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CHARACTER DEGREES AND DERIVED LENGTH 
OF A SOLVABLE GROUP 

I. M. ISAACS 

Let G be a finite group. (All groups considered here are finite). There exist 
several results which control the structure of G in terms of cd(G), the set of 
degrees of the irreducible complex characters of G. Here, we are concerned with 
the situation where only the cardinality of cd(G) is given. If |cd(G)| ^ 3,, 
then it is known [9 ; 7] that G is solvable and the derived length dl (G) S |cd (G) |., 
If |cd(G)| = 4, then G need not be solvable (e.g., G = PSL(2, 2n))\ however 
[5], if G is solvable then dl(G) :g 4. It is conjectured that for all solvable G,, 
dl(G) S |cd(G)|. In this paper we prove for solvable groups that 

dl(G) ^ 3|cd(G)| - 2 

and that if G is nonabelian of odd order, then 

dl(G) ^ 2|cd(G)| - 2. 

How can a hypothesis on |cd(G)| be used? One way is to show that if 
X £ Irr(G) and if only r different degrees f £ cd(G) satisfy / ^ x(l)> then 
G/ker x is under control. (For instance if r = 1, then G/ker x is abelian.) 
Typical of this method, is Take ta's proof that M-groups are solvable. (See, 
[4, Satz V. 18.6].) This shows that if in the above situation, G is an if-group, 
then dl (G/ker x) ^ r and thus in particular, dl(G) ^ |cd(G)|. 

Let cd(G) = { / i , /2, . . . , fn) with 1 = / i < / 2 < . . . < / „ , and let aG(r) 
denote 

max{dl(G/ker x ) |x € Irr(G), x ( l ) ^fr]. 

(If r > n, write aG(r) = dl(G).) In this notation, we have aG(r) ^ r whenever 
G is an Af-group. Our main result here is that aG(r) S 3r — 2 for solvable 
groups and t h a t a ^ ) S 2r — 2 if r > 1 and \G\ is odd. If r = 2, these bounds 
are best possible, but it seems highly unlikely that this is true for larger values 
of r. 

1. The result of this section is just a corollary of the Fong-Swan Theorem 
(see [2, Theorem 72.1]). 

THEOREM 1. Let G be solvable and suppose that G acts faithfully and completely 
reducibly on the abelian group, A. Then G has a faithful {possibly reducible) 
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complex character, x> with x( l ) = l°gp(MI)> where p is the smallest prime 
divisor of \A\. 

Proof. If A = A i + A 2 where At is a proper G-invariant subgroup, then G 
has characters xi and %2 with ker Xi = CG(^4*) and xtW = ^ogpi(\Ai\) ^ 
log^d^lli) where pi is the smallest prime divisor of \At\, pt^p. Then 
X = Xi + X2 has the desired properties. 

Since A is completely reducible, we may now assume that A is irreducible 
under G. Let F = H o r n e d , A) so that F is a finite field and A is an irreducible 
F[G]-module. Let ^ be the corresponding jp-representation of G. Since 
HomF[G](i , A) = F, we may conclude that ^ is absolutely irreducible and 
hence by the Fong-Swan Theorem, there exists a ring, R Q C and an R-
representation, ffô, of G such that (JS(g))Q = & (g) for g (z G, where 6 is a 
homomorphism of R onto an extension field of F. 

Let % be the (complex) character afforded by J£. Then ker x = 

ker J? CZ k e r ^ = 1 andx( l ) = logff(|^4|) where g = |.F|.The result now follows. 

2. The result of this section is more or less known. (Compare [1, Theorems 
4.4 and 4.5].) 

THEOREM 2. Let Z — Z(G) he cyclic ana contain every abelian normal sub­
group of G. Let F = F (G), the Fitting subgroup. Then F/Z is abelian. Suppose 
Z <^A C F with A < G and let C = CG(A/Z)andB = CG(A). Then A B = C 
and A P\ B = Z. Furthermore, F/Z is a completely reducible (G/F)-module and 
if G is solvable, it is a faithful module. 

