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Abstract

We study a typing scheme derived from a semantic situation where a single category possesses

several closed structures, corresponding to different varieties of function type. In this scheme

typing contexts are trees built from two (or more) binary combining operations, or in short,

bunches . Bunched typing and its logical counterpart, bunched implications, have arisen in

joint work of the author and David Pym. The present paper gives a basic account of the

type system, and then focusses on concrete models that illustrate how it may be understood

in terms of resource access and sharing. The most basic system has two context-combining

operations, and the structural rules of Weakening and Contraction are allowed for one

but not the other. This system includes a multiplicative, or substructural, function type −*
alongside the usual (additive) function type →; it is dubbed the αλ-calculus after its binders,

α for the αdditive binder and λ for the multiplicative, or λinear, binder. We show that the

features of this system are, in a sense, complementary to calculi based on linear logic; it

is incompatible with an interpretation where a multiplicative function uses its argument

once, but perfectly compatible with a reading based on sharing of resources. This sharing

interpretation is derived from syntactic control of interference, a type-theoretic method of

controlling sharing of storage, and we show how bunch-based management of Contraction

can be used to provide a more flexible type system for interference control.

Capsule Review

Since the appearance of linear logic, people have tried to devise ‘substructural’ type systems

that keep track of resource consumption and access. This paper explains that the intuitive

notions of ‘consumption’ and ‘access’ actually induce two different and incompatible type

systems. The former can be based in linear logic, while the latter should be based on

bunched logic, as described here. The result is a type system for static control of access (and

interference) that is close to computer science expectations.

1 Introduction

In most type systems the context Γ in a typing judgement Γ � M : B is represented

as a function from variables to types, or as a set or sequence of associations x : A

pairing identifiers with types. In this paper we study bunched typing , where the

contexts are trees built from two or more combining operations. So, for example,

we will have combining operations ‘,’ and ‘;’ which allow us to form contexts Γ,∆

and Γ; ∆, and we will be able to nest ‘,’ and ‘;’ as in
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x:A y:B

z:C

w:D;

,

,

The most promising possibility offered by bunched typing is that it gives us a

flexible way to mix together calculi that treat the structural rules of Contraction,

Weakening and Exchange in different ways; it is entirely possible to arrange matters

so that one of the combining forms admits a structural rule when the other does not.

Interest in such substructural type systems has arisen mainly as a result of work on

linear logic, which has provided a novel way of understanding the structural rules

in terms of duplication and consumption of data. We will show that bunched typing

offers a different perspective, with (perhaps) surprising consequences. We show that

the language we develop is even incompatible with a number-of-uses reading (which

is characteristic of linear typing). We will argue, instead, that it should be understood

in terms of sharing , rather than duplication: figuratively speaking, the bunch-based

approach to structural rules is about who has access to what, rather than the number

of times a piece of data is used.

Many variants on bunched typing are possible: the general case is to have

a number of combining operations, each of which admits some combination

of the structural rules, and perhaps with some interaction between the different

forms of combination. The more pressing question, however, is why one might

consider bunched typing at all, rather than what the general situation is. So, we

will concentrate for the most part on a basic variant, which has two forms of

combination, where ‘;’ admits all of the structural rules and ‘,’ admits Exchange

only. There is no interaction between the two forms of combination. We obtain a

calculus which combines simply-typed λ-calculus and a basic (multiplicative) linear

λ-calculus: it is dubbed the αλ-calculus after its binders, α for the αdditive binder

and λ for the multiplicative, or λinear, binder.

Bunched typing may be understood from several theoretical viewpoints – proof

theoretic, category theoretic, and semantic – and also from a specific application;

sharing of storage in imperative programs. These sources serve to reinforce one

another, and in next section we give an informal and leisurely survey of the

perspectives offered by them. Readers who prefer a less leisurely approach can

skip forward directly to the synopsis in section 2.5.

Bunched typing and its Curry–Howard cousin, the logic BI of bunched im-

plications, have been developed as part of joint work with David Pym; BI was

introduced in a short paper by the two of us in 1999 (O’Hearn & Pym, 1999). The

present paper gives a more detailed account of the type system, explaining how

is arises, and various of its properties, from a particular point of view based on a

‘sharing interpretation’ of connectives. This interpretation is suggested by Reynolds’s

‘Syntactic control of interference’ (Reynolds, 1978), one of the main precursors of
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this work. Pym separately gives a more foundational treatment of both the type

system and the logic (Pym, 2002).

Some of the material in this paper was presented, in preliminary form, in the 1999

TLCA conference (O’Hearn, 1999).

2 Routes to bunched typing

2.1 Sharing and contraction

The work reported in this paper arose originally from a failed attempt to reconcile

two substructural type systems, systems where the structural rule of Contraction is

restricted:

Γ, x : A, y : A � M : C

Γ, z : A � M[z/x, z/y] : C
Contraction.

The background is that in 1978 Reynolds proposed Syntactic Control of Interfer-

ence (SCI), a type theoretic method of controlling aliasing and other shared variable

interference in imperative programs (Reynolds, 1978). In contemporary terminology,

what Reynolds used was an affine λ-calculus, where Contraction is absent and where

the typing rule for function application requires that a procedure and its argument

have disjoint free identifiers:

Γ � M : A−* B ∆ � N : A

Γ,∆ � MN : B
.

To understand how SCI works, it is crucial to draw a distinction between the

notion of a variable, or identifier, and that of a storage cell or location that it might

denote. The central statement of imperative programming is the assignment x := e,

which overwrites the contents of a cell denoted by x. For example, a sequence of

assignment statements x := 1; y := 2 sets (the cell denoted by) x to 1 and y to 2 if

they denote different cells.

1 2

x y

But if x and y are aliased, which is to say denote the same cell, then the assignment to

y in x := 1; y := 2 destroys the value placed in the cell previously by assignment to x.

2

x y

To connect this discussion back to Contraction and function types, note that in

((λxλy . · · · x := 1; y := 2 · · · · · ·)z)z
if z denotes a cell, then that same cell will be passed to both x and y, resulting in

aliasing. To enable this passing of the same cell to both y and z we have to have

Contraction, either explicitly or as an admissible rule, to get two occurrences of z

in an application (Mz)z. From this we can see that banishing Contraction abolishes

aliasing, a basic example of sharing, at least in this example.
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Meanwhile, in 1987 Girard introduced Linear Logic (LL), a logic that controls

Contraction (Girard, 1987). When its logical rules are used to type λ-terms, linear

logic is evidently related to syntactic control. The typing rule for applying a linear

function is

Γ � M : A−◦B ∆ � N : A

Γ,∆ � MN : B

and there is no Contraction (or Weakening). Furthermore, in SCI the rule of Con-

traction is not abolished altogether, but is allowed under restricted circumstances,

for certain types that are labelled passive, and in linear typing Contraction is

reintroduced under the control of a modality, ‘!’.

Thus, there is a tantalizing formal similarity between SCI and linear logic. But

there is also a crucial conceptual difference: the reading of types, and resulting

rationale for controlling Contraction, is different in each case.

In SCI, the operative concept is sharing . This can be seen most clearly in the

reading of the function type.

A−* B: functions that don’t share storage with their arguments.

Under this reading Contraction is understood as allowing shared access to storage.

So limiting Contraction gives control over sharing.

In contrast, in LL the operative concepts are the number of uses of a datum, and

consumption .

A−◦B: functions that use their arguments exactly once.

The intuitive connection with consumption is that if a function uses its argument

once, then it may never do so again; so one thinks of a linear function as consuming

its argument. Under this reading Contraction is understood as duplicating a piece

of data, rather than sharing. So limiting Contraction gives control over the number

of times a piece of data can be used.

This conceptual discrepancy between LL and SCI was clear to the author in 1990

(O’Hearn, 1990; O’Hearn, 1991; O’Hearn, 1993), but there was a central question left

unresolved then: is the difference merely one of having two semantic interpretations

of the same system (say, LL), or is a separate formal structure appropriate to each?

Stated another way, does the distinction between copying and sharing have type

theoretic significance, or is this just a case of having two models, where the same

type theory is appropriate for both?

A hint of a possible way forward was contained in a curious property of models

that had been found for SCI in the early 1990s (O’Hearn, 1990; O’Hearn, 1993;

O’Hearn & Reddy, 1999), stated as follows in O’Hearn et al. (O’Hearn et al., 1999).

“The semantic model presented here possesses two kinds of exponential, one for the

monoidal closed structure, and another, adjoint to × for cartesian closed structure. This

raises the question of whether interference control and uncontrolled Algol can coexist

harmoniously in one system . . . An interesting point to note is that here the two kinds of

closed structure coexist in the same category, so there is no need to pass to a separate cate-

gory, such as a Kleisli category, to interpret the intuitionistic (i.e., Algol’s) function type.”
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Given the natural structure that exists in the models, we are lead to ask: what is

a typed λ-calculus corresponding to a category that admits two closed structures?

This question leads us to bunched typing.

2.2 From doubly-closed categories to bunches

To see how bunches arise categorically, consider that an introduction rule for a

function type typically corresponds to an adjunction. That is, a typing rule

Γ, x : A � M : B

Γ � λx .M : A ⇒ B

corresponds to an isomorphism of maps of the corresponding shape in a closed

category

Γ ⊗ A −→ B

Γ −→ (A ⇒ B)

Now, suppose that we have a doubly closed category , i.e. a single category equipped

with two monoidal closed structures instead of only one:

Γ ∧ A −→ B

Γ −→ (A → B)

Γ ∗ A −→ B

Γ −→ (A−* B)

To match this situation, we extend the syntax of typing contexts with an additional

combining operation, semi-colon, which allows us to formulate introduction rules

corresponding to the two adjunctions:

Γ; x : A � M : B

Γ � αx .M : A → B

Γ, x : A � M : B

Γ � λx .M : A−* B
.

This leads directly to the use of tree-like structures, or bunches, for typing contexts.

We consider several variants. In each, ‘;’ will admits structural rules of Weakening,

Contraction, and Exchange and so → will behave like the function type in simply-

typed λ-calculus or the implication in intuitionistic logic. The variants will arise by

disallowing some of the structural rules for ‘,’. In the basic case we consider ‘,’ will

have Exchange, but not Weakening or Contraction, and this corresponds to the

situation where ∗ is the tensor product of a symmetric monoidal structure.

Even at this preliminary stage, the categorical perspective allows us to crisply

state the formal difference between bunch-based control over structurals and that

obtained from linear logic, or linear typing. In models of linear logic two closed

categories are involved, where one is often presented as a Kleisli category (Seely,

1989; Benton et al., 1992; Benton, 1995; Barber & Plotkin, 1997). For instance, in

the original coherence space model there are indeed two function types, but −◦ is

closed structure in the category of linear maps, while the additive →, which can

be represented as !A−◦B, is closed for the category of stable maps. This does not

provide a model of bunched typing, because in a doubly closed category we ask that

the two closed structures reside in one and the same category.

Although theoretically clear, this categorical derivation of bunched structure is

purely formal and does not, by itself, tell us much about the character of the resulting

calculus; the view presented by categorical models is very abstract. More concretely,
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we have function types A−* B and A → B, and we should ask: for what kinds of

functions?

2.3 The sharing interpretation

The key to understanding the αλ-calculus is what we call the sharing interpretation .

The background idea is of functional programming data such as functions, pairs, etc,

but with an additional, intensional, notion of resources that computational entities

are allowed to access. By resource we mean physical resources in a computer system,

such as files, storage, or external devices. The reading of function types is as follows.

A−* B: functions that have access to disjoint resources from their arguments.
A → B: functions that have access to the same resources as their arguments.

Of course, the reading for −* is just the one mentioned above for SCI. The crucial

point is that this can happily coexist with a direct reading of the additive function

type.

Now, the bare statement of the interpretation is so direct that, at first glance, it

may seem as if it must amount to the same thing as resource interpretations for

other systems that control the structural rules. For, if we think of a context, roughly,

as corresponding to a collection of resources, then the use of separate contexts in

the elimination rule for the multiplicative function type −* directly expresses the

disjointness mentioned in the informal interpretation, and the use of a common

context in a rule for the additive corresponds to the sameness.

Γ � M : A−* B ∆ � N : A

Γ,∆ � MN : B
Γ � M : A → B Γ � N : A

Γ � M@N : B

However, there is an important point to notice: the reading places no constraint on

how many times a −* -typed function uses its argument, it just cannot use arguments

that share access to common resources. In fact, in section 3.2 we will see a derivation

of a multiplicative function that is compatible with the sharing reading, but that

uses its argument twice.

Variations on the sharing interpretation are possible. For example, in a non-

commutative situation there are two multiplicative function types, and the interpret-

ation works by introducing dependency between procedure and argument.

A •− B: functions that may depend on resources of their arguments (but not

vice versa).
A−• B: functions where the argument may depend upon resources accessed

by the function (but not vice versa).

This notion of dependency is intended to be spatial in nature. For example,

‘dependency’ could mean that a pointer can go from the area of the store referenced

by one datum to an area of store referenced by another.

2.4 Bunches in proof theory

The discussion so far has charted a latter-day route to bunches, emphasizing an

interplay between categorical properties and resource interpretations. Historically,
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bunches first arose in the 1970s for completely different reasons, as a result of a

problem in the proof theory of relevant logics (Dunn, 1986). Since then, bunches have

been a standard device used by relevantists’ (Belnap, 1982; Read, 1987; Schroeder-

Heister, 1991). (I am grateful to David Pym for making me aware of the relevant

work.) Other uses of bunched contexts include the mixed linear logic of Ruet &

Fages (Ruet & Fages, 1998), and the dependent linear type theory of Ishtiaq and

Pym (Ishtiaq & Pym, 1998).

