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1. Introduction. Matrices with real quaternion elements have been dealt 
with in earlier papers by Wolf (10) and Lee (4). In the former, an elementary 
divisor theory was developed for such matrices by using an isomorphism 
between nXn real quaternion matrices and 2nX2n matrices with complex 
elements. In the latter, further results were obtained (including, mainly, the 
transforming of a quaternion matrix into a triangular form under a unitary 
similarity transformation) by using a different isomorphism. Certain other 
related results have also been obtained (1). Others, including Moore and 
Ingraham, have considered quaternion matrices earlier. 

The intent here is to consider how other theorems which hold for matrices 
in the complex field may hold for quaternion matrices. To do this, the iso­
morphism in (4) is employed. First, an analog of the Jordan normal form is 
obtained; this result is closely related, of course, to the final result in (10) 
concerned with necessary and sufficient conditions for similarity of quaternion 
matrices, but here a proof is employed which depends entirely on known 
complex matrix theory, which throws light on the structure of the similarity 
transformation, and which leads in a natural way to a definition of elementary 
divisors for quaternion matrices. Next, this Jordan form is used to obtain some 
results concerning commutative matrices. In part 4, the familiar polar form 
of a complex matrix is shown to hold in the quaternion case. Next, some fur­
ther properties of normal quaternion matrices are verified and, in the final 
section, some properties of quaternion matrices relative to unitary (quaternion) 
equivalence transformations are obtained. 

2. An analog of the Jordan normal form. Let the nXn quaternion 
matrix A be written in the form A = Ai+jA2 where Ai and A2 are (uniquely 
determined) matrices with complex elements (where every quaternion element 
is considered as written in the form a = (ai+a2i) +j(az+a^i) where each 
ai is real). Form the 2nX2n complex matrix 

4* = 
A1-A2

C' 

U 2 AX
CS 

(where Ac denotes the matrix obtained by taking the complex conjugate of 
each element of A and, later, ACT denotes the transpose of Ac). According to 
(4), the correspondence between A and A* is an isomorphism and has proper­
ties as developed there. 
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If it is possible to show that for a given A* there is determined an nXn 
matrix J\ in the (complex) Jordan normal form such that a non-singular 
matrix P and a matrix / exist so that A *P = PJ where P and J have the forms, 
respectively, 

> 1 - P 2
C " 

L P 2 PXC_ 
and ~Ji 0 ] 

_0 J,c\ 

then an analog of the Jordan normal form can be obtained for the quaternion 
matrix A. For it can be easily seen that the inverse of P must also be of the 
form 

r<2i - ^ i 
U2 Qx

c\ ' 
so that P~lA*P = J. But according to the nature of the correspondence 
between A* and A this implies that (Qi+jQ2)(A1+jA2)(P1+jP2) = Ji+j-0 
or that (Qi+jQ2)A(P1+jP2) = / x where (Qi + JQ2)(Pi + 7P2) = / , so 
that 4̂ is similar to a complex n X n Jordan form J\. 

Since 4 * is a matrix with complex elements, there exists a non-singular 
matrix P such that P_1^4*P = J is the Jordan form of A* so that 4 * P = PJ. 
In the following steps it will be shown that a P and a J can be obtained which 
satisfy this relation and are of the desired form. 

(a) Let «i, . . . , am be the distinct (complex) characteristic roots of A*. 
Then each column of P is a column vector v with 2n elements satisfying one 
and only one of the following relations: 

(i) A*v = VCLU 

(ii) A*v = w + vau 

where w is the column vector adjacent to v on the left. All 2n column vectors 
are linearly independent and for each at there exists at least one column of 
the type (i). 

(b) For simplicity in notation let a be a root for which vi, v2, . . . , vt are 
the set of column vectors of P of type (i) relative to a. Let the column vector 
z/i* be defined relative to V\ as follows: If V\ is a column vector whose transpose 
is the row vector 

fall, 021, • • • , «>nl, W11, W21, • • . W „ i ] , 

then vi* is the column vector whose transpose is the row vector 

[ - W 1 1 , - W 2 1 , • • • —Wnl, Vu, ^21, • • • V„i]. 

