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A NOTE ON A GENERIC HYPERPLANE SECTION 
OF AN ALGEBRAIC VARIETY 

WEI-EIHN KUAN 

1. Introduction. Let V be an irreducible algebraic variety of dimension > 1 
defined over a field k in an affine w-space over k, and let H be the generic 
hyperplane defined by uo + UiXx + . . . + unXn = 0, where u0, U\, . . . , un 

are indeterminates over k. It is well known that: 
(1) if F is normal over k, then V P\ H is normal over k(uo, . . . , un) (see [6]), 

and 
(2) if P is in the intersection V P\ Hy then P is absolutely simple on V (~\ H 

over k(uo, . . . , un) if and only if P is absolutely simple on V over k 
(see [2; 5]). 

In this paper we prove: 
(1') if V is factorial over k, then V H H is also factorial over k(u0, . . . , wra) 

(Theorem 3), and 
(2') if P is in F H H, then P is normal on V C\ H over k(u0, . . . , ww) if 

and only if P is normal on F over k (Theorem 2). 
The relative case of (2) is a special case of Bertini's theorem [7, p. 138]; it 

can also be proved by the same argument as [6, Theorem 1]. In this paper, 
we give a new proof of the relative case of (2). In addition, we prove that if 
V is factorial over k at P , then V C\ H is also factorial over k(uo, • . . , un) at 
P (Theorem 4). I thank Professor A. Seidenberg for his suggestion to remove 
the restriction of k being infinite from Lemma 4. 

2. Notation and terminology. Let V be an irreducible algebraic variety 
defined over a field k in an affine w-space An over k, i.e. F is a subset of An 

consisting of all zeros of a finite collection of polynomials in the polynomial 
ring k[xi, . . . , xn] which generate a prime ideal in k[xi, . . . , xn]. Let 
(£) = (£i> •••>&&) be a generic point of F over &, let Q = (gi, . . . , qn) be a 
point on F with q as the prime ideal in the coordinate ring fe[£], and let k[£]q 
be the local ring of F at Q in the function field fe(£). Q is simple on F over fe if 
k[£\q is a regular local ring. Q is factorial on F over & if k[Ç\q is factorial (i.e. a 
unique factorization domain). Q is normal on F over & if k[£\q is integrally 
closed in &(£). F is factorial over fe if &[£] is factorial. The term simple point 
as defined here is a relative notion over k in contrast to the notion of an 
absolute simple point over fe, which is defined by the classical Jacobian 
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criterion. Namely, if Fi, . . . , Fs is a set of defining polynomials of V over k, 
P is absolutely simple on V over k if 

i ( d F i \ 
rankl —— ) = n — r, 

\ dXj/ p 

where r = dim V. These two concepts are equivalent if k is a perfect field 
(see [8]). Let u0l U\, . . . , un be n + 1 indeterminates over &(£). The plane H, 
given by Uo + ^iXi + . . . + unXn = 0, is called a generic hyperplane. 
V C\ H is an irreducible variety defined over k(u) = k(u0l . . . , z/„) (see [6]). 
Let r be an indeterminate over &(£). If P is a prime ideal in &[£], then p • &(T)[£] 

is a prime ideal in &(r)[£] (see [2]). We denote the prime ideal p • &(r)[£] by pe, 
and for a prime ideal q in &(r)[£], we denote the prime ideal q H &[£] by qc. 
Let 4̂ be an integral domain with K as its quotient field and let A' be the 
integral closure of A in K. If 6 = {% G A\ xAr C A}, we call S the conductor 
of A. A is integrally closed if and only if E = (1) • A (see [9]). 

3. Results. 

LEMMA 1. (a) fe[£]p is regular if k(r)[%\e is regular, and (b) k(r)[£]q is regular if 
k[£]qc is regular. 

Proof. [7, p. 132, Lemma 2]. 

LEMMA 2. Let £ <m<i ST fre ^ e conductors of k[£\ and &(r)[£], respectively. 
Then 6 • * ( T ) R ] = 6T a»d S r H *[£] = 6. 