The most famous property of relevant logics is their denial of Weakening

Γ � C
Γ, A � C

Weakening.

This denial is done in a bid to ensure that the premisses used in a proof are actually

relevant to the conclusion. The problem is that, if one simply removes Weakening

from standard sequent calculi, say for intuitionistic or classical logic, then some

other, intuitively reasonable, laws are blocked as well. Principal among these is the

law of distribution

A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C).

A standard sequent calculus proof uses Weakening in the top steps:

A � A
A,B � A

B � B
A,B � B

A,B � A ∧ B

A,B � (A ∧ B) ∨ (A ∧ C)

A � A
A,C � A

C � C
A,C � C

A,C � (A ∧ C)

A,C � (A ∧ B) ∨ (A ∧ C)

A, (B ∨ C) � (A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C).

And there is no other proof of distribution, if Weakening is simply omitted from

sequent calculi.

The most important relevant logics accept distribution for semantic reasons: if one

reads ∧ as ‘and’ and ∨ as ‘or’, then distribution must follow. To address the proof-

theoretic problem, of how to get distribution while restricting Weakening, novel

sequent calculi were formulated by Dunn & Minc (Dunn, 1986). In the notation of

the present paper, the ‘;’ form of combination admits

∆(Γ) � C

∆(Γ; Γ′) � C
Weakening

where Weakening for ‘;’ can occur anywhere in a bunch. Then, the rules for ∨ and ∧
mention ‘;’ but not ‘,’, and the proof just given for distribution goes through simply

by replacing ‘,’ with ‘;’.

The flexibility of the bunch-based approach to the structural rules comes about

from using one form of combination to describe rules for one collection of connect-

ives, and the other combination for different connectives. Thus, proof theoretically

the relevantists’ were able to cater for the different requirements of extensional , or

additive, connectives such as ∧ and ∨, and intensional , or multiplicative, connectives

such as fusion and relevant implication. For example, the right rules for the two
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conjunctions are

Γ � A ∆ � B
Γ; ∆ � A ∧ B

Γ � A ∆ � B
Γ,∆ � A ∗ B

Although these rules are identical in form, the prohibition of Weakening for ‘,’ means

that they have significantly different ramifications.

The categorical derivation of bunched structure we described earlier complements

the prior discovery of the relevantists’, but also provides a more theoretically cohesive

rationale for it. Whereas bunches can be used to deal with technical problems (such

as distribution), they are in a sense semantically inevitable from the point of view

of doubly closed categories.

2.5 Synopsis

In the next section we present a pared down form of bunched typing, where the

only type constructors are for function types. This function-only fragment is simple,

but also displays the most important and unusual consequences of the approach.

We make a comparison with linear typing, using a number of examples.

In section 4 we do some basic work, verifying preservation of typing under

substitution and reduction. We also spell out the interpretation of the system in its

categorical models.

We have discussed the sharing interpretation above, and we will use it to provide

intuitive justification for some of the examples treated in section 3.2. But the

interpretation is stated informally, and it is important to know that it is consistent

with bunched structure and doubly closed categories. We tackle this issue in section

5 by presenting several models, whose description reflects the informal interpretation

closely, while at the same time exhibiting doubly closed structure.

The central technique for linking the formal properties of bunched typing to

sharing is the spatial approach to possible world semantics (Reynolds, 1981; O’Hearn,

1993; O’Hearn et al., 1999; O’Hearn & Reynolds, 2000). In this approach, a world is

viewed as corresponding to an area of memory (or, more generally, to resource), and

the semantics of types and terms is parameterized by worlds. A semantic expression

describing the meaning of any given term will have several occurrences of possible

world parameters within it. The spatial intuition captured by this form of semantics is

that when two subexpressions of a semantic expression mention different worlds, the

subexpressions refer to separate areas of storage, and consequently don’t interfere.

The models in section 5 are stripped-down versions of spatial possible world models.

After describing further properties of the categorical models in section 6, we move

on in sections 7–10 to SCI. We show how the affine variant of the calculus (which

admits Weakening but not Contraction for ‘,’) can be used to resolve problems with

jumps and recursion in the original SCI. We use bunches to provide a flexible form

of interference control, where sharing constraints can be switched on and off as one

moves from more local to more global contexts.

To proceed with a minimum of distraction, in presenting this work we will

avoid detailed questions about the relation between syntax and semantics, questions

concerning coherence, completeness, and the like. We want to use the semantics

mainly as a means to expose surprising or interesting properties of the system. On
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one level this seems fair enough, as the calculus is very close to the models, being

derived from them. But a thorough analysis is crucial; this is provided in Pym’s

monograph (Pym, 2002). In any case, the presentation here will be self contained,

and is largely complementary to that given Pym (Pym, 2002), to which we refer for

material on completeness and coherence properties of the semantics.

3 Bunched typing

3.1 The basic system

The basic system is motivated by models as follows.

Definition 1

A cartesian doubly closed category , or cartesian dcc in short, is a category equipped

with two symmetric monoidal closed structures (I, ∗, −* ) and (1,∧,→), where 1,∧ is

cartesian.

We assume an unspecified collection of primitive types.

Types

A ::= ρ primitive types

| A−* A multiplicative function type

| A → A additive function type

Bunches

Γ ::= x : A identifier assumption

| I multiplicative unit

| Γ,Γ multiplicative combination

| 1 additive unit

| Γ; Γ additive combination

Bunches are subject to the restriction that no identifier may occur twice in the tree.

This restriction determines implicit side conditions on some of the rules below. We

write Γ(∆) to indicate a bunch in which ∆ appears as a subtree, and Γ(∆′) for the

similar tree where ∆′ replaces ∆. To describe Contraction below, we use i(Γ) to

denote the list of identifiers encountered one after the other in an inorder traversal

of the tree Γ. Γ ∼= ∆ indicates that Γ and ∆ are isomorphic as trees, i.e. one can be

obtained from the other by a suitable renaming of identifiers.

We won’t try to come up with a more compact representation of bunches using,

say, sets or sequences instead of binary operators: The real point of bunches is to

let us get the α- and λ-abstractions right. We use an equivalence on trees instead of

worrying about representation.

Coherent Equivalence: Γ ≡ Γ′.

≡ is the smallest equivalence relation on bunches satisfying

1 Commutative monoid equations for 1 and ;

2 Commutative monoid equations for I and ,

3 Congruence: if ∆ ≡ ∆′ then Γ(∆) ≡ Γ(∆′)
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Note that ‘;’ and ‘,’ do not distribute over one another.

Typing Judgements

These are of the form

Γ � M : A

where the terms M are defined in the following rules.

Identity and structure

x : A � x : A
Id

Γ � M : A
∆ � M : A

≡ (where ∆ ≡ Γ)

Γ(∆) � M : A

Γ(∆; ∆′) � M : A
W

Γ(∆; ∆′) � M : A

Γ(∆) � M[i(∆)/i(∆′)] : A
C (where ∆ ∼= ∆′)

Functions

Γ; x : A � M : B

Γ � αx .M : A → B
→ I

Γ � M : A → B ∆ � N : A
Γ; ∆ � M@N : B

→ E

Γ, x : A � M : B

Γ � λx .M : A−* B
−* I

Γ � M : A−* B ∆ � N : A

Γ,∆ � MN : B
−* E

In the C rule we are using a multi-nary form of substitution, where M[i(∆)/i(∆′)]

is M with each identifier in the list i(∆′) replaced by the identifier with the same list

index in i(∆).

The rules for −* and → are identical in form, but the connectives behave

differently because of the structural properties of ‘,’ and ‘;’. For example, a rule for

additive function application that shares contexts

Γ � M : A → B Γ � N : A
Γ � M@N : B

is derivable using Contraction (see section 3.4 for further discussion of this). The

corresponding rule for −* is not derivable.

To see how these rules are working, as a warming up example notice that, given

a judgement x : A � x : A, we cannot immediately use an introduction rule to type

an identity function of type A−* A or A → A. To apply an introduction rule for a

function type we must have a context of the form Γ, x : A or Γ; x : A. So we need

to use coherent equivalence first:

x : A � x : A
1; x : A � x : A

1 � αx . x : A → A

x : A � x : A
I, x : A � x : A

I � λx . x : A−* A

As a second example, using coherent equivalence we can also mimic the isomorph-

isms

[1, A → B] ∼= [A,B] ∼= [I, A−* B]

of hom sets in a dcc.

x : A � M : B
1; x : A � M : B

1 � αx .M : A → B

x : A � M : B
I, x : A � M : B

I � λx .M : A−* B
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1 � M : A → B x : A � x : A
1; x : A � M@x : B

x : A � M@x : B

I � M : A−* B x : A � x : A

I, x : A � Mx : B

x : A � Mx : B

These derivations may make the difference between −* and → appear rather

thin, but they only show that closed terms in different contexts of one function

type are convertible to the other. Furthermore, in αλ the putative judgements

A−* B � ? : A → B and A → B � ? : A−* B are not inhabited by any terms. We

confirm this in section 6.2, where we give a model (Example 13) in which there are

no maps between A−* B and A → B.

To see that Weakening for ‘,’ is not admissible in the calculus, simply note that

x : A � x : A is derivable but x : A, y : B � x : A is not. To see that Contraction for

‘,’ is not admissible, note that (f : A−* B; x : A), (f′ : A−* B; x′ : A) � fx′ : B is de-

rivable, while f : A−* B; x : A � fx : B is not. We will confirm the non-admissibility

of these rules by appealing to a semantic model in Remark 9 in section 5.1.

3.2 Unusual examples, and comparison to linear typing

The αλ-calculus allows for multiplicative functions that use their arguments many

times. For example, in the following, a variable abstracted using λ, the multiplicative

abstraction, appears multiple times in the body of the term.

...
x; f � f@x : A → B

...
x; f � x : A

x : A; f : A → A → B � (f@x)@x : B
C,→ E

x : A � αf . (f@x)@x : ((A → A → B) → B)
→ I

I, x : A � αf . (f@x)@x : ((A → A → B) → B)
≡

I � λx . αf . (f@x)@x : A−* ((A → A → B) → B)
−* I

Here, in the key, top-pictured, step we use the admissible rule for → elimination

(or equivalently we use → E followed by Contraction, with suitable renaming of

premises).

This term seems wrong if one thinks of a number-of-uses reading. But it is

justified by the sharing interpretation. To see why, consider that the subterm f@x

is of type A → B. According to the sharing interpretation, it is allowed to share

with its argument, in this case x, which is why (f@x)@x is reasonable. The sharing

interpretation would not support an application (fx)x where f had type A−* A−* B.

(It is important to realize that this term really is ‘using’ x twice. Suppose that A is in

fact a function type: if f is a function that accepts two functions, and applies them

to different arguments, then (f@x)@x would use x in two different ways.)

Similarly, we can have a multiplicative function that doesn’t use its argument at all.

y : B � y : B

x : A; y : B � y : B
W

x : A � (αy . y) : B → B
→ I

I, x : A � (αy . y) : B → B
≡

I � λx . (αy. y) : A−* (B → B)
−* I
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It is instructive to compare with the corresponding types in linear type theory. For

the first example, the type would be A−◦ !(!A−◦ !A−◦B)−◦B. In trying to derive a

term we could λ-abstract on x : A and function parameter f. But then, to apply (the

dereliction of) f to x, we would need to convert x to something of type !A, and we

cannot do a conversion from A to !A in general. Similarly, for the type A−◦ !B−◦B
we can abstract on x : A and y : !B, but we cannot throw x away.

What is happening here can perhaps be seen more clearly by reference to

Barber and Plotkin’s DILL system (Barber & Plotkin, 1997), which is a particular

formulation of linear typing, that admits a direct description of →. In Barber and

Plotkin’s setup, ‘;’ is used as a marker, between intuitionistic and linear zones, and

judgements are of the form Γ; ∆ � M : A. Here, intuitionistic zone Γ and linear zone

∆ are simply lists or sets, and the operative rules are

DILL Typing

Γ, x : A; � x : A
Id − Int

Γ; x : A � x : A
Id − Lin

Γ, x : A; ∆ � M : B

Γ; ∆ � αx .M : A → B
→ I

Γ; ∆ � M : A → B Γ; � N : A

Γ; ∆ � M@N : B
→ E

Γ; ∆, x : A � M : B

Γ; ∆ � λx .M : A−◦B −◦ I
Γ; ∆ � M : A−◦B Γ; ∆′ � N : A

Γ; ∆,∆′ � MN : B
−◦E

For the first of our unusual examples, the main point in DILL is that the linear

zone has to be empty in the argument of an additive application M@N. The reason,

then, that λx . αf . (f@x)@x is not typable in DILL is that x would have to be in

the linear zone, as it is abstracted using λ, so the elimination rule for → could not

be used. For the second example, in DILL the linear zone must be empty when

we introduce an identifier from the intuitionistic zone. As a result, λx . (αy. y) is not

typable, because x would have to be in the linear zone when y is introduced in the

body.

We have given terms for certain judgements in αλ that are not inhabited in linear

λ-calculi. Next, we give a judgement type that is inhabited in linear type systems,

and which is not in αλ.

In linear logic −◦ is convertible to →: we always have A−◦B � !A−◦B, using

dereliction. In DILL we can represent this with the judgement

; f : A−◦B � αx. fx : A → B

We use an empty intuitionistic context for comparison here, as to use the intuitionistic

zone would be tantamount to inserting an additional ‘!’. We remarked above that

−* is not convertible to → under bunched typing, but it is useful to see why this is

so. If we try to derive the corresponding judgement in αλ we get stuck:

???
f : A−* B; x : A � fx : A → B

f : A−* B � αx. fx : A → B
→ I
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The ??? here cannot be filled in, because under bunched typing f and x would have

to be separated using ‘,’ in order to use the −* E rule to apply the multiplicative

function f. That there is no term inhabiting a judgement of this form will be

verified in section 6.2, again by exhibiting a model where there are no maps of the

appropriate shape.