If Pi is not the zero vector, then v\ and vi* are linearly independent, for if 
C1V1 + c20i* = 0, it follows that 

(ciCi + c2c2)wn = 0, (cici + c2c2)vki = 0 (k = 1, 2, . . . , »), 

so that Ci = c2 = 0. Also, if ^4*^i = v\a, it follows that A*vx* = »i*5. Let us 
consider, first, vectors of type (i). 
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Let a be real. Then vi and vi* are linearly independent vectors of type (i) 
for a, and either exhaust the number of such linearly independent column 
vectors or there exists another, say v2, which is linearly independent of vi and 
vi*. Form z/2*; then z/i, Vi*, v2, and v2* are linearly independent, for if 
C1V1 + c2vi* + czv2 + C4V2* = 0, then ciVi* — c2Vi + c3z>2* — c$2 = 0. But by 
properly combining these relations, it would follow that 

(Ô3C1 + CiC2)Vi + (CzC2 — CiCi)Vi* + (C3C3 + C±C±)v2 = 0 , 

so that Cz = £4 = 0 and so, from above, c\ = c2 — 0. Either v\, vi*, v2, v2* 
exhaust the number of linearly independent vectors of type (i) for a, or they 
do not. By means of this process there is obtained a set of linearly inde­
pendent vectors of the form vi, Vi*, . . . , vk, vk* which provide a basis for the 
vectors of type (i) corresponding to each real a. 

Let a be non-real complex. Then if the matrix P contains a set of vectors 
Vu v2, . • • , vt such that A*Vj = vpt ( 7 = 1 , 2 , . . . , / ) , it follows that 
A*v* = v*a (J = 1 , 2 , . . . , / ) (where the v* are linearly independent since 
the Vj are), that there are no other vectors linearly independent of these for 
which this is true, and that â is also a root of A*. 

Since au a2, . . . , am are distinct, the sets of linearly independent vectors of 
type (i) obtained in this way are linearly independent and are equal in number 
to those column vectors of type (i) in the matrix P. 

(c) Consider vectors v of type (ii) ; these may be written as (4* — aj)v = w; 
and it follows that (̂ 4* — cttI)v* = w*. 

Let a be real. Let there be 2k vectors vh v2l . . . , vp, . . . , v2k of P of type (i) 
corresponding to a and let them be written in such an order that if there exist 
for some vt vectors vt

{l) of P so that 

(iii) (4* - aI)Vi^ = vi} 

these vectors, vi, v2l . . . , vp are written together and first in this ordering. 
Then p must be even and a set of linearly independent vectors of the above 
Vj v* type can be obtained which span the same space as vi, v2, . . . , vp. For if 
(A* — al)vi{l) = vi, then (̂ 4* — al)vi(1)* = Vi*, and since Vi and v±* are 
linearly independent, #i(1) and z/i(1)* are also. Either p = 2, or the process can 
be continued as before, so that p = 2q. In this way we see that there exists a 
set of linearly independent vectors, Vi, vi*, . . . , vq, vq*> . . . , vk, vk* (which 
form a basis for all vectors of type (i) corresponding to a) such that z/i(1), 
z>i(1)*, . . . , vq

(1) ^ff
(1)*, provide a basis for the space spanned by z>i(1), . . . , v2q

(1) 

as taken above where vt and vt
(1) are related as above. If for some of the z//1* 

there exist v/2) in P such that 

(A* - al)v^ = »/«, 

the above process can be repeated, and a set of vectors, taken notationally as 
v\m, vi(2)*, . . . , vs

