1+z+z2 +z3 +z4 +z5−z7 and so E7(z) = 1−z2−z3−z4−z5−z6−z7,

with w7 = 19 and w+
7 = 19 10

11
. So u7 = 19 = w7, and we have a terminal node

with D7(z) corresponding to a Pisot number, but not to a Newman Pisot number.

Selecting u6 = 13 gives D7(z) = 1+z2+z4+z6−z7 and E7(z) = 1−z−z3−z5−z7, with

w7 = 20 and w+
7 = 22 8

11
. Lemma 3.2 gives w7 = 20 ≤ u7 ≤ 21; if u7 = 20 = w7,

we have a terminal node with D7(z) corresponding to a Newman Pisot number, and

if u7 = 21, we have w7 < u7 < w+
7 .

Suppose then that we have reached a node (u0, . . . , uk) of height k ≥ 6 in the

search tree, and that equations (3.1), (3.2), and (3.3) hold for all 0 ≤ j ≤ k. In

particular, this means that u j = f j+1 for all 0 ≤ j ≤ k − 1 and that wk ≤ uk ≤ w+
k .

We first suppose that k is even, so that wk < fk+1 − 1 ≤ uk ≤ fk+1 + 1 < w+
k . By

Lemma 3.2, the maximum possible value of uk is 1 +
∑k/2

i=1 u2i−1 = 1 +
∑k/2

i=1 f2i =

fk+1. We first consider the case of uk = fk+1 − 1. By (2.1), (3.1), and (3.2), we have

that

Dk+1(z) = (1 + z)
(

k−1
∑

i=0

ai,kzi − zk
)

− 2z

k + 2
(1 + z2 + · · · + zk−2 − zk−1)

= 1 + z + z2 + · · · + zk−1 − zk+1.

(3.6)

Since wk+1 is the coefficient of zk+1 in the Maclaurin expansion of Dk+1(z)/Ek+1(z),

we have wk+1 = −1 +
∑k−1

i=0 ui = −1 +
∑k

i=1 fi = fk+2 − 2. By (2.5) we then

have w+
k+1 = fk+2 − 2k(k − 2)/(k2 + 2k − 4). Now since k ≥ 6, we have that

1 < 2k(k − 2)/(k2 + 2k − 4) < 2, and so the only integer in the interval [wk+1, w+
k+1]
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is fk+2 − 2. But the choice of uk+1 = wk+1 = fk+2 − 2 leads to a terminal node with

the polynomial Dk+1(z) corresponding to a Pisot number, although not to a Newman

Pisot number.

Thus we must have that uk = fk+1. In this case, we have that

Dk+1(z) = (1 + z)
(

k−1
∑

i=0

ai,kzi − zk
)

− k + 4

k + 2
(z + z3 + z5 + · · · + zk−1 − zk)

= 1 + z2 + z4 + · · · + zk − zk+1,

which is of the required form in (3.1). We then compute wk+1 from the Maclaurin

expansion of Dk+1(z)/Ek+1(z), and find that wk+1 = −1 +
∑k/2

i=0 f2i+1 = fk+2 − 1. We

can use (2.5) to get w+
k+1 = fk+2 − 1 + 2k(k + 4)/(k2 + 2k− 4) = fk+2 + (k+3)2−5

(k+1)2−5
. Both

are of the required form in (3.2) and (3.3).

Next suppose that k is odd, so that wk = fk+1−1 ≤ uk ≤ fk+1 +1 < w+
k . As before,

we use Lemma 3.2 to find the maximum possible value of uk to be
∑(k−1)/2

i=0 u2i =

∑(k−1)/2
i=0 f2i+1 = fk+1. If uk = wk = fk+1 − 1, then we have a terminal node of the

third type, where Dk(z) = 1 + z2 + z4 + · · ·+ zk−1 − zk corresponds to a Pisot number.