The discussion in this section shows that, in terms of inhabitation, αλ and linear

type systems are incomparable extensions of multiplicative and simply-typed λ-

calculi. Stated logically, intuitionistic linear logic (with ‘!’) and BI are incomparable

extensions of multiplicative intuitionistic linear logic and intuitionistic logic. More

importantly, each system has a conceptual justification for the point of view it takes

on these judgements where they differ. For linear typing, this is provided by the

number-of-uses reading, and also by the linear type structure of domain theory. For

bunched typing, this rationale is provided by the sharing interpretation.

3.3 Variants and extensions

Many variants of the basic system are possible; the general case is to have a number

of closed structures on a given category. There is no theoretical reason to stop at

two, and neither is there a technical reason why one of these structures should

be cartesian. But the main reason why bunches are interesting is that they give a

particularly simple way to combine a substructural system, which on its own would

be rather inexpressive, with a system of full strength additive connectives. By ‘full

strength’ we mean a function type or implication that is adjoint to a cartesian

product or conjunction.

We briefly mention two of the variants, one where the substructural fragment

is affine, and another that includes a non-commutative fragment. We also describe

rules for products.

Adding Products . We have considered the function-only fragment. The rules for

products, which internalize ‘,’ and ‘;’, are as follows.

Γ � M : A ∆ � N : B
Γ; ∆ � 〈M,N〉 : A ∧ B

∧I Γ � M : A1 ∧ A2

Γ � πi M : Ai
∧E (where i is 1 or 2)

Γ � M : A ∆ � N : B
Γ,∆ � M ∗ N : A ∗ B

∗I
Γ(x : A, y : B) � N : C ∆ � M : A ∗ B

Γ(∆) � let (x, y) = M inN : C
∗E

The full system of BI also contains units for these products, and coproducts

(O’Hearn & Pym, 1999). See Pym (Pym, 2002) for the corresponding term calculus

rules.

The Affine Variant . The affine variant arises semantically by demanding that the

units I and 1 be isomorphic. The models are affine dcc’s, which are cartesian dcc’s

where I is terminal.

The affine variant extends the basic calculus as follows.
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Affine Coherent Equivalence adds

4 I ≡ 1

to Coherent Equivalence.

Convertibility of ‘,’ to ‘;’

Γ(∆; ∆′) � M : A

Γ(∆,∆′) � M : A
Conv

Weakening for ‘,’ is derivable in the affine variant.

Γ(∆) � M : A

Γ(∆,∆′) � M : A
W,

A → B and A−* B are not convertible to one another in the basic αλ, but in the

affine variant we can go from the former to the latter.

f : A → B � f : A → B

f : A → B, x : A � f : A → B
W,

x′ : A � x′ : A
f′ : A → B, x′ : A � x′ : A

W,

(f : A → B, x : A) ; (f′ : A → B, x′ : A) � f@x′ : B
→ E

f : A → B, x : A � f@x : B
C

f : A → B � λ x. f@x : A−* B
−* I

An intuitive explanation of this conversion can be given in terms of syntactic

control of interference (see section 8.2). If f is a function that can be applied to any

argument, then we can also use it in a context where it is only applied to arguments

with which it doesn’t interfere.

A Non-commutative Variant . The non-commutative variant we consider combines

non-commutative, commutative, and intuitionistic fragments. A model is a single

category with: a monoidal biclosed structure; a symmetric monoidal closed structure;

a cartesian closed structure. (We decline to formulate an acronym.) The biclosed

part means that we have two function types •− and −• satisfying the isomorphisms

[B,A •− C] ∼= [A • B,C] ∼= [A,B −• C].

where • is the product of a (not necessarily symmetric) monoidal structure.

Syntactically, the bunches from the basic system are augmented by adding a new

unit and combination:

Γ ::=
... previous clauses

| J non-commutative unit

| Γ • Γ non-commutative combination

where for coherent equivalence we require

4 Monoid equations for J and •.

Notice that there is no commutativity. We can then add rules for the left-leaning

and right-leaning function types.
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x : A • Γ � M : B
Γ � λ•− x.M : A •− B

•− I
Γ � M : A •− B ∆ � N : A

∆ • Γ � MN : B
•− E

Γ • x : A � M : B
Γ � λ−• x.M : A−• B

−• I
Γ � M : A−• B ∆ � N : A

Γ • ∆ � MN : B
−• E

(We will not attempt to syntactically disambiguate the various forms of application.)

The way that this system mixes its three fragments is different from Polakow

and Pfenning’ (Polakow & Pfenning, 1999) three-zone, non-commutative variant of

DILL, similarly to how DILL and αλ are different, as discussed above. It appears

that models of their system can be given using three categories, with appropriate

mappings between them, just as DILL arises from models based on a pair of

categories.

The relationship to the system of Ruet & Fages (Ruet & Fages, 1998) (see also

Retoré (Retoré, 1995) and Reddy (Reddy, 1993)) is less obvious. Their system

uses bunches to combine two multiplicative fragments: the non-commutative and

the commutative. However, it does not use bunches to treat the additives, instead

relying on a modality as in linear logic. Also, their multiplicatives are classical, in

that there is a (dualizing) multiplicative negation. It appears that their system can

be modelled using two categories, one a ccc and the other a category possessing

simultaneously a monoidal biclosed structure and a (separate) symmetric monoidal

closed structure, and a dualizing object (with additional properties).

3.4 Explicit versus implicit structural rules

One might have expected a different formulation of αλ, where the rules of Weakening

and Contraction are removed, and the rules Id and → E are replaced with

Γ; x : A � x : A
Id, revised

Γ � M : A → B Γ � N : A
Γ � M@N : B

→ E, revised

These rules are derivable in the basic system. The revised rule for identifiers

follows from Id, using Weakening for ‘;’. And the revised rule for additive function

application follows from → E and Contraction.

Let us call this the implicit system . The simply-typed λ-calculus is usually presented

in this implicit fashion, where Weakening is implicit in the rule for identifiers, and

Contraction is implicit in the elimination rule for functions. This implicit approach

does not work correctly in αλ, owing to interactions between multiplicatives and

additives.

To see the problem, consider the judgement

(f : A−* B, x : A); z : C � fx : B

This is derivable in the basic system: first we derive f : A−* B, x : A � fx : B, and

then we use Weakening. But in the implicit system it cannot be derived, because

when we apply the elimination rule for −* we get a context of the form Γ,∆. And,

(f : A−* B, x : A); z : C is not equivalent to any bunch of the form Γ,∆, where f

appears in Γ and x in ∆. Since we can easily derive f : A−* B, x : A � fx : B in
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the implicit system, this shows that the implicit system does not admit Weakening

for ‘;’.

There is a similar problem with ∗. For, if we add the rules for ∗ to the implicit

system, then Contraction is not derivable. We may readily derive

(f : Z −* A ∗ B, z : Z); (f′ : Z −* A ∗ B, z′ : Z) � let (a, b) = fz in f′z′

but not

f : Z −* A ∗ B, z : Z � let (a, b) = fz in fz

There is the option of building Contraction into the elim rule for ∗, and Weakening

into the elim rule for −* , but this would be treating a symptom rather than a cause.

In the absence of a less unsightly solution, the formulation with explicit structural

rules is to be preferred.

4 Basic properties

Although the general idea of the αλ-calculus follows at once from doubly closed

categorical structure, the detailed formulation does not. We even saw at the end of

the previous section that it is entirely possible to formulate plausible-looking rules

that are not quite right. In this section we examine some basic properties of αλ,

concentrating on on the basic system from section 3.1. (We will not be ambitious

here; this material is of the initial sanity check variety, and one could go much

further.)

We first validate properties relating typing to substitution and reduction. Typing

and reduction are areas where substructural type systems, which are surprisingly

delicate, have encountered problems in the past, so it is appropriate that they

be explored early. We then spell out how the calculus can be interpreted in any

cartesian dcc.

4.1 Substitution and reduction

Before tackling reduction, we need that each of the introduction rules for function

types is reversible. This is a property we expect given the isomorphisms

[A ∗ B,C] ∼= [A,B −* C] [A ∧ B,C] ∼= [A,B → C]

in a dcc.

Lemma 2 (Reversibility)

The inverses of −* I and → I are admissible rules:

Γ � αx .M : A → B
Γ; x : A � M : B

Γ � λx .M : A−* B

Γ, x : A � M : B

Proof sketch

In each case a derivation of the premiss must end with an application of the

corresponding intro rule, followed by a sequence of applications of the structural

rules (W , C , ≡). The proof goes by induction on the length of this last part of the

derivation; all cases are straightforward. �
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Recall here that ‘admissibility’ means that if you can infer the judgement above

the line, then you can also infer the judgement below. This does not, however,

mean that there is a generic derivation from one to the other, and admissibility is a

property that is not preserved under extensions to a language.

The substitution lemma is formulated for identifiers appearing arbitrarily deeply

in a bunch.

Lemma 3 (Substitution lemma)

The following is an admissible rule:

Γ(x : A) � M : B ∆ � N : A

Γ(∆) � M[N/x] : B

Proof sketch

As usual, a multi-nary version is proven to get a strong enough induction hypothesis:

Γ(x1 : A1 | · · · | xm : Am) � M : B ∆1 � N1 : A1, . . . ,∆m � Nm : Am

Γ(∆1 | · · · | ∆m) � M[N1/x1, . . . , Nm/xm] : B

where Γ(∆1 | · · · | ∆m) indicates a bunch with multiple distinct sub-bunches.

The proof goes by induction on the derivation of Γ(x1 : A1 | · · · | xm : Am) � M : B,

where the multi-nary aspect is used to deal with the case of Contraction. �

The two kinds of function in αλ come associated with the usual reductions.

β-reductions η-reductions

(αx .M)@N � M[N/x] (αx .M@x) � M (x �∈ free(M))

(λx .M)N � M[N/x] (λx .Mx) � M (x �∈ free(M))

Proposition 4 (Subject reduction)

If Γ � M : A and M � N then Γ � N : A.

Proof

To prove the β case for λ, note that a derivation of Γ � (λx.M)N : A must end in

a use of −* E, followed by a number of applications of structural rules. The proof

goes by induction on the length of this sequence.

In the base case we have

Γ � (λx.M) : A−* B ∆ � N : A

Γ,∆ � (λx.M)N : B

as the last rule in the derivation. By the Reversibility Lemma we have Γ, x : A �
M : B and we can then use the instance

Γ, x : A � M : B ∆ � N : A

Γ,∆ � M[N/x] : B

of the substitution lemma.
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All other cases (C,≡,W ) are straightforward, with C using a typical commutativity

property of substitution.

The β law for → is similar, except that to handle the base case

Γ � (αx.M) : A → B ∆ � N : A

Γ; ∆ � (αx.M)@N : B

we use the instance

Γ; x : A � M : B ∆ � N : A

Γ; ∆ � M[N/x] : B

of the Substitution Lemma. Notice how the single, nested, formulation of the lemma

covers both “;” and “,” cases.

The proofs for η laws are straightforward, also relying on Reversibility. �

Finally, we remark that the strong normalization theorem for αλ does not require

any work on our part, because it follows at once from the corresponding result for

simply-typed λ-calculus.

Proposition 5 (Strong normalization)

There are no infinite reduction sequences, starting from any typable term.

Proof sketch

We can define a mapping of αλ into the simply-typed λ-calculus which sends both

→ and −* to the function type → of λ-calculus. Any reduction in αλ then induces a

reduction in λ-calculus, which is preserved by the mapping. There can therefore be no

infinite reduction sequences in αλ, or this would contradict the strong normalization

theorem of typed λ-calculus. �

4.2 Semantic interpretation

Suppose we are given a cartesian dcc. An interpretation of αλ specifies an object [[ρ]]

for each primitive type, which then extends to all types using the closed structures.

A bunch is interpreted by mapping ‘,’ to ∗, ‘;’ to ∧, and similarly for the units. Then,

for any proof π of a judgement Γ � M : A we can define a map

[[M]]π : [[Γ]] −→ [[A]]

by induction on π.

To describe the interpretation, if Γ(·) is a bunch with a hole, then it determines

a functor [[Γ]](·) on the dcc in question. When we write [[Γ]]([[∆]]) this indicates the

action of the functor on objects, and the occurrences of [[Γ]](contr) and [[Γ]](π1) in

the rules for Weakening and Contraction use the morphism part.
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Semantic Interpretation

id : [[A]] −→ [[A]]
Id

m : [[∆]] −→ [[A]]

i;m : [[∆]] −→ [[A]]
≡ (canonical i : [[∆]] −→ [[Γ]])

m : [[Γ]]([[∆]]) −→ [[A]]

([[Γ]](π1));m : [[Γ]]([[∆]] ∧ [[∆]]′) −→ [[A]]
W

(m : [[Γ]]([[∆]] ∧ [[∆]]′) −→ [[A]]

([[Γ]](contr));m : [[Γ]]([[∆]]) −→ [[A]]
C (where ∆ ∼= ∆′)

m : [[Γ]] ∧ [[A]] −→ [[B]]

m∗ : [[Γ]] −→ [[A]] → [[B]]
→ I

m : [[Γ]] −→ [[A]] → [[B]] n : [[Γ]] −→ [[A]]

m ∧ n; app→ : [[Γ]] −→ [[B]]
→ E

m : [[Γ]] ∗ [[A]] −→ [[B]]

m◦ : Γ −→ [[A]] −* [[B]]
−* I

m : [[Γ]] −→ [[A]] −* [[B]] n : [[∆]] −→ [[A]]

(m ∗ n); app−* : [[Γ]] ∗ [[∆]] −→ B
−* E

In the interpretations of Weakening and Contraction, π1 is the second projection

and contr is the doubling map 〈π1, π2〉 : [[∆]] −→ [[∆]]∧ [[∆]] associated with cartesian

structure. Note that [[∆]] and [[∆′]] are actually equal when ∆ and ∆′ are isomorphic;

so this semantic clause is type correct.

