
JFP 13 (3): 455–481, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004574 Printed in the United Kingdom

455

Compiling embedded languages

CONAL ELLIOTT

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

SIGBJØRN FINNE

Galois Connections, Inc., 3875 SW Hall Blvd., Beaverton, OR 97005, USA

OEGE DE MOOR

Oxford University Computing Laboratory, Wolfson Building, Parks Road,

Oxford OX1 3QD, UK

Abstract

Functional languages are particularly well-suited to the interpretive implementations of

Domain-Specific Embedded Languages (DSELs). We describe an implemented technique

for producing optimizing compilers for DSELs, based on Kamin’s idea of DSELs for program

generation. The technique uses a data type of syntax for basic types, a set of smart constructors

that perform rewriting over those types, some code motion transformations, and a back-end

code generator. Domain-specific optimization results from chains of domain-independent

rewrites on basic types. New DSELs are defined directly in terms of the basic syntactic

types, plus host language functions and tuples. This definition style makes compilers easy to

write and, in fact, almost identical to the simplest embedded interpreters. We illustrate this

technique with a language Pan for the computationally intensive domain of image synthesis

and manipulation.

1 Introduction

The “embedded” approach has proved an excellent technique for specifying and pro-

totyping Domain-Specific Languages (DSLs). Hudak calls such an implementation a

“domain-specific embedded language”, or DSEL (Hudak, 1998). The essential idea is

to augment a “host” programming language with a domain-specific library. Modern

functional host languages are flexible enough that the resulting combination has

more the feel of a new language than a library. Much of the work required to design,

implement and document a language is inherited from the host language. Often,

performance is either relatively unimportant, or is adequate because the domain

primitives encapsulate large blocks of work. When speed is of the essence, however,

the embedded approach is problematic. It tends to yield inefficient interpretive

implementations, in which domain types are represented as algebraic data types

to be “interpreted” by recursive traversal functions, as in Hudak (2000). Worse,

these implementations tend to perform redundant computation, because functional

languages do not automatically memoize the interpretation functions. This latter

problem applies even when domain types are represented as functions rather than

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

456 C. Elliott et al.

algebraic data types, e.g. the Haskell geometric region server (Hudak & Jones, 1994)

and Fran (Elliott, 1998).

We have implemented a language Pan for image synthesis and manipulation,

a computationally demanding problem domain. A straightforward embedded im-

plementation would not perform well enough, but we did not want to incur the

expense of introducing an entirely new language. Our solution is to embed an

optimizing compiler. Embedding a compiler requires some techniques not normally

needed in embedded language implementations, and we report on these techniques

here. Pleasantly, we have been able to retain a simple programming interface, almost

unaffected by the compiled nature of the implementation. The generated code runs

very fast and without the need for the host language’s run-time system.

Our compiler consists of a relatively small set of domain definitions, on top

of a larger domain-independent framework. The framework may be adapted for

compiling other DSELs, and handles (a) optimization of expressions over numbers

and Booleans, (b) code motion, and (c) code generation. A new DSEL is specified

and implemented by defining the key domain types and operations in terms of

the primitive types provided by the framework and host language. Moreover, these

definitions are almost identical to what one would write for a very simple interpretive

DSEL implementation.

Although a user of our embedded language writes in Haskell, we do not have

to parse, type-check, or compile Haskell programs. Instead, the user runs his/her

Haskell program to produce an optimized program in a simple target language

that is first-order, call-by-value, and mostly functional. (Thus the user’s program

is a “generating extension” in the terminology of partial evaluation (Hatcliff et al.,

1999).) Generated target language programs are then given to a simple compiler

(also implemented in Haskell) for code motion and generation of standalone C

code. In this way, the host language (Haskell here) acts as a powerful macro (or

program generator) language, but is completely out of the picture at run-time.

Unlike most macro languages, however, Haskell is statically-typed and higher

order, and is more expressive and convenient than its target language. (For in-

stance, C’s macro language is much weaker than C, and Lisp’s macro language is

Lisp.)

Because of this embedded compiler approach, integration of the DSEL with

the host language (Haskell) is not quite as fluid and general as in conventionally

implemented DSELs. Some host language features, such as lists, recursion, and

higher-order functions are not available to the final executing program. These

features may be used in source programs, but disappear during the compilation

process. For some application areas, this strict separation of features between a full-

featured compilation language and a less rich runtime language may be undesirable,

but in our domain, at least, it appears to be perfectly acceptable. In fact, we typically

write programs without being conscious of the difference.

The contributions of this paper are as follows:

• We present a general technique for implementing embedded optimizing compi-

lers, extending Kamin’s approach (Kamin, 1996) with algebraic manipulation.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 457

• We identify a key problem with the approach, efficient handling of sharing,

and present techniques to solve it (bottom-up optimization and common

subexpression elimination).

• We illustrate the application of our technique to a demanding problem domain,

namely image synthesis and manipulation.

While this paper mainly discusses embedded language compilation, a companion

paper goes into more detail for the Pan image synthesis language (Elliott, 2001).

That paper contains many more visual examples, as does the Pan Gallery (Elliott,

2000).

2 Language embedding

The embedding approach to DSL construction goes back at least to Peter Landin’s

famous “next 700” paper (Landin, 1966). The essential idea is to use a single existing

“host” programming language that provides useful generic infrastructure (grammar,

scoping, typing, function- and data-abstraction, etc), and augment it with a domain-

specific vocabulary consisting of one or more data types and functions over those

types. Thus work required for a new “language” is kept to a minimum. These merits

and some drawbacks are discussed, for example. in Elliott (1999) and Hudak (1998).

One particularly elegant realization of the embedding idea is the use of a modern

functional programming language such as ML or Haskell as the host. In this setting,

the domain-specific portions can sometimes be implemented in the form of a simple

denotational semantics, as suggested in Kamin & Hyatt (1997, section 3). Consider,

for example, the problem domain of image synthesis and manipulation. A simple

semantics for images is as functions from continuous 2D space to colors, though it

turns out to be very useful to generalize from colors to arbitrary “pixel” types. The

representation of colors includes blue, green, red, and opacity (“alpha”) components:

type Image c = Point → c

type Point = (Float ,Float)

type Color = (Float ,Float ,Float ,Float)

It is easy to implement operations like image overlay (with partial opacity),

assuming a corresponding function, cOver , on color values:1

cOver :: Color → Color → Color

over :: Image Color → Image Color → Image Color

a ‘over ‘ b = λ p → a p ‘cOver ‘ b p

Another useful type is spatial transformation, or “warp”, which may be defined

simply as a mapping from 2D space to itself:

type Warp = Point → Point

1 Haskell uses backquotes to turn a name, here “over” and “cOver”, into an infix operator. Lambda
abstractions are written “λpat → exp” for binding pattern pat and body expression exp.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

458 C. Elliott et al.

This model makes it easy to define some familiar warps:

type Vector = (Float ,Float)

translate, scale :: Vector → Warp

rotate :: Float → Warp

translate (dx , dy) = λ (x , y) → (x + dx , y + dy)

scale (sx , sy) = λ (x , y) → (sx ∗ x , sy ∗ y)

rotate θ = λ(x , y) → (x ∗ c − y ∗ s , y ∗ c + x ∗ s)

where

c = cos θ

s = sin θ

While these definitions can be directly executed as Haskell programs, we found

performance to be inadequate for practical use. Our first attempt to cope with

this problem was to use the Glasgow Haskell compiler’s facility for stating trans-

formations as rewrite rules in source code (GHC Team, n.d.). Unfortunately, we

found that the interaction of such rewrite rules with the general optimizer is hard

to predict: in particular, we often wish to inline function definitions that would

normally not be inlined. Furthermore, there are a number of transformations (if-

floating, certain array optimizations) that are not easy to state as rewrite rules. We

therefore abandoned use of the Haskell compiler, and decided to build a dedicated

compiler instead. We will discuss this decision further in section 11.