(2\ vs
(2)* (which span the same space as the linearly indepen­

dent Vj(2)), is obtained which stand in the same relation toz/i(1),z>i(1)*, . . . , vq
(1\ 

yç
(1)* as the latter do to vi, 1̂*» • • • > vk1 vk*. 
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If a is non-real complex, let vi, v2, . . . , vp, . . . , vt (the vectors of type (i) 
corresponding to a) be ordered in such a way that for vi, v2, . . . , vv there 
exist v^\ z/2

(1), . . . , V 1 } satisfying (iii). Then (A* - âl)vt™* = vf, i = 1,2, 
. . . , £ , and z>i(1)*, z;2

(1)*, . . . , ^ ( 1 )* are such that there exists no vector, w, 
linearly independent of them such that (̂ 4* — al)w is in the space generated 
by Vi*, v2*, . . . , vp*. For some vt

w there may exist vt
(2) such that 

(A* -al)vt™ = z^(1); 

in this way a set of vt
i2)* are determined and the process is seen to be a general 

one. 
(d) By the above, a set of 2n linearly independent vectors, taken notation-

ally as w\j w2j . . . , wn, wi*, w*, . . . , wn*, are obtained such that either 
A*Wi = WiOL (and so A*w* = wfâ, for any a), or, for some wt satisfying 
A*wt — Wia, there exist among the above 2n vectors certain vectors taken 
notationally as wt

(1), w/2 ) , . . . , w^s) such that 

{A* — aI)Wi{l) = wu 

(A* - al)w^ = w{*-l\ j = 2, 3, . . . , s; 

in this case it follows that 

(A* - âl)wtw* = wt*, 
(A* - âl)wtw* = w/ ' -»*, j = 2, 3, . . . , 5. 

It is now evident that by properly arranging the wt and w*, a 2n X 2n 
matrix P can be obtained such that A*P = P J as indicated above. If in J\ 
(as used there), the roots a = a + bi are such that b ^ 0, then a canonical 
form has been obtained for A* and hence for the quaternion matrix A. 

THEOREM 1. Every n X n matrix with real quaternion elements is similar 
under a matrix transformation with real quaternion elements to a matrix in 
{complex) Jordan normal form with diagonal elements of the form a + bi, b ^ 0. 

3. Properties of commutative matrices. According to a theorem due to 
Taber (5), if a matrix A with complex elements is non-derogatory, the only 
matrices commutative with A are polynomial functions of A. An equivalent 
theorem had been previously given by Frobenius (3, Theorem XI I I ) . 

In order to obtain an analog for this theorem where A contains real quater­
nion elements, let such a matrix A be defined to be non-derogatory when its 
Jordan normal form matrix (as obtained in the preceding) is non-derogatory. 

Let A and B be quaternion matrices such that AB = BA where A is non-
derogatory. Let PAP~l = J = Ji + J2 + . . . + Jm be the Jordan form of A 
where : 

Ji 

"«< 1 0 . . . 0 
0 OCi 1 0 

0 at 1 
0 . . . 0 Oii-

i = 1,2, . . . ,m, 
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where at 9^ aj when i ^ j and ak = ak + ibk, bk ^ 0. Let PBP~l = B\ so 
that / S i = BJ. 

LEMMA. BI = 5 n + Bn + . . . + Bim where Bu has the same order as Ju 

where 

Bn = 

and where 
(i) if ai is real, /Ae non-diagonal elements of Bu are quaternions while the 

diagonal elements are complex ; 
(ii) if ai is non-real complex, the elements of the corresponding Bu are complex. 

The following may be noted : if a is a non-real complex element, b a quaternion 
element, and ab = ba, then & is a complex number; if a is non-real complex, 
if P is complex, and c a quaternion element such that ac = ca + P, then c is 
complex and P = 0. Also no au above, is the conjugate of an a3. 