Proof. Let &[£]' and &(T)[£] ' be the integral closures of k[Ç] and &(r)[£] in 
&(£) and k(r, £), respectively. If a(r , £) G ^ ( T ) [ J ] / , then there exists d(r) G &[r] 
such that d{r)a{r, £) is integral over the polynomial ring fe(£)[r]. Hence 
d(r)a(T, £) G &(£)[T], since &(£)[r] is a unique factorization domain and 
therefore is integrally closed. Thus d(r)a(r, £) = a0(£) + . . . + an(^)rn. Re­
placing T by n + 1 values Xz- from the algebraic closure k of k, we see that 
0o(£) + #i(£)^* + • • • + an(£)^in is integral over £[£] for each i. Therefore 
each a*(£) is integral over k[£] and hence, integral over &[£]. Now, for 2 G E, 
**<(£) G *[£], f° r * = 0 ,1 ,2 , . . . , » , and a*(r, {) • d(r) G *[£][>]. Thus 
E • &(T)[£] C Ex. On the other hand, let z G ET. Then there exists e(r) G &[r] 
such that ez G &[£][r]. Therefore, ez = b0(%) + . . . + bm(£)rm, where 
bi(£) G k[£] for i = 0, 1, 2, . . . , m. Let /3 be any element in &[£]' so that 
zp G *(r)[f] and ezfi G *[r]K]. Thus, 6,(£)/3 G *[£] for i = 0, 1, 2, . . . , w, and 
hence &*(£) G S for i = 0, 1, 2, . . . , m. I t follows that i C 6 - &(r)K]. The 
second equality in the lemma follows immediately from the first one and the 
fact that k (?)[£] C\ *(l) = *[£]. 

As a consequence we have the following result. 

COROLLARY 1. k\£\ is integrally closed if and only if k(j)\£\ is integrally closed. 

COROLLARY 2. (a) k[£\$ is integrally closed if &(r)[£]pe is integrally closed. 
(b) k(r)[Ç]q is integrally closed if k[£]qc is integrally closed. 
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Proof, (a) By [9, p. 269, Lemma], the conductors of &(r)[£]pe and k[£\p are 
g r • k(r)[^e and S • &[£]», respectively. As k{r)[^e C\k{£) = &[£]», it follows 
that gT • k(r)[^e H *[£)», = S • *[£]*. Thus, if *0")të]*' is integrally closed, 
then ST • k(r)[^e = (1) • fc(r)[É|p.. T t follows that g • k[Ç\p = (1) • k[Ç]* and 
hence fe[£]p is integrally closed. 

(b) This is immediate, since &(r)[£!<* D ^K]QC a n d also Ë • &[£]qc = (1) • k[£]qc 

implies that gT • *(T)[£]<» = (1) • M O K I Q . 

LEMMA 3. Le/ z^, . . . , unbe indeterminates over &(£), let 

ÛQ = - (tti£i + . . . + «»£»), 

and let the conductor of k(ui, . . . , uni ùo)[i-] be (S0. LAew 

go = S • fe(tti, . . . , un, Wo)[f]. 

Proof. By Lemma 2, S • & (wi, . . . , un) [£] is the conductor of & (^i, . . . , ww) [£]. 
Also*(wi, . . . ,#„, «0)[fl = *(«it • • • ,«n)[£U, where5 = &[^i,. . . ,un,u0] — -JO}. 
By [9, p. 269, Lemma], So = S • è(«i, . . . , wjfëls = & • é(#i, . . . , un, w0)[£|. 

THEOREM 1. Le/ F 6g an irreducible y-dimensional variety defined over k with 
7 ^ 2 . Let P be a point on the generic hyper plane section V C\ H of V and H 
over k(uo, . . . ,un). Then P is simple on V over k if and only if P is simple on 
V C\ H over k(uo, . . . , un). 

Proof. Let $u' be the prime ideal of P in k(u)[i;]. &(w)[£]*v 1S the local ring 
of V at P over k(u). Since (u0 + ufa + . . . + un%n) • &(z0fëlv is a prime 
ideal [6, p. 367, Lemma 3], the local ring of V P\ H at P over k (u) is isomorphic 
to k(u)[£]i>u'/(uo + ui£i + . . . + unin) - k(u)[£]pu>. If P is simple on V over k, 
then, by Lemma 1, &(w)[£lv *s a r e gul a r local ring. In order to prove that P 
is simple on V C\ H over jfe(w), we need only prove that u0 + u&i + . . . + 
Ur&n Q 9D?v2> where Wlpu> is the maximal ideal of &(w)[£)v- Suppose that 
^o + ^i£i + • • • + un%n G 2)?v2- Taking the partial derivative with respect 
to uo, we have 1 £ SDîv» a contradiction. Therefore ^0 + UiÇi + . . . + 
un£n d 9WPM'2, and it follows from [10, p. 303, Theorem 26] that 

&OOKk'/Oo + «i£i + . . . + «nê»)É(«)K]v 
is a regular local ring. Hence P is simple on F H i î over k(u). Conversely, if 
P is simple on V Pi H over fe(w), then 

*(#)[£] v / ( # 0 + «l£l + • • . + «*&»)* («)[£] V 

is a regular local ring. But the prime ideal (u0 + ^i?i + . . . + un^n) • &(w)[£W 
is of height 1. It follows from [4, p. 28, (9.11)] that fe (#)[£]V Is a regular 
local ring. Now (%/c)e C W is a prime ideal, therefore 

&0)[fl(Vc)e = (*(«)K]pu')(V").*(«)[«]pu' 

is a regular local ring. It follows from Lemma 1 that k[£]pu'c is a regular local 
ring and hence P is simple on V over X. 
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THEOREM 2. Let V be an irreducible y-dimensional variety defined over k with 
7 ^ 2 . Let P be a point on the generic hyper plane section V C\ H over 
k(u0j . . . , un). P is normal on V over k if and only if P is normal on V C\ H 
over k(u0j . . . , un). 