3 Embedding a compiler

Figure 1 gives an overview of our system. As indicated in the figure, we implemented

some components and used others off the shelf.

In spite of our choice to implement a dedicated compiler, we want to retain most

of the benefits of the embedded approach. We resolve this dilemma by applying

Kamin’s idea of DSELs for program generation (Kamin, 1996) (which is a form of

multi-stage programming (Taha & Sheard, 2000)). That is, replace the values in our

representations by program fragments that represent these values. While Kamin used

strings to represent program fragments, algebraic data types greatly facilitate our

goal of compile-time optimization. For instance, an expression type for Float would

contain literals, arithmetic operators, and other primitive functions that return Float:

data FloatE =

LitFloat Float

| AddF FloatE FloatE | MulF FloatE FloatE | . . .
| Sin FloatE | Sqrt FloatE | . . .

We could define expression types IntE and BoolE similarly.

What about tuples and functions? Following Kamin, we simply adopt the host

language’s tuple and functions, rather than creating new syntactic representations

for them. Since optimization requires inspection, representing functions as functions

poses a problem. The solution we use is toextend the base types to support

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 459

Off-the-shelfHuman
Implemented

for PanLegend:

Expression
tree with

let

Effect author/
composer

Parse, type-check
& pre-compile

(via Haskell compiler)

Haskell source

Algebraic
simplification

Haskell-compiled
code

Code
motion

Expression
DAG

C-code
generation

Back-end
(C compiler)

machine
code

End-user display/
interaction

C source

Full inlining
with display code

(via execution)

expression DAG
(in Haskell heap)

Fig. 1. Overview of compiler structure.

“variables”. Then to inspect a function, apply it to a new variable (or tuple of

variables as needed), and look at the result. Note that some recursions will cause

non-termination in the compiler. This is a drawback of our embedded approach to

compilation.

data FloatE = . . . |VarFloat String — named variable

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

460 C. Elliott et al.

These observations lead to a hybrid representation. Our Image type will still

be represented as a function, but over syntactic points, rather than actual ones.

Moreover, these syntactic points are represented not as expressions over number

pairs, but rather as pairs of expressions over numbers, so that programs can use the

most familiar notation for constructing and pattern matching points. Similarly for

colors. Thus:

type ImageE c = PointE → c

type WarpE = PointE → PointE

type Point = (FloatE ,FloatE)

type ColorE = (FloatE ,FloatE ,FloatE ,FloatE)

The definitions of operations over these types can often be made identical to

the ones for the non-expression representation, thanks to overloading. For instance

translate, scale, and rotate have precisely the definitions given in ection 2. The

meaning of these definitions, however, is quite different. We have overloaded the

arithmetic operators, trigonometry functions, and a few dozen other functions,

to operate on expressions. The over function is also defined exactly as before.

Assuming that these base types are adequate, an optimizing DSEL compiler is

just as easy to implement and extend as with a simple, non-optimizing, embedded,

interpretive implementation. Otherwise new syntactic types and/or primitive oper-

ators may need to be added, some of which may turn out to be useful for other

DSELs.

As an example of how the hybrid technique works in practice, consider rotating

by an angle of π/2. Using the definition of rotate plus a bit of simplification on

number expressions described in section 6, the compiler simplifies rotate (π/2)(x , y)

to (−y , x).

Admittedly, the picture might not always be this rosy. For instance, some

properties of high-level types require clever or inductive proofs. Formulating these

properties as high-level rules would eliminate the need for a generic compiler to

rediscover them. So far we have not needed any high-level domain rules for our

image manipulation language, but we expect that for more substantial applications,

it may be necessary to layer the compilation into a number of distinct abstract

levels. In higher levels, domain types and operators such as Image and over would

be treated as opaque and rewritten according to domain-specific rules, while in lower

levels, they would be seen as defined and expanded in terms of simpler types like

Point and Color . Those simpler types would themselves be expanded at lower levels

of abstraction.

4 Static typing

Should there be one expression data type per value type (Int , Float , Bool , etc.) as

suggested above, or one for all value types? Separate expression types make the

implementation more statically-typed, and thus prevent many bugs in implement-

ation and use. Unfortunately, they also lead to redundancy, since each expression

type would need its own constructors for variables, binding, and polymorphic and

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 461

overloaded expression operators (e.g. if-then-else and addition, respectively), as well

as its own polymorphic compiler-internal operations on terms.

Instead, we use a single and all-encompassing expression data type DExp of

“dynamically-typed expressions”, rather than the separate types suggested in sec-

tion 3:

data DExp =

LitInt Int | LitFloat Float | LitBool Bool

| Var Id Type | Let Id Type DExp | If DExp DExp DExp

| Add DExp DExp | Mul DExp DExp | . . .
| Sin DExp | Sqrt DExp | . . .
| Or DExp DExp | And DExp DExp | Not DExp | . . .

It is unfortunate that the choice of a single DExp type means that one cannot

simply add another module containing a new primitive type and its constructors

and rewrite rules, but rather must edit the single DExp type definition. For now

we are willing to accept this limitation, but future work may suggest improve-

ments.

The DExp representation removes redundancy from representation and supporting

code, but it loses type safety. To combine advantages of both approaches, we

augment the dynamically-typed representation with the technique of “phantom

types” (Leijen & Meijer, 1999). The idea is to define a type constructor (Exp

below) whose parameter is not used, and then to restrict types of some functions to

applications of the type constructor. For convenience, we define abbreviations for

the three supported base types as well:

data Exp α = E DExp

type BoolE = Exp Bool

type IntE = Exp Int

type FloatE = Exp Float

For static typing, it is vital that Exp α be a new type, rather than just a type synonym

of DExp.

Statically-typed functions are conveniently defined via the following functionals,

where typn turns an n-ary DExp function into an n-ary Exp function:

typ1 :: (DExp → DExp) → (Exp a → Exp b)

typ2 :: (DExp → DExp → DExp) → (Exp a → Exp b → Exp c)

typ1 f (E e1) = E (f e1)

typ2 f (E e1) (E e2) = E (f e1 e2)

and so on for typ3, typ4, etc. The type-safe friendly names +, ∗, etc., come from

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

462 C. Elliott et al.

applications of these static typing functionals in type class instances:

instance Num IntE

where

(+) = typ2 Add

(∗) = typ2 Mul

negate = typ1 Negate

fromInteger = E ◦ LitInt ◦ fromInteger

Type constraints inherited from the Num class ensure that the newly defined

functions are applied only to Int expressions and result in Int expressions. For

instance, here

(+) :: IntE → IntE → IntE

The important point here is that we do not rely on type inference, which would

deduce too general a type for functions like “+” on Exp values, based on the

very general type of typ2. Instead we rely on restricted type signatures, either given

explicitly or inherited from the standard Haskell type class declarations.