Let Bx = (btj), let J\ be of order r X r, and consider the upper left r X r 
sub-matrix of the product JB\ — B\J. The following relations result: 

'bn bn bit . . . bin 

0 ba bn . . 
0 0 bn 

bn bn ba 
. . . 0 bn bn 

.0 0 0 bn-

Oiibri = briCti, 

axbTi = 6 r i_i + bmai, i = 2, 3, . . • , r, 

oiibn + bi+iti = &ii«i, * = 1 , 2 , . . • , r -- 1 

aibit + bi+itt = 6i,«_i + 6i«ai> 
p = 2 , 3 , . . 
V = 1.2,.. 

. ,r, 
• ,r -- 1 

If ai is real then, although the btj are quaternion elements, all commutative 
properties hold for these relations (as in the complex case as treated by Taber) 
and the upper left r X r matrix has the form JBH with all quaternion elements, 
in general. If a\ is non-real complex, it follows from the first relation that bT\ 
is complex; from this and the third relation it follows that all elements in the 
first column above bri are complex (and in fact, except for bu, all are 0); 
from the second relation it can be seen that all elements of the rth row of this 
submatrix are 0 except brT which is complex. Using the fourth set of relations, 
we see that the remaining elements are complex, all necessary commutative 
properties hold, and that the submatrix has the Bn form. Bu now has the 
required form unless, for a real au the diagonal elements are quaternions; if 
so, there exists a quaternion element b such that bbtS = P is a complex num­
ber where bb = 1. Form the n X n matrix Q = bli + 12 where Ii and 72 are 
identity matrices and I\ is of order r X r. Then Q~l = bli + I2 and QB\Q~l 

has the form required and QJQ~l = / . 
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Let J2 be of order s X s, and consider the s X r submatrix directly below 
Bn in the matrix B\. Upon comparing corresponding elements of this s X r 
submatrix in the product JBi = BiJ, we see that the set of following relations 
appear : 

a2br+Stx = 6r+gfiO£i, 

a2br+Sfi = &r+Sti_i + bT+Stiai, i = 2, . . . , r, 
a2bn + &t+i,i = bnau i = r + 1, . . . , r + 5 — 1, 

«*« + bt+1,t = b,,^ + bitai, j j " ^ —^'2) __r + s _ L 

Since, for i ^ j , at 9e aû and at ^ ajf it follows from these relations that all 
elements of this s X r submatrix of B\ are zero. In this way it can be shown 
that B\ = Bn + B2 where Bn has the form given in the lemma. When B2 

is treated in like fashion, the lemma follows. 
Consider next the possibility of representing this Bi as a polynomial in Ji 

where J\ contains only complex elements. It is evident (from the work of 
Taber or by merely considering the set of equations obtained) that it is possible 
to determine two sets, xt and x / , i = 0, 1, 2, . . . , n — 1, of quaternion ele­
ments such that 

ffl—1 M — 1 

If all the diagonal elements of / are real, xj1 = J1XU if all the diagonal ele­
ments of / are non-real complex, all elements of Bi are complex and so are the 
Xi so that again XfJ* = Jixi\ and the same would be true if all the elements of 
B\ were complex regardless of the nature of the at in / . In these instances if 
x j == p jti j (where pj is the real absolute value of the quaternion element 
Xj and Uj the related quaternion of absolute value one), then 

B = P-'BJ = £ Pip-\uiI)P • p-\r)P = £ ptUtA* 

where Ut = P~l(UiI)P and UtA = AUt for each i. I t follows that : 

THEOREM 2. If A and B are quaternion matrices, if AB = BA, and if A is 
non-derogatory with either all real or all non-real complex roots, then 

n-l 

B = T,PiUiA{ 

i=0 

where the ptare real, UtA = A Uifor each i, and each Ui has a single characteristic 
root of absolute value one, 

4. A polar form. Every complex number has the familiar polar form 
peid and, as has been seen, the same is true for a quaternion. For a matrix A 
with complex elements a polar representation has been obtained when A is 
non-singular by Wintner and Murnaghan (9) and when A is singular by 
Williamson (7). It also exists for quaternion matrices according to the 
following : 
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THEOREM 3. Every n X n matrix A with real quaternion elements can be 
expressed as A = H{W\ — W1K1 where Hi and Ki are hermitian (quaternion) 
matrices and W\ is a unitary (quaternion) matrix; if A is non-singular the 
representation is unique, and if A is singular, H\ and K\ are unique hut W\ is 
arbitrary to some extent. 