For the other rules, i is a canonical isomorphism; (·)∗ and (·)◦ are the isomorphisms

of hom sets obtained from the adjunctions for → and −* ; app→ and app−* are

the application maps obtained from the adjunctions; 〈m, n〉 is the pairing for the

cartesian product; m ∗ n is the action of the ∗ functor on morphisms.

There are two coherence issues worth mentioning here. The first concerns the

isomorphism i : [[∆]] −→ [[Γ]]. We intend that this is obtained from a proof that ∆ ≡
Γ using commutative monoid laws: any such proof determines an isomorphism, using

the coherent isomorphisms of symmetric monoidal categories (Mac Lane, 1971). We

claim that applications of symmetry morphisms are explicitly disambiguated by

the use of different identifiers for different types appearing in bunches, so that the

morphism i is unique. (This appears to follow from the usual coherence results for

symmetric monoidal categories, but we will not carry out a detailed proof.) In any

case, this coherence issue can often be sidestepped in specific models by using an

interpretation where equivalent bunches are semantically equal; an example will be

given in section 9.2.

The second coherence issue has to do with the order of application of the rules:

there can be different proofs π and π′ of the same judgement Γ � M : A, for instance

when a structural rule is applied before or after an elimination or intro rule. In this

situation we would like to know in such a situation that the two proofs determine

the same map [[M]]π = [[M]]π′ .

A detailed study of the connection between syntax and semantics would involve

a careful proof of coherence, together with soundness and completeness results

connecting syntactic equality with equality in the models. We avoid this here, and

instead refer the reader to Pym’s monograph for more information (Pym, 2002).

However, since we have established that any proof of a judgement Γ � M : A

determines a map from [[Γ]] to [[A]] in a cartesian dcc, we can use the following fact

with confidence (even prior to coherence or completeness issues).
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Lemma 6 (Inhabitation Lemma)

If there exists a cartesian dcc and interpretation of primitive types in which the hom

set [[[Γ]], [[A]]] is empty, then there can be no M with Γ � M : A in αλ.

5 Models for the sharing interpretation

Thus far, the sharing interpretation has been stated informally; in this section we give

three models corresponding to it. In the models for the basic and non-commutative

languages, we will give some somewhat lengthy examples, which show in some detail

how the interpretations of types work. Our reason for doing this is that we are

claiming that the sharing interpretation gives a consistent reading of bunched

typing; to understand the sense in which it does, we need to do more than merely

mention the models in passing. At the same time, though somewhat lengthy, these

examples stop well short of being ‘applications’.

An affine model is described briefly. A variant of it is developed more fully in

sections 7–10, when we consider SCI.

The models in this section are instances of an abstract construction due to Day

(Day, 1970), which shows how to obtain a monoidal biclosed structure on the functor

category SetCop

, starting from a ‘promonoidal’ structure on C. Combined with the

standard fact that SetCop

is cartesian closed, this construction gives us a host of

models for bunched typing.

We present the models here in an elementary fashion, using direct descriptions of

the dcc structure; it is not even necessary to know (or remember) the definitions

of cartesian closed structure in functor categories. In two of the three cases the

parametrizing category will just be a set, or a discrete category, and SetCop

= SetC

thus a product category. In the other case C is a poset. Our intention in doing

this is to use very concrete, and even simple-minded, models, in order to make the

connection back to sharing in a straightforward way.

5.1 Resource separation: the basic disjointness model

Let F denote the collection of finite subsets of a given infinite set Loc. We think of

an element X ∈ F as a possible world, that determines a finite collection of resources

or, more concretely, locations in computer memory. We will use the product category

SetF as a model of αλ. For an object A and element a ∈ AX, we regard a as a

computational entity that has access to X. The model in this section is for the basic

version of αλ described in section 3.1; we refer to it as the ‘basic disjointness model’.

The crucial operation on worlds is disjoint combination. It is a partial operation,

because we only combine those finite sets that are disjoint; intuitively, X∗Y indicates

separation, where the component worlds X and Y determine distinct resources.

X ∗ Y = X ∪ Y ,when X ∩ Y = {};
X ∗ Y = undefined,when X ∩ Y �= {}.

This definition makes F, {}, ∗ a partial commutative monoid. This means that the

commutative monoid laws hold up to an equivalence e � e′ on expressions built

using ∗ which says that both sides are defined and equal or both undefined.
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The cartesian closed structure in SetF is determined pointwise.

(A → B)X = AX ⇒ BX

(A ∧ B)X = Ax × BX

1X = {a}

Here, ⇒ and × are function space and product in Set.

Notice how the pointwise definition of → corresponds closely to the informal

reading in the sharing interpretation, where an additive function and its argument

have access to the same resources. The additive function type has a strongly local

character, where an application of a function stays located at a given world.

To describe the multiplicative function type, we use a multiplicative form of

indexed product. If A(X,Y ) is an expression (in the metalanguage) containing

parameters X,Y for distinct worlds, then

ΠY #A(X,Y )

is the product, indexed over finite sets disjoint from X. To be precise, an element

is a function that accepts a world Y disjoint from X and produces an element of

A(X,Y ). We often refer to the Y parameter as being ‘fresh’, to briefly indicate its

disjointness from X.

The multiplicative function type then quantifies over fresh worlds.

(A−* B)X = ΠY #A(Y ) ⇒ B(X ∗ Y )

Because of the disjointness requirement on ΠY #, the X ∗ Y component in this

expression is always defined.

In this definition the absence of X in A(Y ) mirrors the informal description of

multiplicative functions as disjoint from their arguments. An element p ∈ (A−* B)X

accepts fresh world Y and element a ∈ AY as arguments, and produces p[Y ]a ∈

B(X ∗Y ): The ‘resources’ for p are X, while those for a are Y , and these are separate

in the result type by virtue of their positions in the combined world X ∗ Y . This

illustrates the spatial way of reading the semantic expressions referred to in the

Introduction.

We give an example to further illustrate the sharing aspect. Consider the inclusion

L : F −→ Set. For each finite set X, we think of LX = X as a set of names,

or locations. Let N be the constant object, which is the natural numbers at every

component, and define

S = L → (1 ∨ (N ∧ L))

where ∨ is the pointwise-defined coproduct. Because of the pointwise definition of

→ we have that SX = X ⇒ {a} + (N × X). We regard an element s ∈ SX as a

representation of a portion of a computer store, where each x ∈ X is a pointer to a

linked list (possibly with loops).

Now consider any function f ∈ ((S∧L) → ((S∧L) −* S))X. f accepts (s, x) ∈ SX×X

and (s′, y) ∈ SY × Y , for fresh finite set Y , as arguments, and produces a state in

S(X ∗ Y ) as a final result. From the point of view of S(X ∗ Y ), there is no overlap

between x and y, or between the other pointers in the list pointed to by x and those
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pointed to by y. Thus, we can view f as a procedure that accepts two linked lists

as arguments, with the proviso that the two input lists are defined using disjoint

collections of pointers. This kind of proviso is often required in the statement of

correctness of an algorithm that, say, removes the elements of one list that appear

in the other.

On the other hand, consider the type L → (L−* (S → S)). A function of this

type would accept two pointers to linked lists as arguments, and the two pointer

arguments would again have to be distinct, but now they could point to lists that

overlap in the store.

No particular practical significance is claimed for this example; it is offered just

as an illustration of how −* and → can express sharing properties.

In this model the multiplicative unit is I where I({}) = {∗}, and I(X) = {} for all

other X.

Before defining ∗ it is useful to observe that a multi-map characterization of

maps out of A ∗ B is forced by the definition of −* . That is, if we are to have the

isomorphism SetF[A ∗ B,C] ∼= SetF[A,B −* C], then we must obtain the following.

Maps p : A ∗ B −→ C out of a tensor are in bijection with families of functions

p[X][Y ] : AX × BY −→ C(X ∗ Y ),

indexed over disjoint finite sets X and Y .

The idea in terms of sharing is that the components of ∗ are assigned different

resources (this is in line with the form of semantics devised by Reynolds for

syntactic control of interference (O’Hearn & Reynolds, 2000)).

Given this characterization, we can give a simple description of the application

map app−* : (A−* B) ∗ A −→ B. It is nothing other than

app−* [X][Y ]〈p, a〉 = p[Y ]a.

Also, the exponential transpose, which takes m : A ∗B −→ C to m◦ : A −→ (B −* C)

is just

m◦[X]a[Y ]b = m[X][Y ]〈a, b〉.
The actual definition of ∗ is straightforward:

(A ∗ B)X = {Y ,Z, a ∈ AY , b ∈ BZ | Y ∗ Z = X}

Here, the condition Y ∗ Z = X requires that Y ∗ Z be defined; so an element of

(A ∗ B)X consists of a splitting of the current world, together with two entities of

types A and B having access to the respective components of the splitting.

The application and exponentiation maps for → are immediate, given the point-

wise definition of →. All told, we have all of the structure necessary to model αλ.

Proposition 7

SetF is a cartesian dcc.

From the point of view of this model the judgement

I � λx . αf . (f@x)@x : A−* ((A → A → B) → B)
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from section 3.2 is utterly unsurprising. It determines an element p ∈ A−* ((A →
A → B) → B){} (where we indulge in a confusion between types and objects in

SetF). This function p accepts a fresh world X and a ∈ AX, and produces a function

p[X]a ∈ ((A → A → B) → B)X. By the pointwise definition of →, this is a function

of type (AX ⇒ AX ⇒ BX) ⇒ BX in Set, and it is the expected function that maps

f to (fa)a.

Remark 8

A broadly similar development can also be carried out in SetB, where B is the

category of finite sets and bijections. In this category, we model disjointness using

the (total) operation + on finite sets which takes disjoint union by tagging its

components. For this to work, however, the use of non-identity bijections is crucial:

it gives rise to associativity, unity and symmetry isomorphisms that make ({},+)

a symmetric monoidal structure on B. We could not use F with +, because F
is a discrete category, and does not have the morphisms needed to make ({},+)

monoidal on that category.

Remark 9

It is important to see that there is no hidden Weakening or Contraction for ‘,’ lurking

in the examples of terms that use their arguments two or zero times. In fact, we can

see that these rules are absent SetF in a very strong sense; there are not even any

candidate maps of the required types to model them, let alone maps with the proper

properties.

To model Contraction we would need maps of shape A −→ A ∗ A. But there are

no maps L −→ L ∗ L, where L is the inclusion from F to Set. To see why, given

a ∈ L{a} we would have to produce an element in (L ∗ L){a}, but this set is empty.

The reason is that if X ∗ Y = {a} then either X or Y must be {} and so, by the

definition of ∗, a tuple in (L ∗ L){a} would have to identify an element of L{}. But

L{} is empty so there can be no such tuple.

To model Weakening, we would need maps A −→ I , for all A. But there are no

maps 1 −→ I .

These remarks confirm the non-admissibility of Weakening and Contraction for

‘,’ referred to in section 3.1.

5.2 An affine model

Strictly speaking, the sharing interpretation is stated as for the basic version of αλ.

The reading for the affine variant, which admits Weakening for the multiplicative

combination ‘,’, is obtained by changing the interpretation of the additive function

type to say that functions may share resources with their arguments.

Let FS (for F-sub) denote the poset whose elements are the same as F,

and whose objects are ordered by subset inclusion. We will use the functor category

SetFS. The ∗ operation on worlds from the previous subsection satisfies the following

monotonicity property: if if X ∗ Y is defined, and Z � Y , then Z ∗ Y is defined

and X ∗ Z ⊆ Y . In this sense, ∗ gives FS the structure of an ordered partial

commutative monoid.
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The first modification that needs to be made to the basic disjointness model is

in the additive function type. There is a general formula for this type in a functor

category, but it will be useful to adopt a special representation, which is tuned to

the properties of FS.

Specifically, if X ⊆ Z then there is a unique Y such that X∗Y = Z . This allows us

to quantify only over sets disjoint from the current world when defining →, instead

of over all supersets of it.

(A → B)(X) = ΠY #A(X ∗ Y ) ⇒ B(X ∗ Y ), natural in Y .

Here, the notation ΠY # is the multiplicative indexed product defined in the last

subsection. Naturality in Y means that the equality p[Z](A(X ∗ Y ⊆ X ∗ Z)a) =

A(X ∗ Y ⊆ X ∗ Z)(p[Y ]a) holds when Z ⊇ Y is disjoint from X.

We think of the presence of X in the argument type A(X ∗ Y ) as indicating the

possibility of sharing between procedure and argument. Notice, however, that by

use of subset inclusion an element p ∈ (A → B)X can actually be applied to an

element that ‘comes from’ a world where X is not present, such as p[Y ]a where

a = A(Y ⊆ X ∗ Y )a′ for some a′ ∈ AY . So we regard the formula for the additive

type as saying that the procedure may share with its argument.

The definition of the morphism part of A → B is essentially as in section 9.1.

The multiplicative function type has the same definition as before, with naturality

added:

(A−* B)X = ΠY #A(Y ) ⇒ B(X ∗ Y ), natural in Y .