Other definitions provide a convenient and type-safe primitive vocabulary for

FloatE . Unfortunately, the Bool type is wired into the signatures of operations

like � and ||. Pan therefore provides alternative names ending in a distinguished

character, which is “E” for alphanumeric names (e.g. “notE”) and “∗” for non-

alphanumeric names (e.g. “<∗”).

5 Inlining and the sharing problem

The style of embedding described above has the effect of inlining all definitions,

and β-reducing resulting function applications, before simplification. This inlining is

beneficial in that it creates many opportunities for rewriting. A resulting problem,

however, is that uncontrolled inlining often causes a great deal of code replication.

To appreciate this problem, consider the following example warp. It rotates each

point about the origin, through an angle proportional to the point’s distance from

the origin. The parameter r is the distance at which an entire revolution (2π radians)

is made:

swirlP :: FloatE → WarpE

swirlP r = λ p → rotate (distO p ∗ (2 π / r)) p

distO :: PointE → FloatE

distO (x , y) = sqrt (x ∗ x + y ∗ y)

Inlining swirlP r (x , y) yields an expression with much redundancy:

(x ∗ cos (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r)

− y ∗ sin (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r)

,y ∗ cos (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r)

+ x ∗ sin (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r))

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 463

The problem here is that rotate uses its argument four times (twice via each of cos

and sin) in constructing its results. Thus, expressions passed to rotate are replicated

in the output. In our experience with image synthesis, the trees resulting from inlining

and simplification tend to be enormous, compared to their underlying representation

as graphs. If swirlP r were composed with scale (u , v) before being applied to (x , y),

the two multiplications due to scale would each appear twice in the argument to

sqrt , and hence eight times in the final result. Note that this problem of redundancy

is a consequence of our choice to use an embedded language, in which the language’s

“let”, lambda, and application are simply those of the host language (Haskell). This

choice prevents us from using a non-inlined representation.

In an interpretive implementation, we would have to take care not to evaluate

shared expressions redundantly. Memoization avoids such redundancy, but it incurs

considerable overhead of its own, especially if applied at a fine level of granularity,

to simple functions. For a compiler, memoization is not adequate, because it must

produce an external representation that captures the sharing. What we really want

is to generate local definitions when helpful. To produce these local definitions, our

compiler performs common subexpression elimination (CSE), and represents code

as graphs, as described in Section 8.

6 Algebraic optimization and smart constructors

An early Pan implementation was based on the Mag program transformation

system (de Moor & Sittampalam, 1999). Compilation in this implementation was

much too slow, mainly because Mag redundantly rewrote shared subterms. To avoid

this problem, we now do all optimization bottom-up, as part of the construction of ex-

pressions. With this strategy, the host language’s evaluate-once operational semantics

prevents redundant optimization. Non-optimized expressions are never constructed.

The main drawback is that optimization is context-free. (An optimization can,

however, delve arbitrarily far into an already-optimized argument term.)

Optimization is packaged up in “smart constructors”, each of which provides the

following:

• constant-folding;

• if-floating;

• constructor-specific rewrites such as identities and cancellation rules;

• data type constructor application when no optimizations apply; and

• static typing.

As an example, figure 2 shows a smart constructor for conjunction over Boolean

expressions. (In fact, the real definition is shorter, because it uses a shared utility

function to perform constant folding and if-floating for arbitrary binary smart

constructors.) Smart constructors must be programmed with care, because they

work on the dynamically-typed representation, and hence cannot be verified by the

host language’s type checker.

Pan uses ifE for syntactic conditionals, based on an underlying dynamically-typed

ifD .

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

464 C. Elliott et al.

— Type-safe smart constructor

(&&∗) ::BoolE → BoolE → BoolE

(&&∗) =typ2 andD

— Non-type-safe smart constructor

andD :: DExp → DExp → DExp

— Constant folding

andD (LitBool a) (LitBool b) = LitBool (a && b)

— If-floating

andD (If c a b) e2 =ifD c (andD a e2) (andD b e2)

andD e1 (If c a b) =ifD c (andD e1 a) (andD e1 b)
— Cancellation rules

andD e (LitBool False) =false

andD (LitBool False) e =false

andD e (LitBool True) =e

andD (LitBool True) e =e
— Others

andD (Not e) (Not e ′) =notE (orD e e ′)

andD e e ′ | e == e ′ =e

andD e e ′ | e == notE e ′ =false
— Finally, the data type constructor

andD e e ′ = And e e ′

Fig. 2. Simplification rules for conjunction.

ifD :: DExp → DExp → DExp → DExp

ifD (LitBool True) a b = a

ifD (LitBool False) a b = b

ifD (Not c) a b = ifD c b a

ifD (If c d e) a b = ifD c (ifD d a b) (ifD e a b)

ifD c a b = ifZ c a b

The function ifZ simplifies redundant or impossible conditions. The statically-typed

ifE function is overloaded with an overloading instance for expressions:

class Syntactic a where ifE :: BoolE → a → a → a

instance Syntactic (Exp a) where ifE = typ3 ifD

It would be more convenient to use “if-then-else” syntax, but it is not overloadable

in Haskell.

As an example of if-floating, consider the following example (given in familiar

concrete syntax, for clarity):

sin ((if x < 0 then 0 else x) / 2)

If-floating without simplification would yield

if x < 0 then sin(0/2) else sin(a/2)

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 465

Two constant foldings (0/2 and sin 0) result in

if x < 0 then 0 else sin(a/2)

Other overloadings for the Syntactic class include tuples and functions:

instance (Syntactic a , Syntactic b) ⇒ Syntactic (a , b) where

ifE c (a , b) (a ′, b ′) = (ifE c a a ′, ifE c b b ′)

— similarly for triples, etc

instance Syntactic b ⇒ Syntactic (a → b) where

ifE c fa fb = λ x → ifE c (fa x) (fb x)

Note that in the case of pairs, the condition c is duplicated (though in the internal

Haskell heap representation, there is really only one copy, with two pointers). The

code motion phase of compilation (section 8) will replace it with a single evaluation.

Similarly, in the case of functions the expression c would get evaluated on each call

of the constructed function if not for code motion.

When tuples are consumed to form a single (scalar-valued) expression, if-floating

typically causes the redundant conditions to float, forming a cascade of redundant

conditionals, which are greatly simplified by ifZ . For example, consider the following

expression:

let (x , y) = ifE (x < 3) (a , b) (a ′, b ′) in x + y

Using the tuple and Exp instance of the Syntactic class gives

let (x , y) = (ifZ (x < 3) a a ′, ifZ (x < 3) b b ′) in x + y

Substituting for the let,

ifZ (x < 3) a a ′ + ifZ (x < 3) b b ′

Floating the first conditional out of the sum,

ifZ (x < 3) (a + ifZ (x < 3) b b ′) (b + ifZ (x < 3) b b ′)

Floating the other conditional,

ifZ (x < 3) (ifZ (x < 3) (a + b) (a + b ′)) (ifZ (x < 3) (a ′ + b) (a ′ + b ′))

The ifZ function then simplifies away both inner conditionals, taking advantage of

the outer conditional. The final result is

ifZ (x < 3) (a + b) (a ′ + b ′)

If-floating is another source of code replication, sometimes a great deal of it.