Let A = Ai + jA2 where Ai and A2 are (as in §2) uniquely determined 
matrices with complex elements. Then A is isomorphic to A* where 

Since A* has complex elements A* = HU = UK by (9) and (7), where H 
and K are hermitian and U unitary. Then A A CT corresponds to H2 and there 
exists a unitary quaternion matrix (see (4), for example) Vz = V\ + jV2 so 
that V%AACTVzCT = D is a diagonal matrix with real elements and, conse­
quently, if 

lv2 vs y 
then VA*A*CTVCT = D + D. Since H is hermitian with non-negative real 
roots, there exists a unitary matrix W such that WHWCT = Dx is diagonal 
with these non-negative real roots along the diagonal; and this W can be 
chosen in such a way that 

WH2WCT = WA*A*CTWCT = D + D 

so that Dx2 = D + D and so Di = D2 + D2 where the diagonal elements of 
D2 are the positive square roots of the corresponding real roots of D. Then H 
must be of the same form as A* in (i) for if X = VWCT, then 

XWA*A*CTWCTXCT = X(D + D)XCT = VA*A*CTVCT = D + D 

so that X(D + D) = (D + D)X and so X(D2 + D2) = (D2 + D2)X. From 
this, XWHWCTXCT = XDiX07, = P i = VHVCT so that H = 7 c r Z?i7 and 
from the form of the matrices on the right side of this equality, their product 
is of type (i). 

From 4 * = HU, it follows that VA*VCT = VHVCTVUVCT where the 
matrices have the form 

[ S i -B2
C1 [D* 0 "| fZ7i V{\ 

IB2 Bf\ [0 D2 J L̂ 3 f/J. 
If ^4* is non-singular, D2 is non-singular and by equating corresponding 

block matrices, 274 = U\c and U2 = — f/s07. 
If ^4* is singular (in which case there is some arbitrariness involved in the 

choice of U in HU), then D2 is singular; let the first r diagonal elements be 
non-zero, the remaining being 0. From this it can be seen that D2(U\ — Uf) 
= 0 and D2(Uz + U2

C) = 0; this means that the first r rows of £/4 are the 
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conjugates of the first r rows of U\ and the first r rows of U2 are the negative 
conjugates of the first r rows of £/3. Since VUVCT is unitary, these 2r rows are 
linearly independent and by means of the v, z/*-basis procedure employed in §2 
above, it is seen that it is possible to complete the remaining rows of this 
matrix so that it is unitary and of the form (i). From the form of each matrix 
in the 2n X 2n matrix relation A* = HU, it follows that A can be expressed 
as required by the theorem. Since UCTA* = UCTHU = K is hermitian, 
A* = UK holds (uniquely if A* is non-singular) and the theorem is true. 

5. Properties of normal quaternion matrices. If A is a normal quaternion 
matrix, it can be brought into diagonal form under a unitary similarity trans­
formation (see (4), for example). Some further properties of normal quaternion 
matrices are verified here. 

It is known that a complex matrix A is normal if and only if ACT is a poly­
nomial in A. If A is a normal quaternion matrix, there exists a unitary quater­
nion matrix U such that LA UCT = D where the characteristic roots of A 
appear in the diagonal matrix D. If «i, a2, . . . , <xm are the distinct roots of A, 
the set of equations 

m— 1 

at = 2-f Xj<*i i i = 1, 2, . . . , m, 

in Xj always have solutions in the complex field. This implies that 
ro—1 

DCT = £ xjD> 

a n d , if Xj = pj • ei6i, 
m—1 id m—l 

ACT = E pMe }D VCTAj = £ pjVjA* 
j=0 j=0 

where Vj = U(eidiI) UCT is unitary and VjA = 4 Vj for all j . If more latitude 
is allowed for the degree of the polynomial, let the distinct roots be written in 
the form «i, a2, . . . , ar, . . . , am where au . . . , ar are the non-real complex 
roots. Let the roots «i, a2, . . . , ari . . . am, «i, . . . , ar be used to form the 
m + r equations 

m+r— 1 

where pt runs through the latter set of at and a*; in this case the Xj will all be 
real and it follows that : 