Recall the judgement f : A → B � λ x. f@x : A−* B, that converts an additive to

a multiplicative function in the affine language. In this model the conversion takes

a natural transformation A(X + –) −→ B(X + –) and composes on the left with the

map A −→ A(X +–) that sends a ∈ AY to A(inr)a ∈ A(X +Y ), where inr is the right

injection. Here, an additive function in world X is applied to an argument a ∈ AY

that doesn’t happen to depend on X.

To complete the definition of the model we must define A ∗ B for functors A and

B. First we set up a preorder.

• Elements: tuples 〈Y ,Z, a ∈ AY , b ∈ BZ〉 where Y ∗Z is defined and Y ∗Z ⊆ X.

• Order: 〈Y ,Z, a ∈ AY , b ∈ BZ〉 � 〈Y ′, Z ′, a′ ∈ AY ′, b′ ∈ BZ ′〉 if Y ⊆ Y ′, Z ⊆ Z ′,

a′ = A(Y ⊆ Y ′)a and b′ = B(Z ⊆ Z ′)b.

Two tuples are then declared equivalent if they have a common parent under this

order. Writing [·] for equivalence classes,

(A ∗ B)X = {[〈Y ,Z, a ∈ AY , b ∈ BZ〉] | Y ∗ Z is defined and Y ∗ Z ⊆ X}.

This definition is complex, but is just an instance of Day’s tensor product, which

can be described compactly using a coend formula:

(A ∗ B)X =

∫ Y ,Z

AY × BZ × C[X,Y ∗ Z].

The unit of ∗ is the terminal object 1, where 1X = {a} is constantly the one-point

set, and so the model validates Weakening.

https://doi.org/10.1017/S0956796802004495 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004495


On bunched typing 771

Fact 10

SetFS is an affine dcc.

Comparing to the work in the previous section, we can try to use the inclusion

functor L : I −→ Set as a variant on the functor used to illustrate the sharing

interpretation. But L has something of a different character in the affine model. It

would not be as reasonable to think of s ∈ (L → (1∨ (N ∧L)))X as a state, because s

would have to accept other worlds Y , and potentially y ∈ LY , as arguments. So the

development above, for the basic disjointness model, does not carry through well to

the affine case. However, a thorough account of the sharing aspect of a variant of

the affine model is given later, in the context of SCI.

5.3 A non-commutative model

In the non-commutative model the commutative multiplicatives ∗ and −* will

continue to express absence of sharing. To this we add non-commutative operators

•, •− and −• which express a directional form of sharing.

Let W denote the set of binary relations X ⊆ Loc × Loc, for a fixed set Loc.

A relation describes a constraint on the shape of the computer store, where �X�′

means that there can be a pointer from � to �′.

The non-commutative product of worlds, X • Y , will describe a situation where

there can be pointers from (the domain of) Y back into X, but not vice versa. To

describe this we make two definitions:

– domX = {� | ∃�′. �X�′} is the domain of relation X;

– X � Y holds just if domX ∩ domY = {} and �X�′ ⇒ �′ �∈ domY .

When X � Y holds, the union of relations X and Y allows � and �′ to be related,

where � ∈ domY and �′ ∈ domX, but not the converse. This leads us to

– X • Y = X ∪ Y , when X � Y ;

– X • Y = undefined, when ¬(X � Y ).

There are two natural choices for the commutative product ∗.

1. Shallow Non-interference: X ∗ Y = X ∪ Y , when domX ∩ domY = {}.
2. Deep Non-interference: X ∗ Y = X ∪ Y , when (domX ∪ codX) ∩ (domY ∪

codY ) = {}.

In either case (with the operation undefined in other cases), we obtain that (W, I, ∗)

is a partial commutative monoid. (We resist the temptation to formulate a language

with two separate commutative monoidal fragments.)

The definitions of −* and ∗ in SetW are similar to the ones in the basic disjointness

model, and omitted.

To describe the non-commutative function types, we first define a non-commutative,

multiplicative indexed product in the metalanguage. If A(X,Y ) is an expression

containing parameters X,Y for worlds, where X � Y , then

ΠY � A(X,Y )
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is the product, indexed over worlds �-related to Y . That is, an element is a function

that accepts a world Y where X � Y holds, and produces an element of A(X,Y ).

Similarly, an element of

ΠX � A(X,Y )

is a function that accepts a world X where X � Y and produces an element of

A(X,Y ).

Then the two function types are:

(A •− B)X = ΠY � A(Y ) ⇒ B(Y • X)

(A−• B)X = ΠY � A(Y ) ⇒ B(X • Y ).

For •,

(A • B)X = {Y ,Z, a ∈ AY , b ∈ BZ | Y • Z = X}.
As in the basic disjointness model there multi-map characterization of maps out of

A •B, except that the characterization for • works with pairs of world subject to the

constraint that X � Y ; the application and transpose maps are also straightforward.

So we state:

Proposition 11

SetW is a model of the non-commutative variant: It is

1. monoidal biclosed (•, •− , −• ),

2. symmetric monoidal closed (∗, −* ), and

3. cartesian closed (∧,→).).

(The cartesian closed structure is inherited pointwise from Set.)

The connection between the sharing interpretation and the definitions of −* and

→ established in the discussion of the disjointness model go through just as well

for the model of this section; so we concentrate on the directionality of sharing

expressible using the non-commutative operators. (We stress that it is important

that this reading does not invalidate that for the other connectives, especially the

reading for the additive →.)

First, we define states similarly as in the disjointness model, but with two

differences.

SX = {s ∈ domX → ({a} ∨ (N ∧ Loc)) | s� = 〈n, �′〉 implies �X�′}.

The first difference is the use of the constraint �X�′ determined by the relation: the

store must be compatible with the given store shape.

The second difference is that locations in the domain and range of a state s are

treated differently, because the former must be in domX while the latter are taken

from all locations. We think of domX as the collection of known or active locations

at a given world. The use of Loc enables a situation where one location points to

another, where that other’s contents is unknown: we have dangling references. For

example, in the world {〈�, �′〉} the store [� �→ 〈3, �′〉] is valid, where we do not know

what �′ points to.
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Dangling references play a crucial role in the treatment of •. For example, in the

composite world Z = Y • {〈�, �′〉} we use the dangling reference �′ in {〈�, �′〉} to

“reach back” into Y . In this composite world there cannot be any pairs of the form

〈�′′, �〉, so in a state s ∈ SZ there cannot be any pointers into �. In particular, � can

be the head of a linked list, but not a non-head node.

Now we want to see how the non-commutative function types work in this model.

Recall the sharing interpretation for −• :

A−• B: functions where the argument may depend on resources accessed by

the function (but not vice versa).

To make this concrete we work with an object of cells, as well as with states.

Since we regard the domain of a relation as the collection of known cells, we set

cellX = domX (and cell⊥ = {}).
We are going to describe a map

stack-alloc : (cell −• (S → S)) −→ (S → S)

where stack-alloc(λ−• x.C)

– allocates a new location, initializes it to a, and binds it to x;

– executes C;

– de-allocates the new location on block exit.

This may seem surprising, since in the presence of pointers stack allocation is not

generally possible. For, if you allocate a pointer, and make some other pointer

point to it, then the new pointer cannot be deallocated without creating a dangling

reference. (And dangling references are a rich source of program errors.)

Ultimately, this works because the right-leaning function type allows us to express

a kind of dependency: x may point to other, older, pointers but not the reverse.

Thus, deallocating x on block exit will not create any dangling pointers. And, if we

know that C does not itself create a dangling pointer – say, if there are no facilities

for freeing or disposing a pointer in the language – then this form of stack allocation

of pointers will be completely safe.

To nail this down, first note that a function f ∈ (cell −• (S → S))X will accept a

world Y and cell � and then give us back

f[Y ]� : S(X • Y ) −→ S(X • Y )

What we need to do is choose � to be a new location: then the definition of • will

ensure that � cannot be pointed to from X. We also need to choose the relational

constraint for Y , and for this it makes sense to let � point to anything in X.

To formalize this discussion we require:

– a location newloc(X) �∈ domX.

This location can be chosen using some enumeration of Loc. Next, we define

– newworld(X) = {〈newloc(X), �〉 | � ∈ domX ∨ � = newloc(X)}.
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The composite world X • newworld(X) describes a situation where a new location

can point to locations in X, but not conversely. Then

stack-alloc[X]fs = chop(f[newworld(X)]newloc(X) [s | newloc(X) �→ a]

where chop takes a state in X •newworld(X) and removes newloc(X) from its domain,

giving us a state in X. This chopping operation does not create any new dangling

references; in particular, if there is no dangling in s′, then there will be none in

chop(s′). The point here is that the final state must obey the constraint described by

X •newworld(X). The directional sharing information expressed by −• and • should

be clear from this example.

On the other hand, suppose we were to try the same thing with •−

(cell •− (S → S)) −→ (S → S)

Then we could make the same definition as above, by redefining newworld(X) it

could not point into X) and using newworld(X) • X. But then we would no longer

be guaranteed of safety of deallocation, because chopping the new location could

create a dangling reference.

As before, no particular practical significance is claimed for this example: To go

further one would want to allow some form of heap allocation, or one might even

regard the elements of worlds as regions rather than single locations.

6 More on categorical models

In this section we look more closely at some properties of the categorical models.

The reader who is more interested in seeing αλ in action can safely skip forward to

the next section.

6.1 An obstruction

Although −* and → are not in general convertible to one another, the dcc

isomorphisms

[1, A → B] ∼= C[A,B] ∼= [I, A−* B]

do place a demand on non-degenerate models. We can make this precise by

establishing an obstacle to the existence of non-degenerate dcc’s, which rules out

categories such as Set or the category of predomains. To state this, recall that a

category with a terminal object is well pointed if for any parallel maps f, g : X → Y

there is e : 1 → X such that e; f �= e; g.

Proposition 12

If a cartesian dcc is well pointed then it is degenerate in at least one of the following

two senses:

(a) it is a preorder (at most one map in any hom set), or

(b) the units 1 and I of the monoidal structures coincide (up to isomorphism).
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Proof

Suppose C well pointed and not a preorder. We show that that I ∼= 1.

To see that I is weakly terminal, since C is not a preorder there are two unequal

maps A −→ B for some A and B. By adjointness we obtain two maps I −→ A−* B

which, by well pointedness, can be distinguished by a map 1 −→ I . For any object

D we can compose that map with D −→ 1, thus showing that I is weakly terminal.

For uniqueness of the map D −→ I we make use of the following two facts.

(i) If C is a well pointed category then there is only one natural endomorphism

on the identity functor idC : C −→ C (Freyd et al., 1999) .

(ii) If (C, ∗, I) is a monoidal category then there is an injective function from

C[I, I] into CC[idC, idC] (Foltz et al., 1980).

It follows that the identity is the only endomorphism on I in C. Now, suppose

(toward contradiction) that there are two maps D −→ I . Then there would be a

map 1 −→ D distinguishing them by well pointedness, and composing gives us two

maps f, g : 1 −→ I . By well pointedness we know that C is equivalent to a (not

necessarily full) subcategory of Set, the category of its points (whose objects are

hom sets C[1, A]), where 1 corresponds to a one-point set. From this it is evident

that composing on the left with the unique map h : I −→ 1 we obtain two different

endomorphisms (h; f) �= (h; g) : I −→ I . But we saw above that there could only be

one such endomorphism, so we obtain a contradiction. So there can be at most one

map D −→ I , and thus I is terminal and isomorphic to 1. �

A preliminary version of this paper (from October 1997) contained the erroneous

claim that in a well-pointed dcc ∗ and −* would collapse to ∧ and → as well.

However, Martin Hofmann has constructed well-pointed affine dcc’s in which the

products and function types are indeed distinct (Hofmann, 1999).

Nonetheless, the proposition does establish an obstacle to the search for models by

a number of standard techniques. For example, realizability models are often given

using partial equivalence relations over a partial combinatory algebra; the maps

are those functions on equivalences classes that can be tracked by an element in

the algebra. However, such categories are well pointed, so this construction cannot

be immediately used to give non-degenerate realizability models of αλ. Indeed, the

problem of finding a convincing realizability interpretation of αλ remains open.

6.2 Other models

Our first example is degenerate, in that it is a poset (and even a boolean algebra).

Example 13

Consider the two-element boolean algebra B = {f, t}. It can be viewed as a

degenerate (posetal) ccc, where f � t, 1 = t and ∧ and → are given by the truth

tables for conjunction and implication. The product poset B × B inherits this ccc

structure in a pointwise fashion, and it has symmetric monoidal closed structure
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given by

I = (t, f)

(A0, A1) ∗ (B0, B1) = ((A0 ∧ B0) ∨ (A1 ∧ B1) , (A0 ∧ B1) ∨ (A1 ∧ B0)

(A0, A1) −* (B0, B1) = ((A0 → B0) ∧ (A1 → B1) ,

(A0 → B1) ∧ (A1 → B0))

Coproduct structure is given by join in B × B.

We can use this model to confirm the remark from section 3.2 that −* and

→ are not convertible to one another in the αλ-calculus. To see this, note that

((f, t) → (t, f)) = (t, f) and ((f, t) −* (t, f)) = (f, t). This, combined with the fact

that there are no maps between (f, t) and (t, f) in either direction, implies that there

are no maps from ((f, t) → (t, f)) to ((f, t) −* (t, f)) or back. �

A number of other naturally occurring examples arise from Day’s construc-

tion, including higher-dimensional automata (Goubault, 1995), complexity models

(Hofmann, 1999), and logical interpretations which can be viewed as posetal dcc’s

(Cardelli & Gordon, 2000; Ishtiaq & O’Hearn, 2001).

A final example is given by the category Cat of small categories.

Example 14

Cat is cartesian closed, with product of categories and the one object category

giving finite products and the functor category AB giving the additive exponent.