Proof. If F' £ Z, we can choose K Q F'', K < G minimal such that K £ Z. 
Since Fis nilpotent, K > [K, F] < G and hence [K, F] Ç Z. Thus [K, F, F] = 1 
and therefore [Ff, K] — 1 by the Three Subgroups Lemma. Thus K is 
abelian, and since K <\ G and K Çt Z, this is a contradiction. Thus F/Z is 
abelian. 

Now A C\B = Z(A) is abelian. Since Z Ç Z{A) <\ G, we conclude that 
A C\ B = Z. Since A/Z is abelian and Z is cyclic, it follows from the funda­
mental theorem of abelian groups that |Hom(^4/Z, Z)\ ^ \A/Z\. If x £ C, we 
can define 6X £ Hom(A/Z, Z) by ^ ( â ) = [a, x\. Note that if 6X = 6y, it follows 
that yx~l Ç C(^4) = 5 and thus there are at least \C : B\ distinct 6X and 
hence 

|C|/|J5| ^ \H.om(A/Z,Z)\ ^ \A\/\Z\ 

and \AB\ = \A\\B\/\Z\ ^ \C\. It follows that AB = C. 
In particular, F/Z = (A/Z) X ((FC\B)/Z) and thus F/Z is completely 

reducible. Also, F/Z = F(G/Z) and hence if G is solvable, then F = GG(F/Z) 
and F/Z is a faithful G/F module and the proof is complete. 

3. We need the following lemma. (See [1, Theorem 4.3] or [8, Proposition 
4.1].) 
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LEMMA 3. Let x S Irr(G) be faithful and suppose Gf Ç Z(G). Then 
\G: Z(G)| = x(l)2-

The next two results serve only to decrease the bound on aG(r) from 2r — 1 
to 2r — 2 when 2 ^ |G| and r > 1. Nevertheless, it seems worthwhile to do 
this since the result aG(2) ^ 2 is best possible. Theorem 4 is known and has 
appeared in numerous versions (see, [4, Satz V. 17.13] or [6, Proposition 5.2].) 
We include a proof here which seems shorter than most. 

THEOREM 4. Let N <\ H and suppose that a cyclic group, C, acts on H, stabilizes 
N and is semi-regular on (H/N)*. Let 6 G Irr( i î ) be invariant under C and 
suppose BN = e<p with <p G Irr(iV) and e2 = \H : N\. Then e = ± 1 (mod |C|). 

Proof. Work in the semi-direct product G = H X C. Since G/H is cyclic, 
[4, Satz V. 17.12 (2)] yields that 6 is extendible to x 6 Irr(G) and similarly 
<p is extendible to £ G Irr(iVC). Every irreducible constituent of XNC is an 
extension of <p and hence has the form X£ for some X G Irr (NC/N). Write 
XNC = Œx#xX)£ where X runs over Irr (NC/N) and a\ is a non-negative 
integer. Clearly 

(1) £ ax = *. 
x 

Now G/iV is a Frobenius group. Let & be the set of conjugates of NC in G 
so that \<g\ = |H : iV| = e2 and G = H\J U ^ . If A B G ^ are distinct, 
we have AC\B = N = AC\H. Therefore 

|G|[X, X] = \H\[XH, XH\ + \V\\NC\[XNC, XNC] - I W l t x a r , X*]. 

Since [x, x] = 1 = [XH, XH], [XJV, Xiv] = e2 = | ^ | , |i?| = e2|N| and 
[XNC, XNC] = Z>x 2 , this yields 

\C\ \N\e2 = e2|iV| + e2\N\ |G|I>x2 - ^2|iV|^2 

and 

(2) |C| E «x* = i q - l + e2. 
x 

Since \lrr(NC/N)\ = \C\, equations (1) and (2) yield 

(3) E (ax - a,)2 = 2\C\ E ax
2 - 2( £ axV = 2(|C| - 1). 

X,M X V X / 

In particular, not all a\ are equal. 
It follows from (3) that for some X G Irr (NC/N), we have 

E ( a x - « „ ) 2 ^ 2 ( | C | - 1 ) / | C | < 2 

and hence aM can differ from a\ for at most one /x, and there aM = ax + e where 
e = ± 1 . Now equation (1) yields e = (\C\ — l)a\ + (a\ + e) so that 
a\ = (e — e)/|G| and the proof is complete. 
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Note. The above proof actually shows that xc = ((<? — e)/\C\)pc + e^c 
where pc is the regular character of C. We will not need this, however. 