Code motion factors out the “first-order” replication, i.e., multiple occurrences of

expressions, as with e2 for the first if-floating clause in figure 2. There is also a second-

order form of replication, as seen in the sin example above before simplification.

The context sin (• / 2) appears twice. Fortunately for this example, one instance of

this context simplifies to 0. In other cases, there may be little or no simplification.

We will return to this issue in section 11.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

466 C. Elliott et al.

We should stress at this point that we intend the algebraic optimizations to be

refinements: upon evaluation, the optimized version of an expression e should yield

the same value as e whenever evaluation of e terminates. It is possible, however, for the

simplified version to yield a well-defined result when e does not. This could happen

for example when a boolean expression e && ∗ false would raise a division-by-zero

exception, while the simplified version would instead evaluate to false.

7 Adding context

More optimization becomes possible when the usage context of a DSEL compu-

tation becomes visible to the compiler. For instance, after composing an image, a

user generally wants to display it in a window. The representation of images as

PointE → ColorE suggests iteratively sampling at a finite grid of pixel locations,

converting each pixel color to an integer for the display device.2 Our first Pan

compiler implementation took this approach, that is it generated machine code for a

function that maps a pixel location to a 32-bit color encoding. While this version was

much faster than an interpretive implementation, its efficiency was not satisfactory.

For one thing, it requires a function call per pixel. More seriously, it prevents any

optimization across several pixels or rows of pixels.

To address the shortcomings of the first compiler, we made visible to the optimizer

the two-dimensional iteration that samples and stores pixel values. In fact, to get

more use out of compilation, we decided to compile the display of not simply static

images, but animations, represented as functions from times to images. (We go even

further, generating code for nearly arbitrarily parameterized images, with automatic

generation of user interfaces for the run-time parameters.)

The main function display , defined in figure 3, converts an animation into a

“display function” that is to be invoked just once per frame. (Recall that FloatE

and IntE are the “syntactic” base type short-hands for Exp Float and Exp Int ,

respectively.) A display function consumes a time, viewing transform (zoom factor

and XY pan), window size, and a pointer to an output pixel array. It is the job

of the viewer to come up with all these parameters and pass them into the display

function code.

The critical point here is that (a) the display function is expressed in the embedded

language, and (b) display is applied to its anim parameter at compile time. This

compile-time application allows the code for display and anim to be combined and

optimized, and lets some computations be moved outside of the inner or outer loop.

(In fact, our compiler goes further, allowing optimized recomputations when only

some display parameters change, thanks to a simple dependency analysis.)

The ActionE type, as occurs in the definition of DisplayFun in Figure 3, represents

an action that yields no value, much like Haskell’s type IO (). It is represented by a

2 For a high-quality presentation, the Pan viewer performs anti-aliasing by making several display
passes, each with a random, sub-pixel offset, and averages the results together. The display window
is repainted after each pass, so the appearance improves gradually over time. For efficiency, the
generated code actually modifies the output bitmap in place.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 467

type TimeE = FloatE

type Anim c = TimeE → ImageE c

type DisplayFun = TimeE → VTrans → VSize → IntE → ActionE

typeVSize = (IntE , IntE) — view size: width & height in pixels

typeVTrans = (FloatE ,FloatE ,FloatE) — view transform: pan XY, zoom

display :: Anim ColorE → DisplayFun

display anim = λ t (panX , panY , zoom) (w , h) output →
loop h (λ j →

loop w (λ i →
setInt (output + 4 ∗ (j ∗ w + i)) (

toBGR24 (

anim t (

zoom ∗ i2f (i − w ‘div ‘ 2) + panX ,

zoom ∗ i2f (j − h ‘div ‘ 2) + panY)))))

Fig. 3. Animation display function.

small number of DExp constructors and corresponding statically-typed, optimizing

wrapper functions, including setInt and loop. setInt takes a memory address

(represented as an integer) and an integer value, and writes the value into memory.

loop is like a for-loop; it takes an upper bound, and a loop body that is a function

from the loop variable to an action. The loop body is executed for every value from

zero up to (but not including) the upper bound:

setInt :: IntE → IntE → ActionE

loop :: IntE → (IntE → ActionE) → ActionE

According to display , a generated display function loops over j (vertically) and i

(horizontally), and sets the appropriate member of its output array to a four-byte

(thus multiplication by four) color value. Aside from calculating the destination

memory address, the inner loop body samples the animation, anim , at the given

time and position. The spatial sampling point is computed from the loop indices by

placing the image’s origin in the center of the window (thus the subtraction of half

the window width or height) and then applying the user-specified dynamic zoom and

pan (using i2f for int-to-float conversion). In fact, the optimized code is much more

efficient, thanks to code motion techniques that eliminate redundant computations,

as described in Section 8 and illustrated in Appendix A.

8 Code motion

Once all the above optimizations have been applied, the resulting Haskell data

structure turns out to be a directed acyclic graph. This dag is an artifact of Haskell

execution, and the sharing is a direct consequence of our bottom-up approach to

rewriting (section 6). It represents a rather large expression tree, as explained in

section 5. Nodes in the graph with more than one parent represent expressions

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

468 C. Elliott et al.

that were replicated during the inlining and rewriting process. We wish to make

the sharing structure explicit using let-bindings and then apply a number of global

optimizations (in particular code motion).

8.1 Converting dags to lets

The first problem is to make the internal graph structure of a value of type DExp

explicit, which we do in two steps. The first step converts the expression to a graph

with a designated node, and the second turns the graph back into an expression,

introducing let bindings for shared subexpressions:

expToDag :: DExp → (Graph ,Node)

dagToLet :: (Graph ,Node) → DExp

share :: DExp → DExp

share = dagToLet ◦ expToDag

We require that for all e, share e is an expression that is equivalent to e under

the semantics of our embedded language. In particular, the result of the conversion

should have the same (or better) termination behaviour. As we shall see, fulfilling

that requirement is complicated by the fact that the target language’s “let” has strict

semantics.

Unfortunately, to implement the expToDag transformation in Haskell we had to

use non-declarative pointer manipulation. It might be possible to apply the work of

Claessen and Sands to avoid this ugly departure from a declarative implementation,

or at least make it as innocuous as possible (Claessen & Sands, 1999). They extend

Haskell with reference types, and show that many compiler transformations remain

valid. Reference types are precisely what is needed to capture the notion of sharing.

The dagToLet function relies on extending the expression data type with variable

binding:

data DExp = . . . | Let Id DExp DExp

type Id = String

Since the variable references (Var) and bindings (Let) are only introduced through

dagToLet and other transformations, the programmer cannot create expressions

with references to unbound variables.

Each node that has more than one parent and at least one child represents a

non-trivial shared subexpression, and could potentially become the body of a Let .