Otherwise, uk = fk+1 and we have that

Dk+1(z) = (1 + z)(1 + z2 + · · · + zk−1 − zk) − k + 1

k + 3

(

k−2
∑

i=0

ai,k−1zi+1 − zk
)

= −zk+1 +

k
∑

j=0
j odd

j + 1

k + 3
z j +

k
∑

j=0
j even

k + 3 − j

k + 3
z j

=

k
∑

i=0

ai,k+1zi − zk+1,

which is of the required form in (3.1). We then compute wk+1 from the Maclaurin

expansion of Dk+1(z)/Ek+1(z) and find that wk+1 = −1 +
∑k

i=0 ai,k+1 fi+1. That is,

wk+1 = −1 +

k
∑

j=0
j odd

j + 1

k + 3
f j+1 +

k
∑

j=0
j even

k + 3 − j

k + 3
f j+1

= −1 +

k+1
∑

j=2
j even

j

k + 3
f j +

k
∑

j=1
j odd

f j −
k

∑

j=2
j odd

j − 1

k + 3
f j

= −1 + fk+1 +
fk+1 − 1

k + 3
+

1

k + 3

k+1
∑

j=2

(−1) j j f j
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= −1 + fk+1 +
fk+1 − 1

k + 3
+ fk −

fk+1 + 1

k + 3

= fk+2 −
k + 5

k + 3
.

Here we have used the fact that for odd k we have both f1 + f3 + f5 + · · · + fk = fk+1

and
∑k+1

j=2(−1) j j f j = (k + 3) fk − fk+1 − 1. These are easily proved using induction,

for example.

Finally we can use (2.5) to see that

w+
k+1 = fk+2 −

k + 5

k + 3
+

4((k + 2)2 − 5)

(k + 2)2 − 5 + k2 − 5
= fk+2 +

k + 1

k − 1
.

Both are of the required form in (3.2) and (3.3).

Thus whenever n is odd, for un = wn = fn+1 −1 we have a Newman Pisot number

νn which is a root of Dn(z) = 1 + z2 + z4 + · · · + zn−1 − zn. There are no others in

Nn, and in particular there are none of even degree. Further, the path to infinity in

this search tree corresponds to the limit point of the νn (see Section 2). This path is

given by the sequence of un such that wn < un < w∗
n for all n, with un = fn+1. This

corresponds to the function f (z) = 1+z +2z2 + · · ·+ fn+1zn + · · · =
1

1−z−z2 which has

only one pole inside the unit circle at a = (
√

5− 1)/2. Thus ν ′
= 1/a = (1 +

√
5)/2

is the only limit point of Newman Pisot numbers. Finally, noting the change of sign

between Dn(νn−2) and Dn(2) for odd n ≥ 5 it is easy to see that the sequence {νn} is

strictly increasing.

4 Salem Numbers from Newman Polynomials

We now prove Theorem 1.2, using a construction that is analogous to the one from

[7, §4]. For convenience we change our notation slightly from previous sections.

Proof of Theorem 1.2 For even m ≥ 4, let

fm(z) = zm−1 −
(m−2)/2
∑

k=0

z2k,

and let νm be the Newman Pisot number with fm(z) as its minimal polynomial. For

each n ≥ 1, define the sequence of polynomials

Am,n(z) = z2mn + f ∗m(z)

2n−1
∑

k=0

zmk.

Notice that Am,n(z) is reciprocal, and is in N. We will show that for each m, the

polynomials Am,n(z) give a sequence of Salem numbers that approach νm from below.

Write Am,n(z) = Pm,n(z) − zQm,n(z), where

Pm,n(z) =

2n
∑

k=0

zmk and Qm,n(z) =

mn−1
∑

k=0

z2k.
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Define

am,n(t) = e(−mnt)Am,n(e(t)),

pm,n(t) = e(−mnt)Pm,n(e(t)),

qm,n(t) = e(−(mn − 1)t)Qm,n(e(t)),

where e(t) = e2πit . Then am,n(t) = pm,n(t) − qm,n(t), where both pm,n(t) and qm,n(t)

are real-valued, periodic functions with period 1. Further, pm,n(t) has mn simple

zeroes in the interval (0, 1/2), at the points

Sp =

{ k

2mn + m

∣

∣

∣
1 ≤ k <

2mn + m

2
and (2n + 1) ∤ k

}

,

and qm,n(t) has mn − 1 simple zeroes in the same interval, at the points

Sq =

{ j

2mn

∣

∣

∣
1 ≤ j ≤ mn − 1

}

.