THEOREM 4. A quaternion matrix A is normal if and only if ACT is a poly-
nomial in A with real coefficients. 

The following theorem will now be shown to hold as in the complex case: 

THEOREM 5. Two normal quaternion matrices A and B are commutative 
if and only if they can be diagonalized by the same unitary transformation. 
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If AB = BA, let UA UCT = D where D is diagonal such that like roots are 
in consecutive order, with real roots «i, . . . , as first, and complex roots 
ft, . . . , Pu (j8* = Y* + iàk, h > 0) next. Let 

[D 0 1 . [d -C2
C1 

[_0 H and LC2 d'J 
be the 2n X 2w complex matrices which are isomorphic to D and UBUCT, 
respectively. From the commutative property DCi — C\D and DCC2 = C2D, 
and so 

C\ — Cu + . . . + Cis + C'n + . . . + C i* , 

C2 = C2l + . . . + C2s + 0 + . . . + 0 , 

where Z) = a 1/1 + • • • + «s^s + 0i/ ' i + . . . + PJ't and where Ci^ and C2i 

have the same order as the identity matrix Ij and C\j and the corresponding 
0 matrix in C2 have the same order as the identity matrix I'j. Therefore, 

UBUCT = ( C n + . • . + ^ , + ^11+ . • . + C'u) + i ( C 2 1 + . . . + C 2 s + 0 + . . .+0) 

= (C11+JC21) + ... +(c l s+c2 s) + Cu + ... + c'u 
where the C\j have only complex elements. Since UBUCT is normal, so is each 
matrix in the above direct sum; there exist, then, unitary quaternion matrices 
Wk which diagonalize Cu + jC2]c and unitary complex matrices Vk which 
diagonalize C u , for all the above k. If V is the unitary matrix formed by 
taking the appropriate direct sum of these Wk and Vk, it follows that 
VUBUCTVCT is diagonal and that VUAUCTVCT = VDVCT = D is also dia­
gonal. The converse is immediate. 

The above generalizes as in the complex case: 

THEOREM 6. If {Ai} is a set of normal quaternion matrices which commute 
in pairs, they can be diagonalized by the same unitary transformation. 

If each of the At have a single characteristic root, au the theorem is true. 
If these roots are all real, the theorem is trivially true. If at least one root, say 
ak, is non-real complex, let VAkV

CT = akI and VAiVCT = A'\ for all other i; 
then each A'\ commutes with akI and so all A'\ are normal, complex, and 
commutative in pairs, and can all be diagonalized by a complex unitary 
matrix U. Therefore, the unitary matrix UV diagonalizes all At. 

In general, the proof follows by induction on the order of the A t. The theorem 
is trivially true for 1 X 1 matrices. Assume the theorem to be true for 
(n — 1) X (n — 1) matrices. It may also be assumed that there is at least one 
matrix, Ajy which has at least two distinct roots; let UAjU

CT = D be diagonal 
(in the same form as D in the preceding theorem). Then each UAiUCT com­
mutes with Z), the problem is reduced to that involving matrices of order less 
than n and the theorem is true. 

The following theorems are true in the complex case (6); they are also true 
(obviously so from the isomorphism above) in the quaternion case: 
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THEOREM 7. A quaternion matrix A is normal if and only if its polar 
matrices commute. 

THEOREM 8. If A, B and AB are normal quaternion matrices, then BA is 
normal. 