COROLLARY 5. Suppose x € Irr(G) is nonlinear and primitive and that 
G/F(G) is abelian. Then there exists nonlinear \p £ Irr(G) with \p(\)\(e + 1) 
for some e |x(l). 

Proof. We may assume that % is faithful. Then G satisfies the hypotheses of 
Theorem 2. Let F = F (G) and Z = Z(G). Since x is nonlinear and primitive, 
G is not an ikf-group and so G > F. Since F /Z = F(G/Z), we conclude that 
G acts nontrivially on F/Z. Since F/Z is completely reducible, we can choose 
A < G with Z < 4 ç F and 4 / Z a chief factor of G with G = GG(A/Z) < G. 
Since C 3 F, G/C is abelian and acts irreducibly on A/Z. It follows that G/G 
is cyclic. Say \G : C\ = m. Also, G/G acts semi-regularly on (A/Z)*. 

We have XA = «0 for some 0 £ Irr(^4). Let 0(1) = e. Lemma 3 yields 
e2 = |̂ 4 : Z\. It follows from Theorem 4 that e = =bl (mod m) and since the 
action of G/C on ^4/Z is irreducible and G/C is cyclic of order m, it follows 
from [4, Satz II. 3.10] that e ^ 1 (mod m). Thus m\ (e + 1). 

Now let X 6 IVY (A/Z) with X ̂  1A- Since [̂ 4, G]Z = A, X is not invariant 
in G. By Theorem 2, we have C/Z = (A/Z) X (B/Z) where 5 = GG(A) and 
it follows that X is extendible to v £ Irr(G). Now let \// be any irreducible 
constituent of vG. Since X is not invariant, ^(1) > 1. On the other hand, 
^(1) = \f/(l)/v(l) divides \G : C\ = m and the result follows. 

4. We can now prove our main results. The method of proof is closely 
related to Huppert's derivation of a bound on dl(G) when the degree of a 
faithful representation of G is given [3]. 

THEOREM 6. Suppose G is solvable. Let x £ Irr(G) and M < G such that 
M Ç ker \p whenever \p £ Irr(G) with \p(l) < x(l)- Then 

(a) M'" C ker x , 
(b) M" Ç ker x if 2 I x( l ) a«d 
(c) if ' Ç ker x if M = G' arcd 2 f |G|. 

Proof. Use induction on |G|. In the group G/ker x, the hypotheses are satis­
fied with respect to M ker x /ker x and hence we may assume that x is faithful. 
We may also assume that x( l ) > 1-

Suppose x is imprimitive so that x = 6G with 0 G lrr(H) and H < G. 
Then all irreducible constituents of (1H) G have degree < \G : H\ ^ x ( l ) and 
thus M Ç k e r ((lH)°) QH. If <p £ lrr(H) and *>(1) < 0(1), then all 
irreducible constituents of <pG have degree ^ <p(l) \G : H\ < x( l ) and thus 
M C ker (<?G) C ker <ç. 

Now, the hypotheses are satisfied by 0 on if and by the inductive hypothesis, 
M'" C ker0. Since AT" < G, (a) follows. If 2 J x ( l ) , then 2 f 0(1) and 
M" C ker 0. Since M" < G, (b) follows. 
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Suppose M = G1. If 0(1) = 1, then G" Ç Hf C ker 0 and (c) follows in 
t h a t case. If 0(1) > 1, then M Ç ker <p for all linear <p G Irr(LT) and hence 
G' = M Ç Hf Ç G' and M = LT. Now the inductive hypothesis yields 
G" = H" Ç ker 0 and (c) follows here too. 

Now suppose % is primit ive. Since x is faithful, the hypotheses of Theorem 2 
are satisfied and we let F = F (G) and Z = Z(G) so t h a t G/77 acts faithfully 
and completely reducibly on the abelian group, F/Z. 