Now the inequalities

(4.1)
k

2mn + m
<

k − jk

2mn
≤ k + 1

2mn + m
<

k + 1 − jk

2mn
,

where jk = ⌊k/(2n + 1)⌋, hold for 1 ≤ k < (2mn + m)/2 and (2n + 1) ∤ k. As k varies

in this range, jk varies from 0 to (m − 2)/2. The central equality in (4.1) is attained

if and only if k ≡ 2n (mod 2n + 1), in which case

k − jk

2mn
=

jk + 1

m
=

k + 1

2mn + m
,

but then this last fraction is not in Sp. For these values of k then, we have

k

2mn + m
<

k − jk

2mn
<

k + 2

2mn + m
<

k + 1 − jk

2mn
,

where k + 1 − jk = k + 2 − jk+2. Thus, between every two consecutive zeroes of

pm,n(t) in (0, 1/2) there is exactly one zero of qm,n(t). This means that am,n(t) has at

least mn − 1 zeroes in (0, 1/2), and so the polynomial Am,n(z) has at least 2mn − 2

zeroes on the unit circle.

Since Am,n(0) = 1 and Am,n(1) = 1 − n(m − 2) < 0, it follows that Am,n(z) has a

real root in the interval (0, 1), and, since Am,n(z) is reciprocal, one real root αm,n in

(1,∞) as well. This accounts for all 2mn roots of Am,n(z) and we conclude that αm,n

is a Newman Salem number.

We next show that for each m, the sequence {αm,n}∞n=1 converges to νm from be-

low. Since Am,n(z) = A∗
m,n(z) = 1 + z fm(z)

∑2n−1
k=0 zmk, it follows that Am,n(νm) = 1.

Recalling that Am,n(1) < 0, we conclude that αm,n < νm for all n. Using the reci-

procity of Am,n+1(z), we have that Am,n+1(z) = Am,n(z) + z2mn+1 fm(z)(zm + 1), which
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means that sgn(Am,n+1(αm,n)) = sgn( fm(αm,n)). But αm,n < νm, and so fm(αm,n) <
0, by which we conclude that αm,n+1 > αm,n for all n. The sequence {αm,n}∞n=1, being

strictly increasing and bounded above, must be convergent.

Finally, by writing

Am,n(z) = z2mn
[

1 +
f ∗m(z)

zm − 1

]

+
f ∗m(z)

1 − zm

for z ∈ (−1, 1), we see that as n → ∞, Am,n(z) converges uniformly to f ∗m(z)/(1−zm)

on compact subsets of (−1, 1). This means that {αm,n}∞n=1 converges to νm, and thus

the polynomials Am,n(z) yield the required sequence of Newman Salem numbers.

5 Bounds on Roots of Newman Polynomials

Suppose that F is a given class of polynomials of degree d, and consider the set R =

{ξ ∈ C : f (ξ) = 0 for some f ∈ F}. What can be said about the element of R of

maximum modulus? The set of polynomials of degree d with all coefficients from the

set {−1, +1} is commonly denoted Ld, and was studied in [7]. In that paper, it was

proved that the polynomial zd − zd−1 − · · · − z − 1 is the only member of Ld that is

a minimal polynomial for a Pisot number. Following the notation of that paper, we

let γd denote this Pisot number. If F = Ld, then the following result due to Cauchy

[6, Chapter 7] easily shows that γd is the element of R of maximum modulus.

Theorem 5.1 All the zeroes of the polynomial f (z) =

∑d
i=0 aiz

i , ad 6= 0, lie in the

circle |z| ≤ r, where r is the positive root of the equation

|a0| + |a1|z + · · · + |ad−1|zd−1 − |ad|zd
= 0.