Cat also has another closed structure, where A−* B is the category whose objects

are functors and whose morphisms are ‘transformations’, i.e. families of maps but

without naturality constraints. The symmetric monoidal structure is given by Gray’s

tensor product (Gray, 1974) with the one object category as unit. So Cat is an affine,

bicartesian dcc. These are the only symmetric monoidal closed structures on Cat

(Foltz et al., 1980). �

6.3 On Adding ‘!’ to αλ, or BI

In section 3.2 we showed how αλ and linear λ-calculi mix additive and multiplicative

function types in a fundamentally different way. In this section we would like to

probe this issue further by asking: what happens if we add ‘!’ to αλ? To study this

question we will not formulate explicit syntactic rules for ‘!’, but rather will work

exclusively at the semantic level. Also, we will consider models that include coproduct

types, so will work with bicartesian dcc’s (cartesian dcc’s that have coproducts).

We have two reasons for asking this question. First, it further illuminates the

differences between the two systems. Secondly, it is a first step towards understanding

whether it is possible to have a type system that combines the merits of linear and

bunched typing.

We begin by noting a basic fact.

Proposition 15

There is model of αλ for which the decomposition !A−* B ∼= A → B is impossible.

That is, there is no functor ‘!’ which can decompose the additive function type into

the multiplicative one, in that specific model.
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Proof

Consider the affine model from Section 5.2. We claim that there is no functor (or

even function on objects) ! : SetI → SetI admitting !A−* B ∼= A → B. To see

why, consider the constant functor 2 which delivers the two element set {t, f}. Then

(A−* 2)X = SetI[A, 2(X + –)] = SetI[A, 2]

is independent of X, and so A−* 2 is a constant functor. On the other hand,

(A → 2)X = SetI[A(X + –), 2] depends upon X, and is not necessarily (isomorphic

to) a constant functor. For instance, if L is the inclusion functor from I into Set, then

(L → 2){} has two elements, corresponding to the two constant functions into {t, f}.
But, (L → 2){a, b} has elements that are not in the range of (L → 2)(f : {} ↪→ {a, b}).
One such maps a to t and b to f (and all other inputs to, say, f). Therefore, no

matter what ‘!’ we try to pick, !L−* 2 will be a constant functor, while L → 2 is

not, so they cannot be isomorphic. �

To the categorically-inclined reader this result will not be a surprise. But it does

underline the fact that a dcc is not simply a model of linear logic in disguise.

In fact, we have yet to find an interesting model of αλ that does admit such a

decomposition. This is not an obstacle to the existence of some ‘!’ satisfying the

required properties for linear logic. It just shows that, in general, we cannot expect

such a ‘!’ to decompose the additive function type that exists in the αλ model.

This leaves open the possibility, then, of having a category that is simultaneously

a model of αλ and a model of linear logic. Here, we will take ‘model of linear logic’

to mean a monoidal closed category, with products and coproducts, and equipped

with a ‘monoidal comonad’; these are the models of intuitionistic linear logic, as

presented in Bierman (Bierman, 1995). So we explicitly define:

Definition 16

A dcc with ‘!’ is a cartesian dcc with coproducts (a ‘bicartesian dcc’), with a monoidal

comonad structure (where the monoidal structure used is that for (∗, I)).

These are the minimum conditions we would expect from a model for a system

combining αλ with ‘!’.

The affine model of section 5.2 provides an example. There, for ‘!’ we choose the

functor where !AX = A{}. We omit the further data needed to describe a monoidal

comonad, and simply state:

Proposition 17

SetFS with the indicated structure is an αλ with ‘!’ model.

This gives us a model with an additive function type A → B, the exponent in

the functor category, together with an additional function type !A−* B obtained

by decomposition. To see how different the decomposed function type is, consider

p ∈ (!A−* B)X. This gives, for any world Y , a function from A{} to B(X+Y ) which

is, by naturality, completely determined by a function from A{} to BX. So, such a

function effectively accepts only ‘resource unconscious’ arguments. In fact, we can

see that this comonad essentially arises from an adjunction between SetI and Set.
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The left adjoint takes any functor A to A{} and the right adjoint takes a set to the

constant functor on it.

So, we see that it is possible to add ‘!’ to αλ, and that doing so does not completely

collapse the system (at least, we have seen how to do so semantically). However, if

we add ‘!’ it is natural to ask how the resulting system relates to linear logic. The

system is clearly an extension of linear logic, but it is not a conservative extension

of it because of the following.

Fact 18

Any dcc with ‘!’ satisfies distribution:

A ∧ (B ∨ C) ∼= (A ∨ B) ∧ (A ∨ C).

However, distribution fails in models of linear logic (for instance, in the coherence

space model).

This fact follows at once from the requirement that A∧ (–) be a left adjoint (because

of →), which hence must preserve coproducts.

This suggests that, while it is possible to add ‘!’ to αλ, the resulting system does not

retain the merits of linear logic (though it might have other merits). The previous

proposition rules out the most important models of linear type theory that have

been given in the literature, including coherence space and the strict-function model

from domain theory.

Ideally, we would like a way to combine linear and bunched typing in a way

that simultaneously accounts for sharing as in bunched typing and consumption

as in linear logic. (There are several examples of the consumptive aspect of linear

typing (Lafont, 1988; Wadler, 1991; O’Hearn & Reynolds, 2000; Berdine et al.,

2002).) Here we have discussed models that consist of a single category, possessing

all of the properties required to model both linear logic or type theory and BI

or αλ, and concluded that the essence of linear logic is lost in such models.

There is another way that one might try to combine linear and bunched typing,

based on a pair of categories. In the pair-of-category models of linear logic one

asks for a symmetric monoidal category and a separate cartesian (perhaps closed)

category, with a monoidal adjunction between them (Benton, 1995; Barber & Plotkin,

1997). To obtain a combined linear/bunched type system one might start with a

symmetric monoidal closed category and a separate cartesian dcc. By observing such

a separation, it might be possible to develop a calculus that supports number-of-uses

and sharing interpretations at the same time, where the multiplicatives in the smcc

have to do with consumption and those in the dcc with sharing. The main problem,

besides having convincing specific models, is to determine the right conditions on the

means of passing from one category to the other, and the corresponding syntactic

rules.

7 Interference control

Now we switch gears and show a detailed use of αλ. In this section we describe

syntactic control of interference and Idealized Algol, two imperative languages
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defined by Reynolds in the late 70s and early 80s. The following section shows how

SCI and IA can be combined into a single language, whose type system is based on

the affine αλ-calculus. This combined language overcomes a problem with recursion

in the original SCI (Reynolds, 1978; Reynolds, 1989). After that, we indicate how

αλ can be used to treat jumps, another problem area in the original SCI.

Experience suggests that SCI can be difficult to understand if presented too

quickly. Therefore, we will include a number of small examples, and some informal

discussion, in this section. The main focus, again, is on the connection between

structural rules and sharing.

7.1 Basic SCI

We work with a version of SCI whose types are as follows.

ρ ::= exp | cell | comm primitive types

θ ::= ρ | θ ∧ θ′ | θ −* θ′ types

The primitive type exp is the type of natural number-valued expressions, comm is

the type of commands, and cell is the type of storage cells, or locations.

Affine λ-calculus

x : θ � x : θ
Id

Γ � M : θ
∆ � M : θ

Ex (where ∆ is a permutation of Γ)

Γ � M : θ′

Γ, x : θ � M : θ′ W

Γ, x : θ � M : θ′

Γ � λx : θ .M : θ −* θ′ −* I
Γ � M : θ −* θ′ ∆ � N : θ

Γ,∆ � MN : θ′ −* E

Γ � M : θ Γ � N : θ′

Γ � 〈M,N〉 : θ ∧ θ′ ∧I Γ � M : θ1 ∧ θ2

Γ � πi M : θi
∧E (where i is 1 or 2)

A typing context Γ here is a list of assumptions x : θ pairing identifiers with types,

with the proviso that no identifier appears twice.

The crucial rule is −* E, where the use of distinct contexts Γ and ∆ prevents

the procedure and argument from sharing identifiers (the proviso that no identifier

appears twice in a context puts an implicit constraint on Γ,∆). Because of this,

Contraction is not admissible in this setup, though the rule of Weakening,

Γ � M : θ′

Γ, x : θ � M : θ′ Weakening

is. In fact, an equivalent way to present the system is to include Weakening explicitly,

along with a rule

x : θ � x : θ
Id′

for identifiers that does not include the dummy assumption Γ.
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SCI-Specific Rules

Γ � M : comm ∆ � N : comm
Γ,∆ � M ‖ N : comm

Γ � M : comm Γ � N : comm
Γ � M;N : comm

Γ � 17 : exp

Γ � N1 : exp Γ � Ni : comm , i = 2, 3

Γ � if N1 = 0 then N2 else N3 : comm

x : θ � M : θ
� rec x .M : θ

Γ, x : cell � M : comm

Γ � new x.M : comm

Γ � M : cell
Γ � M : exp

Γ � M : cell Γ � N : exp

Γ � M := N : comm

We have included a rule for implicit dereferencing, which converts a term of type

cell to one of type exp. Most of the other rules should be familiar; we mention only

that new allocates a fresh cell (which is put on the runtime stack). We have not listed

typical arithmetic operations.

Now let us reconsider the example from the Introduction, which leads to aliasing:

((λxλy . · · · x := 1; y := 2 · · · · · ·)z)z.

This term does not typecheck in SCI because the function ((λxλy . · · · x := 1;

y := 2 · · · · · ·)z) and argument z share the free identifier z: there is no way to apply

the elimination rule for →.

The parallel composition M ‖ N is included alongside M;N for contrast. If

interference control is working properly then we would expect, because of the

use of disjoint contexts, that the commands M and N refer to distinct areas of

storage in M ‖ N. As a result, its overall effect should be determinate, and it

should be semantically equivalent to the sequential composition M;N (when M ‖ N

typechecks). For example, x := x + 1 ‖ y := 2 is perfectly determinate, as long as x

and y denote distinct cells. But x := x + 1 ‖ x := 2, which would be indeterminate,

is ruled out by the typing rule for ‖.

Conversely, if interference control is not working properly, then we would expect

this to be seen in M ‖ N. For example, x := 1 ‖ y := 2 would be indeterminate if x

and y were aliases.

The restricted rule for recursion, where x is the only contextual variable in the

premiss, is what one expects for affine typing. If M had free identifiers other than x

then a fixed-point unwinding rec x.M � M[rec x.M/x] could violate affine typing.

This can be seen also with a fixed-point combinator Y (M) where M : A−* A: an

unwinding to M(Y (M)) would violate the disjointness property of procedure calls,

if M was not closed.

As we mentioned in the Introduction, the original SCI allowed a restricted form

of Contraction for passive types, which are types of values that may read from, but

not write to, the store. Passivity is discussed briefly in Section 8.3.
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7.2 The sharing interpretation of SCI

We saw above how abolishing Contraction eliminates one instance of aliasing. More

generally, the absence of aliasing is subsumed under the

Disjointness Policy: distinct identifiers never interfere.

In the language here we take ‘interfere’ to mean ‘refer to common storage’.

The disjointness policy impacts the meaning of function types, while the meaning

of products remains more standard:

A−* B : functions that don’t interfere with their arguments;

A ∧ B : pairs that may interfere with one another.

SCI did not, originally, have a multiplicative product. The reading for it would be

A ∗ B: pairs whose components don’t interfere with one another.

But a form of this product is already present in the comma in typing contexts, in

that in a judgement

x1 : A1, . . . , xn : An � M : B

the disjointness policy expresses the same non-interference property as for ∗.

It is important to realize how the sharing interpretation is an unusual reading of

the affine λ-calculus. Often, the idea in the affine calculus is that a function uses

its argument at most once, so that for instance in a function of type A ∧ B −* C

either the A or the B component may be used, but not both. But according to SCI’s

reading, it is perfectly reasonable for a function p of such a type to use either or

both components of a pair 〈a, b〉 supplied to it as an argument, and either of these

elements could be used many times. The only constraint is that p doesn’t interfere

with 〈a, b〉.
For example, in SCI we can write a function

(λc : comm ∧ comm . π1c ; π2c ; π1c) : comm ∧ comm −* comm

that uses the first component of a pair twice and the second component once.

The sharing reading also helps to understand the typing of if. In the number-of-

uses reading, in ifN1 = 0 thenN2 elseN3 one would expect to use one context for N1,

and a separate context for N2 and N3. But the conditional essentially corresponds to

a constant of type exp∧comm∧comm −* comm in SCI and there is no inconsistency

if all the Ni’s share the same context. In imperative programming this sharing is

often wanted, so that information can pass from the condition into the branches.

Now the affine λ-calculus certainly does not force the sharing reading. But it is

consistent with it. The pure affine calculus is actually too small for this ‘many uses’

aspect to be seen; the additional constants of SCI are where it comes out. The

pure αλ-calculus, in contrast, already admits multiplicative functions that use their

arguments many times, as we saw in section 3.2.
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7.3 Idealized Algol (IA)

Idealized Algol (IA) is similar to SCI, except that it uses the simply-typed λ-calculus

in place of the affine λ-calculus. Formally, it is obtained from Basic SCI by removing

the rule for ‖ and adding Contraction and a new rule for recursion

Γ, x : θ, y : θ � M : θ′

Γ, z : θ � M[z/x, z/y] : θ′ Contraction
Γ, x : θ � M : θ

Γ � rec x.M : θ

Instead of adding Contraction, we could equivalently banish the disjointness re-

quirement in the −* E rule. IA violates the disjointness policy, as now a term

((λxλy . · · · x := 1; y := 2 · · · · · ·)z)z where distinct identifiers x and y interfere is

typable.