The main problem is to decide where such a Let should be placed. As an example,

consider the graph in figure 4. These and similar examples might lead us to believe

that the appropriate placement for a let-expression is at the lowest common ancestor

of all occurrences of its body.

Unfortunately, that would be incorrect, as shown by the example in figure 5. In

the original expression, if both the tests A and B fail, it is not necessary to evaluate

D . Under a strict interpretation of the let-expression, D does get evaluated, and

might cause a runtime error.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 469

Fig. 4. A dag and the corresponding let-expression.

Fig. 5. A dag and an incorrect let-expression.

The above considerations motivate the following definition for the placement of

let-abstractions. A let-abstraction for a shared subexpression D is placed at each

ancestor node m such that

1. At least two children of m contain D .

2. If the expression rooted at m is evaluated, so is at least one of the occurrences

of D below it.

3. No ancestor of m has the above two properties.

In particular, a single expression may be abstracted in more than one Let , and it

may also happen that a shared subexpression is not abstracted at all. One could

choose to ignore the clause 2 for shared subexpressions D that cannot diverge in the

evaluation of m . It only pays to abstract such expressions D if they arevery large,

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

470 C. Elliott et al.

or costly to evaluate. In our compiler, it turned out to be quite a big improvement

to hoist every non-divergent computation. If the expression does not contain any

conditional expressions, the above definition says that a single let-abstraction is

placed at the lowest common ancestor of its body’s occurrences.

Some readers may wonder how we can end up with shared subexpressions that

cannot be abstracted to a common Let . It is simply a consequence of the fact that

the sharing in our graph representation is syntactic, and has no semantic meaning.

To illustrate, consider the simplification of

(if c then a else b) + (if c′ then a ′ else b ′)

(we write if-then-else in lieu of ifD for clarity). The if-floating transformation

discussed in section 6 will result in

if c then

if c′

then a + a ′

else a + b ′

else

if c′

then b + a ′

else b + b ′

This transformed expression is equivalent to the original, but we cannot safely share

a ′ and b ′ by introducing Lets, even though a ′ and b ′ are shared in the graph

representation. We can, however, safely extract c′, because it appears twice in strict

positions.

There exist algorithms for finding the lowest common ancestors of all repeated

subexpressions in time O(n ·α(n)) (where there are n nodes in the original graph, and

α is the inverse of the Ackermann function) (Harel & Tarjan, 1984; Alstrup et al.,

1999), or even O(n) (Harel, 1985). We are considering how these algorithms may be

adapted to solve the above problem efficiently – the current implementation uses a

naive algorithm whose worst-case performance is quadratic.

See de Moor & Secher (2001) for a more detailed definitions and algorithms for

conversion of dags to lets.

8.2 Common subexpression elimination

Once we have the let-representation of the expression that resulted from rewriting,

we can apply other optimizations. In particular, we apply ordinary common

subexpression elimination, again taking care not to move expressions out of the

branches of a conditional unless it is safe to do so. It may seem superfluous to do

CSE after the conversion from dags to lets, but we have found that there are a fair

number of repeated subexpressions that do not result from inlining.

Our implementation of common subexpression elimination uses the standard

hashing technique, implemented via an attribute grammar (Johnsson, 1987). By

writing this transformation as an attribute grammar, we can apply it simultaneously

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 471

with the optimization of array expressions, discussed in the next subsection. This

application of attribute grammars is more commonly known to functional program-

mers as the application of the tupling transformation (Chin, 1993; Pettorossi, 1984),

and the introduction of circular data structures (Bird, 1984).

8.3 Optimizing array expressions

Our final set of global transformations improve loops and array expressions. Here

we shall only discuss array expressions, which are the basis of our treatment of

bitmaps. Loops (as discussed in section 7) are treated similarly.

The type of untyped expressions contains two constructors related to arrays: one

to construct a new array, and one to read the value of an array at a given index:

data DExp =

. . .

| MkArray Id DExp DExp | ReadArr DExp DExp

In the constructor application MkArray x size bodyx , the first argument is an

identifier x , which is a bound index variable that ranges from 0 up to (but not

including) the integer expression size. The bodyx argument gives the value that

should be stored at index x in the newly created array.

As always, the statically typed smart constructor hides identifier introduction,

which is done through application to a fresh variable (generated via a standard

unsafePerformIO trick):

mkArray :: IntE → (IntE → Exp a) → ArrayE a

There is a statically typed version of ReadArr:

readArr :: ArrayE a → IntE → Exp a

The semantics of mkArray and readArr (and their underlying constructors) are as

expected:

readArr (mkArray size f) i = f i — if 0 � i < size

Our first optimization corresponds to the hoisting of loop-invariant code in

traditional compilers (e.g. see Appel (1998)). If a subexpression of the body of an

array construction does not depend on the index variable, it can be precomputed:3

mkArray size (λ i → A[subexp])

=

let x = subexp in mkArray size (λ i → A[x])

subject toseveral side conditions:

3 The pattern A[e] matches an expression containing one or more occurrences of a subexpression e,
with A bound to an “expression with holes”.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

472 C. Elliott et al.

1. The variable i does not occur freely in subexp.

2. The size of the array must be greater than 0.

3. A is “strict”, i.e. every evaluation of the expression matching A[subexp] involves

an evaluation of subexp.

4. The expression subexp is not trivially small.

5. The expression A[x] does not contain subexp as a subexpression (so we are

abstracting all occurrences of subexp).

6. The subexpression subexp is not contained in another subexpression of

A[subexp] that satisfies the above conditions.

Note the similarity to the conditions we employed in converting dags to lets. Again

it is helpful to relax the second and third restrictions, for expressions subexp that

are expensive to evaluate and yet are guaranteed to be total.

Another important optimization of array expressions occurs when there are two

nested array constructions, and a subexpression only depends on the inner index

variable. In such cases, one might precompute the subexpression for each value of

the inner loop variable, and store the results of the precomputation in an array. This

type of tabulation is very common in the optimisation of recursive programs (e.g.

see Boiten (1992)).

mkArray size1 (λ i → A[mkArray size2 (λ j → B [subexp])])

=

let x = mkArray size2 (λ j → subexp) in

mkArray size1 (λ i → A[mkArray size2 (λ j → B [readArr x j])])

Again there are several side conditions:

1. The variable i does not occur freely in subexp.

2. The array sizes size1 and size2 are greater than 0.

3. B is strict.

4. The subexpression subexp is not trivially small.

5. The expression B [y] does not contain subexp as a subexpression.

6. The subexpression subexp is not contained in another sub-expression of B that

satisfies the above conditions.

Both of the above optimizations on arrays, and common subexpression elimin-

ation are implemented through a single attribute grammar. Although the attribute

grammar uses the above transformations to lift subexpressions of arrays as far as

possible in one pass, it is not idempotent because the movement may introduce

new common subexpressions. In experiments it appears that two or three iterations

suffice to reach a fixpoint.

Nested loops are optimized in exactly the same way, which is particularly useful

with the display function in figure 3. See Appendix A for an example. (It would

be more orthogonal to provide a simpler mkArray that only allocates the array,

leaving another operation to fill it in, via loop. The challenge then would be to

use something like Haskell’s runST (Launchbury & Peyton Jones, 1994) to convert

from Action back to a purely functional type, perhaps also distinguishing between

mutable and immutable arrays, somehow without an expensive copy operation.)