Proof. Let P be a normal point on V over k and let (rj) be a generic point 
of V C\ H over k(u). Let / = u0 + ^i£i + . . . + un^ni and 

ÛQ = ~ O l £ l + . . . + W»£n), 

and let (/) be (I) • k (#)[£]»the principal ideal in k (u)[i-] generated by I. We have 

(oni(«i a a = (o), 
k(uu . . . , « » , «o)K] = k(uM/(l) ^Hu)[rj], 

as pointed out in [6, p. 367, proof of Lemma 3]. Let pw> pM' be the prime ideals 
determined by P in &(^)M and k(u)[£] respectively, and let p0 be the iso­
morphic copy of pw in k(ui, . . . , un, Wo)[£]. Then pM' H &(z/i, . . . , un)[£\ is 
the prime ideal p determined by P in fe(^i, . . . , un)[Ç\ = po ̂  &(^i, . . . , zOfël-

Let E be the conductor of k(ui, . . . , un)[C]. Since 

k(Ui, . . . , Mn)[flp C k(uU . • . , ««, « o ) K ] s C k (uU . . . , Un, tt0)[£k» 

where 5 = &(wi, . . . , ww)K] — p, we see that 

6 • k(uu . . . , MW)[£]P C E • k(uu . . . , «„, wo)K]p0» 

which according to [9, p. 269, Lemma] and Lemma 3, are conductors of 
k(ui, . . . , un)[£]$ and k(ui, . . . , un, Wo)[£]po> respectively. By Corollary 2 to 
Lemma 2, &(z/i, . . . , un)[£]$ is integrally closed. Therefore 

S • k(tlU . . . , ttn)[£|p = (1) • k(uU . . . , «n)K]p, 

and we have S • &(wi, . . . , un, ^o)[£|po = (1) ' k(ui, . . . , wn, ̂ o)[£]*v Hence 
P is normal on V C\ H over &(^o, . • . , un). 

The converse follows immediately from [4, p. 134, (36.9)]. 

LEMMA 4. k[£] is factorial if and only if fe(r)[£] is factorial. 

Proof. If &[£] is factorial, then &[£][r] is factorial and hence &KHVU is 
factorial, where S = k[r] — {0}. Thus &(r)[£] is factorial. Conversely, let 
&(r)[£] be factorial and let/(£) £ fe[£] be an irreducible element. To show that 
k[£[ is factorial, we only need to show that the principal ideal (/(£)) is prime 
in &[£]. Suppose t h a t / ( f ) = gi(r, £) • Ai(r, £) in ife(r)K]. Multiplying both 
sides of /(£) = gi(r, f) • Z&i(r, £) by the denominator of gi(r, £) • Ai(r, £), we 
may write «/(r)/(£) = g(r, £)A(r, £), where v,f, g, h Ç &[r, {] (= %][£]). We 
may also suppose that v is monic. Let k be the algebraic closure of k in &(£). 
Then £ C &[£]• Indeed, we observe that k(r)[Ç] r\ k(£) = &[£], and hence 
fe[£] is integrally closed. Now let a G k. Then a is in fe(£) and is integral over 
&[£], hence a is also in k[£]. Therefore k C &[£]• Thus, k[£] = k[£\ and 
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£(r)[£] = k(r)[i;]. Thus we may assume without loss of generality that k is 
algebraically closed in k(£). Let g0(£) and h0(£) be the leading coefficients of 
g(r, £) and A(r, £), respectively. Then 

n r ; god) ' Ao(e) • 

The coefficients of g(r, £)/go(£) and of A(r, £)Ao(£) are algebraic over & since 
they are algebraic sums of products of roots of V(T) = 0; and they are in &(£)• 
Hence they are in k. Thus g(j, £)/go(£) and h(r, £)Ao(£) are units in &(r)[£]. 
We have/(£) = g0(?) * &o(£), and so go or A0 is a unit in &[£]. Hence g or A is 
a unit in k(r)[Ç]. Thus / ( J ) is irreducible in k(r)[£] and (/(£)) • &(r)[£] is a 
prime ideal. Hence (/(J)) • *(r)K] H &[£] = (/(£)) • &[£] is a prime ideal. 