For future reference (Proposition 19), in IA we also rename −* to →, to emphasize

that it uses simply-typed λ-calculus.

7.4 A limitation

Many programs one would typically write (in a language, or language fragment,

like IA without references or pointers) do in fact satisfy the disjointness policy of

SCI. But a problem with recursion was raised by Reynolds (Reynolds, 1978): If a

recursive procedure contains a free identifier which uses storage in an active way

(by changing it), then in the body of the procedure this free identifier and the

procedure being defined will interfere (violating the disjointness policy). Technically,

this problem is avoided in the affine type system in this section by restricting the

rule for recursion, so that a recursive procedure cannot have any free identifiers.

An example of this limitation is the Towers of Hanoi program, where disks are

moved between pegs.

proceduremovemany(k, a, b, c : int)

if k > 0 then

movemany(k − 1, a, c, b);

moveone(a, b);

movemany(k − 1, c, b, a)

The procedure moveone can work by printing a message to the screen, or by recording

a move in a global data structure.

Technically, since moveone is free in the body of the procedure, we cannot use

the restricted rule for recursion to type it. Desugaring the recursion, we would have

to type rec movemany. λkabc. body in a context that contains moveone, where the

recursion rule requires an empty context.

More conceptually, moveone and movemany interfere in the body of the procedure

if moveone contains side effects. Other examples of this form may be found in objects

where one of the methods is recursive.

It is possible to write a recursive version of movemany in SCI by passing moveone

as a dummy argument, and instantiating a curried version of the procedure with the

actual movemany. But this seems unnecessarily complex, as the given definition of

movemany is simple and clear enough as is; as a result, it does seem to be desirable
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to be able to turn off interference control in local contexts, as long as we can turn

it back on again in a broader context. The ‘problem’ would be exacerbated when

programming an object that uses several cells to maintain a local state.

8 An enveloping language

8.1 SCI+

Now we consider a language, SCI+, that has primitive operations similar to those

in IA and SCI, but which uses the affine αλ-calculus as its type system.

The types are given by the following grammar.

ρ ::= exp | cell | comm primitive types

θ ::= ρ | θ ∧ θ′ | θ → θ′ | θ −* θ′ types

The primitive types are as in SCI and Idealized Algol, and we include both of the

function types of αλ, with the rules from the affine variant as in section 3.3. We also

include the rules for cartesian products.

Γ � M : A Γ � N : B
Γ � 〈M,N〉 : A ∧ B

∧I Γ � M : A1 ∧ A2

Γ � πi M : Ai
∧E (where i is 1 or 2)

SCI+-specific Typing Rules.

Γ � M : comm ∆ � N : comm
Γ,∆ � M ‖ N : comm

Γ � M : comm Γ � N : comm
Γ � M;N : comm

Γ � 17 : exp

Γ � N1 : exp Γ � Ni : comm , i = 2, 3

Γ � if N1 = 0 then N2 else N3 : comm

Γ; x : θ � M : θ

Γ � rec x .M : θ

Γ, x : cell � M : comm

Γ � new x.M : comm

Γ � M : cell
Γ � M : exp

Γ � M : cell Γ � N : exp

Γ � M := N : comm

All of these rules except for rec are, textually, exactly the same as rules in IA or

SCI. The difference is that now the comma has a different meaning than in IA, in

that it refers to the multiplicative combination. If we read the IA ‘,’ as ‘;’ in SCI+,

and the SCI ‘,’ as ‘,’, then we have omitted the rule for recursion from SCI, and rule

for new from IA. Let us see that the omitted rules are derivable.

The IA new would be
Γ; x : cell � M : comm

Γ � new x .M : comm .

We can derive this at once using the SCI+ rule for new and the inference

Γ; x : cell � M : ρ

Γ, x : cell � M : comm

which is an instance of the Conv rule of affine αλ.
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The recursion rule we have given is the one appropriate to IA. It has the SCI rule

as a special case, using Γ = 1 and a coherent equivalence. The use of ‘;’ instead of

‘,’ in this rule is crucial.

Given these remarks it is not difficult to show the following.

Proposition 19

1. SCI+ has IA as a sublanguage. That is, if

x1 : A1, . . . , xn : An � M : B

in IA then

x1 : A

1; . . . ; xn : A


n � M
 : B


in SCI+, where (·)
 maps λ to α, MN to M◦@N◦, and everything else

(inductively) to itself.

2. SCI+ has SCI as a sublanguage. That is, if

x1 : A1, . . . , xn : An � M : B

is derivable in SCI then it is also derivable in SCI+.

8.2 The sharing interpretation

There is thus a syntactic sense in which SCI+ is an enveloping language, but this

in itself is unremarkable. It is still conceivable that the larger language has features

that are inconsistent with the essence of IA or SCI, destroying some crucial aspect

of one of smaller languages.

The sharing interpretation of αλ describes the sense in which the larger language

preserves the essence of SCI; the readings of −* and ∧ are exactly as in SCI. The

reading of → is one that is appropriate to IA. To sum up:

A ∧ B pairs that may access a common portion of the store

A−* B procedures that don’t share store with arguments

A → B procedures that may share store with arguments

The resulting sense in which the αλ-calculus allows detection of interference is that

whenever we see a sequence αx λy or λx λy we know that x and y don’t interfere. So,

non-interference can be inferred (in a fail-safe manner) from a simple inspection of

a context. The one difference is that in Basic SCI this determination is context free.

It is context sensitive in SCI+ because when we see αx αy or λxαy we don’t know if

x and y interfere or not.

Let us revisit the Towers of Hanoi in light of this interpretation. The movemany

procedure can now be typed without difficulty, because we have IA as a sublanguage.
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It is instructive, however, to look at the way the typing works, as it illustrates the

way we can move between SCI- and IA-style typing in SCI+.

Using the rule for recursion we can type (with a little syntactic sugar)

moveone : exp → exp → comm

� recmovemany . αk a b c : exp

if k > 0 then

movemany(k − 1, a, c, b);

moveone(a, b);

movemany(k − 1, c, b, a)

: exp → exp → exp → exp → comm

The critical point is that, during the typing of the body, we turn interference control

off by using the bunch

moveone : exp → exp → comm

; movemany : exp → exp → exp → exp → comm

which indicates that moveone and movemany might interfere. But more globally we

can turn interference control back on and, for instance, run a call to the recursive

procedure in parallel with another command, as long as that command doesn’t

interfere with moveone.

moveone : exp → exp → comm , c : comm

� ((recmovemany . · · ·)7 1 2 3) ‖ c : comm

8.3 Passivity

The language Basic SCI in section 7.1 is in fact only a fragment of Syntactic Control

of Interference, which includes typing rules for passivity (Reynolds, 1978; Reynolds,

1989; O’Hearn et al., 1999). A passive entity, such as a side-effect free expression,

can safely be shared without causing interference, and a passive type is one whose

elements are all passive. Bunches are compatible with the approach to passivity in

the SCIR type system from O’Hearn et al. (O’Hearn et al., 1999); we briefly indicate

how this is so.

The SCIR type system uses judgements Π | Γ � M : A, where the context is split

into a passive zone Π and an active zone Γ. The three critical rules of the system are

the permeability rules of Activation and Passification, for moving identifier across

the | separator, and Contraction in the passive zone.

Π | x : B,Γ � M:A

Π, x : B | Γ � M:A
Passif (where A is passive)

Π, x : B | Γ � M:A

Π | x : B,Γ � M:A
Activ

Π, y : B, z : B | Γ � M : A

Π, y : B | Γ � M[y/z] : A
Contr

The zonal presentation does not work well with bunches, because we would want to

be able to indicate that an identifier is passive without saying that a whole bunch is.
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The solution is to allow ‘marked assumptions’ (x∗ : A) alongside ‘normal assump-

tions’ (x : A). Then, with an extension of marking to contexts, the three rules are as

follows:

Γ(∆) � M:A

Γ(∆∗) � M:A
Passif (where A is passive)

Γ(∆∗) � M:A

Γ(∆) � M:A
Activ

Γ(∆∗,∆′∗) � M : A

Γ(∆) � M[i(∆∗)/i(∆′∗)] : A
Contr (where ∆∗ ∼= ∆′∗)

This gives us a limited form of Contraction for ‘,’, in addition to the general

Contraction for ‘;’. These rules can all be interpreted using the bireflective subcategory

structure found in Tennent’s model (O’Hearn et al., 1999; Freyd et al., 1999).

8.4 Remaining limitations

The language here uses call by name as its parameter passing mechanism. The

extension of the approach to call by value does not appear to raise insuperable

difficulties, but the typing rules required tend to become more complex when one

wants to separate out the effects caused by evaluation to a value, from those that

are ‘latent’. Latent effects occur only later, when using the value; for example, in

x := 1; (λy. z := 2) the assignment to z is latent. In call by name, all effects at higher

order are latent.

A more significant limitation is that it is not obvious how to incorporate higher-

order store, where a reference may hold a procedure or another reference as its

contents. This problem has been addressed using different methods, and with some

success, by the effect systems of Gifford & Lucassen (Lucassen & Gifford, 1988). The

types used in effect systems are, however, very detailed, and they seem more suit-

able to an intermediate language used in a compiler (where complexity can be

hidden from the programmer) than in a source language. It would be worthwhile to

develop a more abstract form of control over higher-order references, along the lines

of SCI.

In a recent development, Walker and Morrisett have devised a fascinating system

for interference control (Walker & Morrissett, 2000), which correctly handles higher-

order store, and which is remarkably similar in structure to a program logic

connected to BI (Reynolds, 2000; Ishtiaq & O’Hearn, 2001). Despite the structural

similarity, the relationship of their work to bunched typing is not yet clear.

9 A model for SCI+

In this section we describe a semantics of SCI+. Our purpose in doing this is to

back up the informal interpretation of types from section 8.2. So we will concentrate

on describing the structure of the model, and how it relates back to the informal

description.

9.1 Semantics of types

We are going to use an affine model similar to the one in section 5.2. However,

as explained in O’Hearn & Tennent (O’Hearn & Tennent, 1992), in order for new
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to satisfy naturality requirements of functor categories, it is necessary to allow for

renaming of locations. Therefore, we use the category I of finite sets and injections

as the category of worlds. Also, to interpret recursion we will use domains in place

of sets in the target category.

Let Predom denote the category of predomains (ω-complete posets and continuous

maps).

For X a finite set we define

[[comm]]X = SX ⇒ SX⊥

[[exp]]X = SX ⇒ N⊥

[[cell]]X = X⊥

Here, SX = X ⇒ N is the set of states at world X, and N is the set of natural

numbers. Variations are possible. For example, we could allow side effects in

expressions, using SX ⇒ (N × SX)⊥, or we could make cells dependent on the

store (this allowing conditional storage cells).

The action of each primitive type on morphisms f in I is defined by renaming

cells according to f and ignoring cells not in its range. The cases of exp and cell are

simple:

[[exp]]f e s = e(f; s),

[[cell]]f = f⊥.

In the case of comm, when f : X → Y ,

[[comm]]f c s =




⊥ if c(f; s) = ⊥
s′ if c(f; s) = s′′ and

∀� ∈ Y .
(
� = f�′ implies s′(�) = s′′(�′)) and

� �∈ range(f) implies s′(�) = s(�)
)
.

The functor category PredomI is cartesian closed, with finite products defined

pointwise. The additive function type can be defined as follows.

(A → B)(X) = PredomI[A(X + –), B(X + –)].

This accurately reflects the informal reading, in that the presence of X in the

argument type A(X + –) indicates how a function p ∈ (A → B)X may share access

to X with its argument.

This is not the standard representation of the exponent in a functor category. We

are relying on the fact that any f : X → Z factors into a left injection i : X → X+Y

followed by an isomorphism j : X + Y → Z . Such a factorization is used to define

the morphism part of A → B. If p ∈ (A → B)X then (A → B)fp ∈ (A → B)Z is

defined y the formula

(A → B)fpWa = B(j)(pW ′(Aj−1a))

where i : X → X + W ′, j : X + W ′ → W is an injection/isomorphism factorization

of f; i : X → W .
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In this description of the function type the hom sets PredomI[A,B] are considered

to be ordered pointwise. Also, + is the evident functor on I given by disjoint union

of finite sets.

The multiplicative function type once again expresses disjointness of a function

from its argument:

(A−* B)X = PredomI[A,B(X + –)].

To see how the semantics is working, consider the type cell −* cell −* comm.

Semantically, an element p ∈ [[cell −* cell −* comm]]{} accepts

two worlds Y and Z,

cells c ∈ Y⊥ and e ∈ Z⊥

and produces (using {} + Y + Z ∼= Y + Z)

p[Y ]c[Z]e : S(Y + Z) ⇒ S(Y + Z)⊥.

It is evident from this that the arguments c and e cannot be aliases, as they live in

disjoint portions of the store at world Y + Z .

To treat recursion in this model we must effect a transformation

p[X] : [[Γ]]X × [[θ]]X −→ [[θ]]X

rec(p) : [[Γ]]X −→ [[θ]]X .

Here, we uncurry p to obtain a map of type [[Γ]]X −→ ([[θ]]X → [[θ]]X) and then

compose on the right with the least fixed-point operator for pointed domains.

For this interpretation to exist we must have that each [[θ]]X is pointed. And for

it to be natural we require that each morphism part [[θ]]f preserves least elements

(Oles, 1982). These properties are satisfied by all the types in SCI+, and are part of

the identification of a subcategory of PredomI in the following section.

9.2 Bunches, environments and non-interference

We now give a precise treatment of bunches. Our intention in doing this is to show

one example where the syntactic ambiguity resulting from the rule for coherent

equivalence
Γ � M : A
∆ � M : A

≡ (where ∆ ≡ Γ)

is dealt with by requiring that equivalent bunches be semantically equal.