THEOREM 9. If A and B are normal quaternion matrices, then AB is normal if 
and only if each of A and B commutes with the hermitian polar matrix of the other. 

6. A diagonal form under unitary equivalence transformations. It is 
also possible to bring a quaternion matrix into a real diagonal matrix under a 
unitary equivalence transformation according to the following: 

THEOREM 10. For every r X s quaternion matrix A there exist two unitary 
quaternion matrices U and V (of dimensions r X r and s X s, respectively) 
such that LA V — D is diagonal with non-negative real roots along the diagonal. 

Let A = Ai -\- jA2 where A\ and A2 are complex, as before, but r X 5 in 
dimension. Let C be the 2r X 2s matrix (composed of A i and A 2) with complex 
elements which corresponds to A. According to a corollary due to Eckert and 
Young (2), if U is a 2r X 2r unitary matrix which diagonalizes CCCT, there 
exists a 25 X 2s unitary matrix V such that UCV = D\ is a 2r X 2s diagonal 
matrix with non-negative real elements. From preceding work, this U may be 
taken as being in the form 

r z7i - u2
ci 

lu2 us]' 
so that UCCCTUCT = D2 + D2 is 2r X 2r and so UCV = D + D where D 
is r X s, where the elements are non-negative real, and where (D-\-D) (D-\-D)CT 

= D2 + D2. It remains to verify that V has the proper structure (i.e., like 
that of U). By considering the relation UC = (D + D)VCT, it follows (as 
in the proof of the polar representation above) that F has this form where some 
arbitrariness may be involved, as before, in choosing V. If the components of 
V are Vi and V2, then ( Ui + j U2)A ( Vi + j V2) = D a s required in the 
theorem. 

As in the complex case (8), it is also true that 

THEOREM 11. If A and B are two r X s quaternion matrices, then there exist 
two unitary quaternion matrices U and V such that UA V = D± and UBV —D2 

are complex diagonal matrices if and only if ABCT and BCTA are normal 
matrices. 

If such a U and V exist, the theorem is obviously true. 
If ABCT and BCTA are normal, but the preceding theorem UiA V\ = D\ is 

a non-negative real diagonal matrix and U\B V\ — C. Let 

Di = [o 2] and CI = [B] B']' 

https://doi.org/10.4153/CJM-1955-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-024-x


MATRICES WITH QUATERNION ELEMENTS 2 0 1 

where D is non-singular and B\ has the same order as D. From the given 
conditions DiCCT and CCTD\ are normal; using the former, it follows that 
(BzD)(BzD)CT = 0 (where 5 3 has quaternion elements and D is real) so that 
BiD = 0 and so Bz = 0. Similarly B2 = 0. Therefore DBfT and BX

CTD are 
normal. Now the characteristic roots of DBiCT and BiCTD are the same. (In 
the complex case, the characteristic roots of MN are the same as those of JVJWt 
from the isomorphism used above between n X n quaternion matrices and 
2n X 2n complex matrices, this result is seen to carry over). Therefore, from 
§5, there exists a polynomial f(x) with real coefficients such that B\D 
= f{pBfT) and DBX = f(Bx

CTD) and so DB± = f{Bx
CTD) = D^fiDB^D 

— D~XB\DD or D2i?i = i?iZ}2. Since Z> has positive diagonal elements, 
DBX = BxD. Since DBfBiD = BJ) • DBX

CT, then ^ ^ ^ i = B.B^ and 
5 i is a normal quaternion matrix which commutes with the (normal) real 
diagonal matrix D. There exists a quaternion unitary matrix W\ which 
diagonalizes each simultaneously; there also exist unitary matrices Wi and Wz 
so that W2B4WZ is a real diagonal matrix. By multiplying D1 and C\ each on 
the left and right, respectively, by the matrices 

[W! 0 1 rW!CT 0 1 
L 0 W2]9 L 0 T^J' 

the theorem follows. 
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