The next theorem considers the case F = Nd for odd d.

Theorem 5.2 Suppose that f (z) is a Newman polynomial of odd degree d > 2. Then

all the zeroes of f (z) lie in the circle |z| ≤ νd, where νd is the positive root of the equation

zd − zd−1 − zd−3 − · · · − z2 − 1 = 0.

Proof of Theorem 5.2 We first observe that

zd(z2 − z − 1) + 1 = (1 − z2)(1 + z2 + z4 + · · · + zd−1 − zd)

for odd d ≥ 3. Thus the roots of zd(z2 − z − 1) + 1 are simply those of

1 + z2 + z4 + · · · + zd−1 − zd,

together with +1 and −1.

Set f (z) = zd + ad−1zd−1 + · · · + a1z + 1, where each ai , 1 ≤ i ≤ d − 1, is either 0

or 1. Consider the polynomial

h(z) = (z − ad−1) f (z)

= zd+1 + (ad−2 − a2
d−1)zd−1

+ (ad−3 − ad−1ad−2)zd−2 + · · · + (1 − ad−1a1)z − ad−1.
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If |z| > 1, then

|h(z)| ≥ |z|d+1 −
(

|ad−2 − a2
d−1||z|d−1 + · · · + |1 − ad−1a1||z| + |ad−1|

)

≥ |z|d+1
(

1 − 1

|z|2 − 1

|z|3 − · · · − 1

|z|d+1

)

= |z|d+1
(

1 − |z|d − 1

|z|d+2 − |z|d+1

)

=

|z|d
(

|z|2 − |z| − 1
)

+ 1

|z| − 1

> 0,

for |z| > νd. Since |z − ad−1| > 0 when |z| > 1, we conclude that | f (z)| > 0 for

|z| > νd and the required result follows.

Thus when F = Nd for odd d, we see that νd is the element of R of maximum

modulus. In both of the cases above, this maximal element is also a Pisot number.

Remark 1 The inequalities in the above proof do not require d to be odd. When

d is even, zd(z2 − z − 1) + 1 = (1 − z)(1 + z + z2 + · · · + zd−1 − zd+1); notice that

the latter factor is one of the types of polynomials (3.6) that was produced by the

algorithm in the proof of Theorem 1.1. If rd denotes the root, greater than 1, of the

equation zd(z2−z−1)+1 = 0, then we could conclude that all zeroes of the Newman

polynomial f (z) lie in the circle |z| ≤ rd. However, the bound is only sharp for odd d.

Remark 2 In the above proof, if we replace the sum

1 − 1

|z|2 − 1

|z|3 − · · · − 1

|z|d+1

by the infinite series

1 − 1

|z|2 − 1

|z|3 − · · · − 1

|z|d+1
− 1

|z|d+2
− · · · ,

which is equal to
|z|2 − |z| − 1

|z| − 1
,

we can conclude the following. If f (z) is a Newman polynomial and ξ any root of

f (z), then |ξ| < (1 +
√

5)/2. This bound also appears in [8], as well as indepen-

dently in [5, 11]; the first of these is a more thorough investigation of the geometric

properties of the set R with F = N.

This second remark leads to Theorem 1.1 once again. From [1, Chapter 7.2], we

know that the only Pisot numbers strictly less than (1 +
√

5)/2, aside from the root
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θ ′ ′
= 1.56175 · · · of z6 − 2z5 + z4 − z2 + z − 1, are roots of the following three types

of polynomials:

P2n(z) = 1 + z + z2 + · · · + z2n−1 − z2n+1,

P2n+1(z) = 1 + z2 + z4 + · · · + z2n − z2n+1

Fn(z) = 1 − z2 + zn(1 + z − z2),

each for n ≥ 1. Of the three types of polynomials above, only P2n+1 can be derived

from a Newman polynomial. Thus, Theorem 1.1 would also follow from Remark 2

and [1, Chapter 7.2].
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