The presentation in this section will be more technical than the others, but it

is mainly a pulling together of known results (Oles, 1982; O’Hearn, 1993). Some

readers may wish to skip forward to Section 9.3, where some of the most important

valuations are presented in in a way that doesn’t depend upon the details of this

section.

We work in a full subcategory of PredomI, the category whose objects A have the

following two properties:

1. each AX has a least element, and each Af : AX → AY preserves least elements,

and

2. A preserves pullbacks.
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The strictness part of the first condition is needed for naturality of the fixed-point

operator, and the second condition enables a simplified description of environments.

It is straightforward to verify that the meanings of primitive types satisfy these

conditions. We call this category M.

Pullbacks in I are like those in the category of sets. In particular,

X

Y ∩ Z

Y Z

�
��

�
��

�
��

�
��

is a pullback square, where the unlabeled arrows are inclusion functions. Because

of this, for pullback-preserving functors there is always a smallest world that any

a ∈ AX comes from:

• we say that a comes from Y ⊆ X iff ∃a′ ∈ A(support(a)). a = A(support(a) ↪→
X)a′, and

• we refer to the smallest world that a comes from as the support of a, written

support(a).

The notion of support does not work for arbitrary functors, as there need not be

a unique smallest world that a comes from. However, the existence of such worlds,

as guaranteed by pullback preservation, seems intuitively reasonable if we want to

consider support as the set of locations that a computational entity depends upon.

Given this notion of support, we can define non-interference. If a ∈ AX and

b ∈ BX, then

• a#b ⇔ support(a) ∩ support(b) = {}.

Using this notion of non-interference we can finally describe the tensor product ∗
of functors:

(A ∗ B)X = {(a, b) ∈ AX × BX | a#b},
(A ∗ B)f(a, b) = (Afa, Bfb).

For this definition to work correctly, it is important that (A ∗ B)f preserves non-

interference and that (A ∗ B)X is ω-complete; see (O’Hearn, 1993).

Proposition 20

M is an affine doubly closed category. That is, 1,∧,→ is cartesian closed structure

and 1, ∗, −* monoidal closed structure.

This gives us all the structure we need to interpret the affine αλ-calculus, where

we interpret a bunch by mapping ‘,’ to ∗ and ‘;’ to ∧. However, a more concrete

semantics of bunches is useful. For this, we first define

Γ � x#y ⇐⇒ x and y have a‘,′ as a common ancestor node in Γ.

Bunches are then interpreted by relating the syntactic # to the semantic one:

[[Γ]]W =

{
u ∈

∏
x∈iΓ

Γ(x) | Γ � x#y =⇒ ux#uy

}
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where we are writing Γ(x) for the type of x in Γ. This representation of environments

allows us to ignore coherent equivalence, while still maintaining a relationship

between ‘,’ and ∗ and between ‘;’ and ∧.

Proposition 21

If Γ ≡ ∆ then [[Γ]] = [[∆]]. Further, we have the following isomorphisms:

[[Γ,∆]] ∼= [[Γ]] ∗ [[∆]] [[Γ; ∆]] ∼= [[Γ]] ∧ [[∆]]

The point of this concrete interpretation of bunches is that it makes clear that the

use of the rule for ≡ in αλ-calculus is not in any way problematic.

9.3 Selected valuations

We will make use of a multi-map characterization of maps out of A ∗ B, which

enables a simple description of most of the maps in the semantics. To repeat the

point made for the basic disjointness model, since we expect to have an isomorphism

PredomI[A ∗ B,C] ∼= PredomI[A,B −* C], we must obtain the following, no matter

what ∗ is.

Maps p : A ∗ B −→ C out of a tensor are in bijection with families of functions

p[X][Y ] : AX × BY −→ C(X + Y ) ,

natural in X and Y .

Because of this characterization, we will expect maps out of a context Γ,∆ to be

in bijection with families of maps where we use one world for ∆ and another for Γ.

Based on this assumption, we now give the semantics of several terms.

We begin with ‖. First, we define a state transformation c ‖ c′, when c and c′ are

commands referring to disjoint store:

c : S(X) −→ S(X)⊥ c′ : S(Y ) −→ S(Y )⊥

c ‖ c′ = λ[s, s′] : S(X + Y ). [cs, c′s′] : S(X + Y ) −→ S(X + Y )⊥

where [·, ·] : S(X + Y ) → S(X) × S(Y ) is the evident isomorphism and [cs, c′s′] is ⊥
if either cs or c′s′ is. Then we can interpret the term-formation rule for ‖ as follows.

p[X] : [[Γ]]X −→ [[comm]]X q[Y ] : [[Γ]]Y −→ [[comm]]Y

ΛX.ΛY . λ〈u, v〉. p[X]u ‖ q[Y ]v : [[Γ]]X × [[∆]]Y −→ [[comm]](X + Y ).

Here, we have used polymorphic λ-calculus notation to talk about families of maps

in what should be a clear way (O’Hearn & Reynolds, 2000).

This semantics makes obvious that different components of ‖ act on disjoint

portions of the store. In contrast, the rule for sequential composition uses the same

context Γ for both commands, and so we use the transformation

p[X] : [[Γ]]X −→ [[comm]]X q[X] : [[Γ]]X −→ [[comm]]X

ΛX. λu. (p[X]u); (q[X]u) : [[Γ]]X −→ [[comm]]X

where ‘;’ is composition of partial functions. The common use of X by p and q

makes clear that they access the same portion of store.
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For new declarations we again appeal to disjointness, where the declared cell is

disjoint from the store in use when a declaration begins execution. The semantic

transformation is

p[X][Y ] : [[Γ]]X × [[cell]]Y −→ [[comm]]X + Y

ΛX. λu. λs. f(p[X][{∗}] ∗ (s | ∗ �→ 0)) : [[Γ]]X −→ [[comm]]X.

where f : S(X + {∗})⊥ → S(X)⊥ forgets the {∗} component.

Finally, for λ-abstraction a λ-bound variable abstracts over meanings defined in

world that is separate from the world for other free identifiers.

p[X][Y ] : [[Γ]]X × [[θ]]Y −→ [[θ]]X + Y

λu.ΛY .λx ∈ [[θ]]Y . p[X][Y ]〈u, x〉 : [[Γ]]X −→ [[θ −* θ′]]X.

Thus, in λx.M the identifier x does not share storage with any other identifier free

in M.

The semantic model described in this section accomplishes two things. First, and

foremost, we claim that it achives our basic aim, of substantiating the informal

sharing reading.

Secondly, it shows that

Proposition 22

SCI+ has IA and SCI as semantic sublanguages.

To be precise, what this means is

1. the model obtained from the translation (·)
 from Proposition 19 is a standard

functor-category model of IA (O’Hearn & Tennent, 1992);

2. the semantics of the SCI fragment of SCI+ is the semantics of SCI given in

(O’Hearn, 1993) (ignoring passivity),

The only real differences in the various interpretations are the rules in SCI or IA that

were left out of SCI+, but which were shown to be derivable. The most important

case is new: the reason it does not present a difficulty is that, even in IA, a locally

declared cell doesn’t interfere with any other identifiers free in its defining block.

This is why the use of ‘,’ in the SCI+ rule for new is semantically sufficient to capture

IAs new.

10 Jumps

Jumps cause a problem broadly similar to the one with recursion in SCI. In this

section we indicate how this problem can be overcome using αλ.

To see the difficulty, consider a block escape x in M. This declares a new label

which, when jumped to from within M, results in a transfer of control to the end

of the block. From the point of view of continuation semantics, it binds x to the

current continuation, which is a function from states to final answers that describes

computation that will take place after the block is finished. This means that, if the

computation associated with the current continuation changes any storage cell then

x will interfere with that cell. So, in (escape x in M); z := 4 the identifiers z and x

interfere, if z occurs within M.
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Thus, from the point of view of continuation semantics, the escape statement

violates the requirement that distinct identifiers never interfere (unless we put rather

draconian conditions on identifiers appearing in or following an escape block). One

might attempt to use a different form of semantics to define a different notion of

interference for labels. It will be simpler just to allow this interference, by arranging

the typing rule so that x is set additively apart from other identifiers.

Following (Oles, 1982), we add a primitive type compl for completions (labels)

and remove comm. We now regard comm as syntactic sugar for compl → compl. The

semantics of the type of completions is given using a fixed domain A of answers.

[[compl]]X = SX ⇒ A

[[compl]]f k s = k(f; s)

With this semantics, the language with the completion type has the same sense of

non-interference as SCI+: the semantics of −* ensures that whenever we see a

sequence αx αy or αx λy we know that x and y access different portions of the store.

The central syntactic rules are

Γ; x : compl � M : comm

Γ � escape x in M : comm

Γ � M : compl

Γ � goto M : comm

where the use of ‘;’ in the rule for escape allows for the interference between x and

identifiers in Γ. These can be given a standard continuation semantics, exactly as

was done by Oles. For escape, we effect a transformation

[[Γ; x : compl]]
f

−→ [[comm]]

[[Γ]]
f′

−→ [[comm]]

accomplished by binding x to the current continuation:

f′[X] uX ′ k s = f[X + X ′](u′ | x �→ k) k s

where

u ∈ [[Γ]]X,

k ∈ [[compl]](X + X ′),
i : X → X + X ′ is the left injection,

u′ = [[Γ]]iu,

s ∈ S(X + X ′).

Here, the extra parameter X ′ is occurring because comm = compl → compl is a

procedure type, and we are using the representation of → given in the last section.

goto is given by a map g : [[compl]] −→ ([[compl]] → [[compl]]) from completions

to commands, which ignores the current continuation:

g[X] k [X ′] k′ = [[compl]]i k

where i : X → X + X ′ is again the left injection.

Finally, to illustrate the effect of interference constraints we define the parallel

composition of completions.

Γ � M : compl ∆ � N : compl

Γ,∆ � M ‖ N : compl
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Its semantics is given by a map par : [[compl]] ∗ [[compl]] −→ [[compl]] and is defined

similarly to the parallel composition of commands. For this, we refer again to the

multi-map characterization of maps out of ∗, and define

par[X][X ′] 〈k, k′〉 [s, s′] = (ks · k′s′)

where (– · –) : A × A → A is a function that puts together two final answers. For

concreteness, we take A to be the two-point cpo {t}⊥ and (– ·–) to be meet. Here, we

regard an answer t as indicating termination. We admit that this use of a function on

answers is ad hoc. It does, however, enable us to show a sense in which completions

typed in contexts separated by ‘,’ do not interfere.

We have not included parallel composition for commands, because the right way

to do so is not obvious. For, one of the commands in M ‖ N might jump out, and

ignore the current continuation. (It might be possible to use bunches to control the

range of continuations; that, however, is beyond the scope of this paper.)

11 Conclusion

The αλ-calculus and BI offer a new perspective on how control over structural rules

translates into control over access to resources in a computer system. As we have

suggested here, the main point is the emphasis on sharing, supported by a spatial

view of possible world semantics which has developed over a number of years

(Reynolds, 1981; O’Hearn, 1990; O’Hearn et al., 1999; O’Hearn & Reynolds, 2000).

We began the paper by recounting an analogy between syntactic control of

interference and linear logic, where both systems limit the use of Contraction. This

was followed by recalling a dilemma: Although there is a formal similarity, there

is also an important conceptual difference; control of Contraction in SCI is about

sharing, while in LL it is primarily about duplication.

Now the reader might feel that we are splitting hairs here, as at first sight

duplication versus sharing may appear to be a case of six of one versus a half

dozen of the other. But the distinction is crucial in computer science. The number-

of-uses explanation of linear logic calls to mind the notion of temporary resources

in Operating Systems (Bierman, 1973), the canonical example of which is a message

produced by one process and consumed by another. The analogy with temporary

resources is clear in several formal interpretations of linear logic, including the

original coherence space model (Girard, 1987) and a concurrency reading (Abramsky,

1993). In contrast, the sharing interpretation of αλ concerns what is often labelled

a permanent resource. Here, permanent does not literally mean permanent, but

potentially long lived; examples include files, external devices, or portions of the

store. For this kind of resource it is sharing, rather than consumption, that is the

prime concern.

The results of this paper give one answer to the question of whether the conceptual

difference between sharing and duplication should lead to different formal structure.

We described a new calculus, the αλ-calculus, which we showed differs from linear λ-

calculi in several significant respects. And for each difference between the systems we

were able to offer an explanation of αλ’s stance by appeal to a sharing interpretation ,
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where linear logic’s stance can be understood in terms of a number of uses reading .

Because different formal systems fit each of these readings we claim that the

differences are genuinely structural, and run deeper than merely having separate

models of the same system.

Finally, it is worth mentioning a related resource perspective on BI, which does

not mention λ-terms. Here we speak of the resources a function has access to which,

when we erase λ-terms, corresponds to talking about proofs. A similar interpretation

can be given on a purely logical level, where one views −* and → as implications,

and where the semantics is phrased in terms of truth conditions; proofs are not

mentioned. This semantics of BI (O’Hearn & Pym, 1999; Pym, 2002), which was

first advanced by Pym in 1997, is similar to the functional interpretation we derived

from SCI, but genuinely different because of its declarative character: a number of

interesting models have been described that make good sense from a truth-based

perspective, but that have much less immediate type-theoretic significance (Ishtiaq &

O’Hearn, 2001; O’Hearn et al., 2000; Cardelli & Gordon, 2000; Cardelli et al., 2002).

Incidentally, several of these models do not admit Weakening, and so correspond the

the basic system of section 3.1 rather than the affine variant used in the application

to SCI.
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