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 473

9 Code generation

Having performed code motion and loop hoisting, we are ready to start generating

some code. The output of the code motion pass could either be interpreted or

compiled, but we choose to compile. In the spirit of embedding in a functional

language, the final DExp tree could be translated to a Haskell or ML function

definition, relying on an existing optimizing compiler to do code generation. In the

case of image processing and Pan we chose not to do this, mainly for performance

reasons and the wish to exploit features of our target platform. However, for other

DSLs, generating a Haskell/ML function might be the most sensible route.

The DExp could be converted into either a C function or native code. Generating

C is reasonably straightforward, but requires a little bit of care in places. For

instance, we need to account for the fact that C lacks expression-level variable

binding support. Also, the MkArray construct requires the allocation of an array

followed by a loop that fills it in, i.e. it maps to a sequence of C statements. It cannot,

therefore, be embedded within a C expression. Consequently, we must massage the

DExp tree before translating it to valid C code. In the case of Pan, the generated

code is then compiled by a C compiler and linked into a viewer that displays the

specified image effect.

Generating C allows us to reuse the strengths of a C code generator, although most

C compilers do not generate code that targets various instruction set extensions of

our main target platform, Intel x86 platforms (e.g. MMX, AMD’s 3D-Now, Pentium

III’s Streaming SIMD Extensions.)

One interesting question is whether a good optimizing C compiler could handle

all of the necessary algebraic optimization and code motion. The benefit would be

further simplification of our own compiler. We performed an experiment toward

answering this question, by turning off our own optimizations and leaving the

C compiler optimizations set to maximum. There was a very significant loss of

performance, though we do not know precisely why.

10 Related work

There are many other examples of DSELs, for music, two- and three-dimensional

geometry, animation, hardware design, document manipulation, and many other

domains. See Hudak (1998) for an overview and references. In almost all cases, the

implementations were interpretive. Several characteristics of functional programming

languages that lend themselves toward the role of host language are enumerated in

Elliott (1999).

Kamin’s work on embedded languages for program generation is in the same

spirit as our own (Kamin, 1996). As in our approach, Kamin uses host language

functions and tuples to represent the embedded language’s functions and tuples, and

he uses overloading so that the generators look like the code they are generating.

His applications use a functional host language (ML) and generate imperative

programs. The main difference is that Kamin did not perform optimization or CSE.

Both would be difficult, given his choice of strings to represent programs.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

474 C. Elliott et al.

Leijen and Meijer’s HaskellDB provides an embedded language for database

queries and an implementation that compiles search specifications into optimized

SQL query strings for further processing (Leijen & Meijer, 1999). After exploring

several unsuccessful designs, we imitated their use of an untyped algebraic data type

and a phantom type wrapper for type-safety.

Thiemann and Sperber make elegant use of Haskell (then Gofer) type classes

to make function definitions that are so overloaded that any argument may be

either static or dynamic (Thiemann & Sperber, 1997). Their work does not appear

to include simplification of expressions, but could be easily extended to do so. It

handles dynamic recursion as well as static, while our approach handles only static

recursion. The most notationally awkward aspect of their approach seems to be the

use of explicit fixpoint operator.

The Hawk project uses overloading to give allow symbolic interpretation of

expressions of microprocessor simulation, and performes some simple algebraic

simplifications along the way (Day et al., 1999). Like Pan, their expressions are

simplified bottom-up.

Our approach to compiling embedded languages can be regarded as an instance

of partial evaluation, which has a considerable literature (e.g. see Hatcliff et al. (1999)

and Jones et al. (1993)). In this light, our compiler is a handwritten cogen (as opposed

to one generated automatically through self-application). Berlin, Weise and others

have used graphs to represent code (Berlin, 1989; Berlin & Weise, 1990; Weise et al.,

1991), thus avoiding unwieldy code duplication, in a somewhat similar way to what

we described in Section 8. Danvy also uses smart constructors for optimizing some

function applications, in which at least one argument is dynamic (Danvy, 1998). In

the context of partial evaluation, the main contrasting characteristic of our work is

the embedding in a strongly typed meta-language (Haskell). This embedding makes

particular use of Haskell type-class-based overloading so that the concrete syntax of

meta-programs is almost identical to that of object-programs, and it achieves inlining

for free (perhaps too much of it). It also exploits meta-language type inference to

perform object-language type inference (except on the optimization rules, which are

expressed at the type-unsafe level). Another closely related methodology is multi-

stage programming with explicit annotations, as supported by MetaML (Taha &

Sheard, 2000), a polymorphic statically-typed meta-language for ML-style programs.

FFTW is a successful, portable C library for computing discrete Fourier transforms

of varying dimensions and sizes (Frigo, 1999). Its numerical procedures are generated

by a special purpose compiler, fftgen, written in Objective Caml and are better in

almost all cases than previously existing libraries. The compiler has some of the

same features as our own, performing some algebraic simplification and CSE. One

small technical difference is that, while fftgen does memoized simplification, our

compiler does bottom-up simplifying construction. It appears that the results are

the same. Because the application domain is so specialized, fftgen is more focused

than our compiler. In contrast, we wanted to apply our compiler to several domains

(though we have not yet done so).

Veldhuizen and others use advanced C++ programming techniques to embed a

simple functional language into C++ types (Veldhuizen, 1995, 1999). This language

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 475

is executed by the C++ compiler during type-checking and template instantiation.

Code fragments specified in inlined static methods are chosen and combined at

compile-time to produce specialized, optimized low-level code.

11 Future work

More efficient and powerful rewriting. Our optimizer uses a simple syntactic approach

to rewriting. To obtain better results, rewriting and CSE should make use of

associative-commutative (AC) matching and comparison, respectively, while still

exploiting representation sharing, which is critical for compile-time efficiency.

CSE cleans up after inlining, recapturing what sharing still remains after rewriting.

However, while inlining does higher-order substitution (in the case of functions),

CSE is only first-order, so higher-order redundancy remains. Ideally, inlining, if-

floating, and CSE would all work cooperatively and efficiently with rewriting.

Inlining and if-floating would happen only where rewarded with additional rewrites.

Fundamentally, this cooperation seems precluded by the embedded nature of the

language implementation, which forces full inlining as the first step, before the DSEL

compiler gets to look at the representation.

Invisible compilation. The techniques described in this paper turn compositional

specifications into efficient implementations. Image editing applications also allow

non-programmers to manipulate images by composing operations. Imagine that such

an application were to use abstract syntax trees as its internal editable representation

and invisibly invoke an incremental optimizing compiler in response to the user’s

actions. Then a conventional point-and-click user interface would serve as a “gestural

concrete syntax”. The display representation would then be one or more bitmaps

augmented by custom-generated machine code.

Embeddable compilation. By embedding our language in Haskell, we were able

to save some of the work of compiler implementation, namely lexing, parsing,

type checking, supporting generic scalar types, functions and tuples. However, it

should be possible to eliminate still more of the work. Suppose that the host

language’s compiler were extended with optimization rules so that it could work

much like the one described in this paper. We tried precisely this approach with

GHC (GHC Team, n.d.), with partial success. The main obstacle was that the

compiler was too conservative about inlining and rewriting. It takes care never to

slow down a program, whereas we have found that it is worth taking some backward

steps in order to end up with a fast program in the end. Because we do not (yet)

work with recursively defined images, laziness in a host language appears not to be

vital in our domain. It might be worthwhile to try the exercise with an ML compiler.