Suppose M Ç F. Then M" Q F" = 1 and (a) and (b) follow. If M = G', 
then G/F is abelian and Corollary 5 applies. T h u s there exists \p £ I r r (G) 
with ^ (1 ) > 1 and ^ ( l ) | ( e + 1) for some e |x ( l ) - Assume \G\ is odd. Then 
^ (1 ) is odd and e + 1 is even and we have 1 < ^ ( 1 ) ^ (e -\- l ) / 2 < e ^ x ( l ) 
and thus G' = M Ç ker ^, a contradict ion since i/' is nonlinear. T h u s the 
hypotheses of (c) cannot hold in this case. 

We may now assume t h a t M Çt F. By Theorem 1, G has a character £ with 
F = ker £ and £(1) ^ l o g 2 ( | F / Z | ) . If 2 f | F / Z | , then {(1) ^ log3 ( | F / Z | ) . 
Now XF = ad for some 0 £ I r r ( F ) and | F / Z | = 0(1)2 S x ( l ) 2 by L e m m a 3. 
T h u s £(1) g 2 log2 ( x ( l ) ) . Also, if 2 \ x ( l ) , then 2 f 0(1), 2 f |F /Z[ and 
£(1) ^ 2 1 o g 3 ( x ( l ) ) . 

Since Jkf g F = ker J, it follows t h a t for some irreducible const i tuent , <p, 
of £, we have <p(l) ^ x ( l ) . This yields x ( l ) ^ 2 log3 ( x ( l ) ) if 2 f x ( l ) and 
hence x ( l ) ^ 2 . Since x ( l ) > 1, this is a contradict ion and the proofs of (b) 
and (c) are complete. 

T h u s 2 | x ( l ) and x ( l ) ^ *>(1) S log2 (\F/Z\) ^ 2 log2 ( x ( l ) ) forces X ( D ^ 4 
and thus x ( l ) = K l ) = <P(1) = \F/Z\1/2 = 2 or 4. Since 7^/Z = F ( G / Z ) is 
a 2-group, we have 0 2 ( G / F ) = 1. Let K/F — 02'(G/F) so t h a t £K is a sum of 
linear const i tuents (since £ = <p is irreducible) and i ^ / / 7 is abelian. Since 
X / F = F(G/F), we have i£ = GG(K/F) and thus G / X faithfully permutes 
the linear const i tuents of £Kl and G/K is isomorphic to a subgroup of the 
symmetr ic group on £(1) ^ 4 symbols. I t follows t h a t every \f/ £ I r r (G/ i£ ) 
satisfies iK l ) < £(1) = x ( l ) and thus M Ç K. Therefore M'" C X ' " = 1 
and the proof is complete. 

COROLLARY 7. Le/ G ôe solvable. We have 
(a) a 6 ( r ) ^ 3r — 2, and 
(b) ij2 \ \G\ and r > 1, *&ew a G ( r ) ^ 2r - 2. 

Proof. Use induction on r. Suppose x ë I r r (G) with x ( l ) ^ / r s o t h a t 

G ( " G ( ' - D ) Ç ker \P 

for all ^ G I r r (G) with ^ (1 ) < x(l)« By Theorem 6 (a) , we have 
O G C - D + 3 ) Ç k e r x a n d t h u s aQ(r) ^ a G ( r _ ! ) + 3> S i n c e a G ^ = -^ ( a ) 

now follows by induction. 
Suppose 2 \ \G\ so t h a t 2 -f x ( l ) - Using Theorem 6 (b) , i t follows t h a t 

a<?(r) ^ aG(r — 1) -\- 2. Now suppose r = 2 so t h a t G' C ker i/' whenever 
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iKl) < x ( l ) . Theorem 6 (c) yieldsG" C ker x and aG(2) g 2. Now (b) follows 
by induction. 

Note that if G is any nonabelian solvable group, then aG(2) ^ 2 and hence 
if 2 \ \G\ we have aG(2) = 2. On the other hand, if G = GL(2, 3), we have 
aG(2) = 4 so that when r = 2, (a) and (b) are both best possible. We know of 
no examples where aG(r) > r + 2; however, for any prime, p, and positive 
integer, r, it is possible to construct a ^-group, G, with a<?(r) = r. 

Since dl(G) = aG(|cd(G)|), all of the results stated in the introduction have 
now been proved. 

Added in proof. Using an inductive argument related to that of this paper, 
T. R. Berger has recently proved that dl(G) ^ |cd(G)| when 2 \ |G|. 
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