Plug-and-play code motion. Although we have found the attribute grammar style

convenient for merging all code motion transformations in a single pass, the details

can become rather tricky. It would be desirable, therefore, to be able to specify

new optimizations in the specification style of section 8, making use of higher-order

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

476 C. Elliott et al.

matching to identify subterms that satisfy certain criteria with respect to binding.

The side conditions could be formalised in a variant of temporal logic, as suggested

in Rus & Van Wyk (1997). We are looking into compilation of such high-level

descriptions of transformation rules into attribute grammars. The result would

make the code motion phase of the compiler framework described in this paper

much more amenable to experimentation.

Haskell hospitality. In some places, Pan is not able to hide the synthetic nature

of its types. For instance, the programmer must use “>∗ and “ifE” instead of

“ >” and “if − then − else”. The former could probably be fixed by altering the

standard Haskell prelude, exploiting “multi-parameter type classes” (Peyton Jones

et al., 1997). The latter would in addition need a small change to the language itself.

12 Conclusions

Embedding is an easy way to design and implement DSLs, inheriting many benefits

from a suitable host language. Most such implementations tend to be interpretive,

and so are too slow for computationally intensive domains like interactive image

processing. Building on ideas from Kamin and from Leijen and Meijer, we have

shown how to replace embedded interpreters with optimizing compilers, by using a

set of syntax-manipulating base types. The result is much better performance with

a very small impact on the languages. Moreover, these base types form a reusable

DSEL compiler framework with which a simple interpretive DSEL implementation

can be turned into a compiler with very small changes (thanks to overloading).

In our Pan compiler, the rewriting-based optimizations helped speed considerably,

as of course does eliminating the considerable overhead imposed by interpretative

implementation.

We have produced many examples with our compiler, as may be seen in Elliott

(2000a, 2000b), but more work is needed to make the compiler itself faster and

produce even better code. We hope that the compiler’s speed can be improved to

the point of invisibility so that it can be used by non-programmers in image editors.

Acknowledgements

Brian Guenter originally suggested to us the idea of an optimizing compiler for

image processing, and has consulted on the project. Erik Meijer helped to sort out

the many representation possibilities and suggested the approach that we now use,

including the use of “phantom types”.

A Optimization example

To illustrate the compilation techniques described in this paper, figure A1 shows

snapshots of a sample animation whose specification and supporting definitions are

given in figure A 2.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 477

Fig. A 1. snapshots of swirlBoard, defined in figure A 2.

swirlBoard :: TimeE → ImageE ColorE

swirlBoard t = swirl (100 ∗ tan t) (checkerBoard 10 black white)

swirl :: Syntactic c ⇒ FloatE → ImageE c → ImageE c

swirl r im = im . swirlP r

checker :: ImageE BoolE — Unit square boolean checker board

checker = λ (x , y) → evenE (�x� + �y�)

checkerBoard :: FloatE → c → c → ImageE c

checkerBoard sqSize c1 c2 =

ustretch sqSize (cond checker (const c1) (const c2))

— Some useful Pan functions:

cond :: Syntactic a ⇒ BoolE → Exp a → Exp a → Exp a

cond = lift3 ifE — pointwise conditional

— uniform image stretch

ustretch :: Syntactic c ⇒ FloatE → ImageE c → ImageE c

ustretch s im = im . scale (1/s , 1/s)

Fig. A 2. Definitions for figure A 1.

As a building block, checker is a Boolean image that alternates between true and

false on a one-pixel checkerboard. The trick is to convert the pixel coordinates from

floating point to integer (using the floor function) and test whether the sum is even

or odd.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

478 C. Elliott et al.

λ t (panX , panY , zoom) (width , height) output →
loop height (λ j →

loop width (λ i →
let

a = 2 π / (100 ∗ sin t / cos t)

b = −(height ‘div ‘ 2)

c = zoom ∗ i2f (j + b) + panY

d = c ∗ c

e = −(width ‘div ‘ 2)

f = zoom ∗ i2f (i + e) + panX

g = sqrt (f ∗ f + d) ∗ a

h = sin g

k = cos g

m = 1 / 10

n = m ∗ (c ∗ k + f ∗ h)

p = m ∗ (f ∗ k − c ∗ h)

q = if (�p� + �n�) .&. 1 == 0 then

0

else

1
r = �q ∗ 255�
s = 0 <<< 8

u = output + 4 ∗ j ∗ width
in

setInt(u + 4 ∗ i)

(((s .|. r) <<< 8 .|. r) <<< 8 .|. r)))

Fig. A 3. Inlined, unoptimized code for figure A 2.

The checkerBoard image function takes a square size s and two values c1 and c2.

It chooses between the given values, depending on whether the input point, scaled

down by s falls into a true or false square of checker .

To finish the example, swirlBoard swirls a black and white checker board, using

the swirlP function defined in section 5.

As a relatively simple example of compilation, figure A 3 shows the result

of display swirlBoard after inlining definitions and performing CSE, but without

optimization.

Simplification involves application of a few dozen rewrite rules, together with

constant folding, if-floating, and code motion. The result for our example is shown

in figure A 4.

Note how the CSE, scalar hoisting, and array promotion have produced three

phases of computation. The first block is calculated once per frame of the displayed

animation, the second once per line, and the third once per pixel. As an example

of the potential benefit of AC-based code motion, note that in the definition of n

in figure A 4, the compiler failed to hoist the expression e ∗ 6.28319. The reason

is simply that the products are left-associated, so this hoisting candidate is not

recognized as a sub-expression.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 479

λ t (panX , panY , zoom) (width , height) output →
let

a = −(width ‘div ‘ 2)

b = mkArr width (λ c → zoom ∗ i2f (c + a) + panX)

d = −(height ‘div ‘ 2)

e = recip (sin t / cos t ∗ 100.0)
in

loop height (λ j →
let

f = j ∗ width

g = zoom ∗ i2f (j + d) + panY

h = g ∗ g
in

loop width (λ i →
let

k = (f + i) ∗ 4 + output

m = readArr b i

n = sqrt (m ∗ m + h) ∗ e ∗ 6.28319

p = sin n

q = cos n

r = g ∗ q + m ∗ p

s = m ∗ q + g ∗ −p
in

if (�s ∗ 0.1� + �r ∗ 0.1�) .&. 1 == 0 then

setInt k 0

else

setInt k 16777215))

Fig. A 4. Optimized version of code from figure A3.

References

Alstrup, S., Harel, D., Lauridsen, P. W. and Thorup, M. (1999) Dominators in linear time.

SICOMP: SIAM J. Comput. 28.

Appel, A. (1998) Modern Compiler Implementation in ML. Cambridge University Press.

Berlin, A. (1989) A compilation strategy for numerical programs based on partial evaluation.

Technical Report AITR-1144, Massachusetts Institute of Technology.

Berlin, A. and Weise, D. (1990) Compiling scientific code using partial evaluation. IEEE

Computer, 23(12), 25–37.

Bird, R. S. (1984) Using circular programs to eliminate multiple traversals of data. Acta

Informatica, 21(3), 239–250.

Boiten, E. A. (1992) Improving recursive functions by inverting the order of evaluation. Sci.

Comput. Program. 18(2), 139–179.

Chin, W. (1993) Towards an automated tupling strategy. Proceedings ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp. 119–132.

Claessen, K. and Sands, D. (1999) Observable sharing for functional circuit description. In:

Thiagarajan, P. S. and Yap, R., editors, Advances in Computing Science ASIAN’99; 5th

Asian Computing Science Conference: Lecture Notes in Computer Science 1742, pp. 62–73.

Springer-Verlag.

Danvy, O. (1998) Online type-directed partial evaluation. Third Fuji International Symposium

on Functional and Logic Programming, FLOPS ’98 Proceedings, pp. 271–295. World

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

480 C. Elliott et al.

Scientific. (Extended version at http://www.brics.dk/RS/97/Ref/BRICS-RS-97-Ref/-

BRICS-RS-97-Ref.html#BRICS-RS-97-53.)

Day, N. A., Lewis, J. R. and Cook, B. (1999) Symbolic simulation of microprocessor

models using type classes in Haskell. CHARME’99 poster session, Bad Herranald,

Germany. http://www.cse.ogi.edu/PacSoft/projects/Hawk/papers/sym sim.ps.

Companion tech report with details, examples, and Haskell code (OGI Technical

Report CSE-99-005), http://www.cse.ogi.edu/PacSoft/projects/Hawk/papers/-

tr99-005.ps.

de Moor, O. and Secher, J. P. (2001) Common subexpression elimination of conditional

expressions. Submitted.

de Moor, O. and Sittampalam, G. (1999) Generic program transformation.

Proceedings 3rd International Summer School on Advanced Functional Programming.

http://users.comlab.ox.ac.uk/oege.demoor/papers/braga.ps.gz.

Elliott, C. (1998) Functional implementations of continuous modeled animation. Proceedings

PLILP/ALP. Springer-Verlag.

Elliott, C. (1999) An embedded modeling language approach to interactive 3D and multimedia

animation. IEEE Trans. Softw. Eng. 25(3), 291–308.

Elliott, C. (2000) A Pan image gallery. http://research.microsoft.com/̃ conal/-

pan/Gallery.

Elliott, C. (2001) Functional image synthesis. In: Sarhangi, R. and Jablan, S.,

editors, Proceedings Bridges 2001, Mathematical Connections in Art, Music, and Science.

http://research.microsoft.com/̃ conal/papers/bridges2001. An extended version,

submitted for publication, is available as http://research.microsoft.com/̃ conal/-

papers/functional-images.

Frigo, M. (1999) A fast Fourier transform compiler. Proceedings ACM SIG-

PLAN ’99 Conference on Programming Language Design and Implementation, pp. 169–

180. http://www.acm.org/pubs/articles/proceedings/pldi/301618/p169-frigo/-

p169-frigo.pdf.

GHC Team The Glasgow Haskell compiler. http://haskell.org/ghc.

Harel, D. (1985) A linear time algorithm for finding dominators in flow graphs and related

problems. Proceedings 17th Annual ACM Symposium on Theory of Computing, pp. 185–194.

Harel, D. and Tarjan, R. E. (1984) Fast algorithms for finding nearest common ancestors.

SIAM J. Comput. 13(2), 338–355.

Hatcliff, J., Mogensen, T. and Thiemann, P. (editors) (1999) Partial Evaluation: Practice and

theory. Vol. 1706. Springer-Verlag.

Hudak, P. (1998) Modular domain specific languages and tools. In: Devanbu, P. and Poulin, J.,

editors, Proceedings: Fifth International Conference on Software Reuse, pp. 134–142. IEEE

Press.

Hudak, P. (2000) The Haskell School of Expression: Learning functional programming through

multimedia. Cambridge University Press.

Hudak, P. and Jones, M. P. (1994) Haskell vs. Ada vs. C++ vs. Awk vs. . . . an experiment in

software prototyping productivity. Technical report, Yale.

Johnsson, T. (1987) Attribute grammars as a functional programming paradigm. In: Kahn,

G., editor, Functional Programming Languages and Computer Architecture: Lecture Notes in

Computer Science 274, pp. 154–173. Springer-Verlag.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial evaluation and automatic

program generation. International Series in Computer Science: Prentice Hall International.

http://www.dina.kvl.dk/ sestoft/pebook/pebook.html.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

Compiling embedded languages 481

Kamin, S. (1996) Standard ML as a meta-programming language. Technical report,

University of Illinois at Urbana-Champaign. http://www-sal.cs.uiuc.edu/̃ kamin/-

pubs/ml-meta.ps.

Kamin, S. and Hyatt, D. (1997) A special-purpose language for picture-drawing. Proceedings

Conference on Domain-Specific Languages, pp. 297–310. http://www-sal.cs.uiuc.edu/-

k̃amin/fpic/doc/fpic-paper.ps.

Landin, P. J. (1966) The next 700 programming languages. Comm. ACM, 9(3), 157–164.

Launchbury, J. and Peyton Jones, S. L. (1994) Lazy functional state threads. Proceedings ACM

SIGPLAN ’94 Conference on Programming Language Design and Implementation, pp. 24–35.

Leijen, D. and Meijer, E. (1999) Domain specific embedded compilers. 2nd Conference on

Domain-Specific Languages (DSL), Austin, TX. http://www.cs.uu.nl/people/daan/-

papers/dsec.ps.

Pettorossi, A. (1984) Methodologies for transformations and memoing in applicative languages.

PhD thesis, University of Edinburgh, Scotland.

Peyton Jones, S., Jones, M. and Meijer, E. (1997) Type classes: exploring the design space.

Haskell workshop.

Rus, T. and Van Wyk, E. (1997) Model checking as a tool used by parallelizing compilers.

Proceedings 2nd Formal Methods for Parallel Processing: Theory and Applications.

Taha, W. and Sheard, T. (2000) MetaML: Multi-stage programming with explicit annotations.

Theor. Comput. Sci. 248(1-2).

Thiemann, P. and Sperber, M. (1997) Program generation with class. GI-Arbeitstagung

Programmiersprachen.

Veldhuizen, T. (1995) Expression templates. C++ Report, 7(5), 26–31. http://extreme.-

indiana.edu/̃ tveldhui/papers/pepm99.ps. Reprinted in C++ Gems, ed. Stanley

Lippman.

Veldhuizen, T. (1999) C++ templates as partial evaluation. Workshop on Partial Evaluation

and Semantics-based Program Manipulation (PEPM’99). http://extreme.indiana.edu/-

t̃veldhui/papers/pepm99.ps.

Weise, D., Conybeare, R., Ruf, E. and Seligman, S. (1991) Automatic online partial evaluation.

In: Hughes, R. J. M., editor, Functional Programming Languages and Computer Architecture:

Lecture Notes in Computer Science 523, pp. 165–191. Springer-Verlag.

https://doi.org/10.1017/S0956796802004574 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004574