THEOREM 3. Let V be an irreducible y-dimensional variety defined over k with 
y ^ 2. If V is factorial over k, then V C\ H is factorial over k(uo, . . . , un). 

Proof. By Lemma 4, k(u\, . . . , un)[£] is factorial. Let (y) be a generic point 
of V C\ H over k(u). Then fe(«i, . . . , un, u0)[y] ~ k(ui, . . . , un, ùo)[Ç], where 
Û0 = - («l£l + . . • + Un£n). B u t k(ult . . . ,Un, « 0 ) [ £ | = * («1, • • , « n ) [ £ U 

where 5 = k[ui, . . . , un, ûo] — {0} and k(ui, . . . , ww)[£ls is factorial. Hence 
k(u)[y] is factorial. 

Let J? be a commutative ring with identity, and let 5 C R be a multiplicative 
system which does not contain 0. Let / be the canonical homomorphism of R 
into Rs. For an ideal 31 in R, let SIe = /(SI) • Rs, and for an ideal ï in i?s, let 
Jic = f~lQ£). Let SI and 33 be two ideals in R and let ï and 35 be two ideals in 
Rs. With respect to the operation of the quotient of two ideals, we have 
(Sl:33)e C 3le:23* and (X:3))c C £c:35c [9, p. 219]. We give an elementary 
proof to the following proposition. 

PROPOSITION 1. Let SI, 33, 36, and 3) 6# as above. Then 
(a) (Sl:93)e = SIe:33e, if SI D K e r / awd 33 w finitely generated and 
(b) (ï:35)c = Xc:3)c if 3) is finitely generated. 

Proof. Let S3 = (bu ...,bt)-R. We have 93e = (/(&i), . . . ,/(&,)) • i?5. 
Let x G 3Ie:93e. Then x33e C SIe and xf(bt) = f{at)/f{si) for some a* Ç 31, 
and st £ S, where i = 1 , 2 , . . . , / . Therefore 

/ ( i l **)*/(*,) £ /(SI) for j = 1 , 2 , . . . , / . 

For each b G /(SB), 6 = EJ=i/(r,)/(6,) for some rlf . . . , r* G 2?. Now 

/(il *<)*& = i ÂÙ sXfirJfib,), 
which is in /(H). Therefore/(ll{_i s,)« € / ( ? ( ) : / (» ) . Hence 

x € (/(2t):/(*))-i?s. 
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Since S t D K e r / , by [9, p. 148, (15)], / ( » ) : / ( » ) = / ( » : » ) . Therefore 
x e (2t:93)e and 2Ie:93e = (2l:93)e. The proof of (b) is similar. 

Let k be an infinite field, and let r be an indeterminate over k. Let 21 be an 
ideal in the polynomial ring k(r)[xi, . . . , xn]. Let 

S = {g(a, Xi, . . . , x j | g(r, Xi, . . . , xn) 6 fc[r, Xi, . . . , xn] H 21} 

be the specialization of 21 over the specialization r -^ a £ &. Let 21 and 53 be 
two ideals in k(r)[xi, . . . , xn] and let 21:93 = {7 G &(r)[xi, . . . , x j | 7 $ C 2ÏJ. 
It is well known that ITS = 2Î:S almost always, i.e. ITSB = H:§ for all but 
a finite number of elements in k (see [1]). Let <2 = (qi, . . . , gn) be a point 
in the affine space An over & with q as its prime ideal in k(r)[xi, . . . , xw], and 
let qc = q Pi k[xi, . . . , x j . Let 36 be an ideal in the local ring k(r)[xi, . . . , xn]q, 
and let 

S = {/(a, Xi, . . . , tfn)|/(r, *ii • • • > Xn) £ k[r, xu . . . , xn] H £} • k[xu . . . , x,Jqc 

be the specialization of X over the specialization x —» a Ç &. Thus J = (£c)e. 

PROPOSITION 2. Le£ 36 and 2) be two ideals in k(r)[xi, . . . , xjq. ZTzew. 

36:3) = 36:2) almost always. 

Proof. Let 21 and 93 be two ideals in k(r)[x1} . . . , xn] such that 
2Ï • k{r){x1, . . . , xn]q = 36 and 93 • k(r)[xu . . . , xjq = 3). By Proposition 1, 
we have 367$) = O T « = ( € » ) , and (21:23). - ((2I:93)ec)e = ((««:»«)c~)e = 
(2ïec:93ec)e. By [1, p. 59, Satz 3], (2Ig£^ec)e_^(2lec:93ec)e almost always, and 
by Proposition 1, (2Iec:93ec)e = (2lec)e: (93ec)e = 2le:Se = 36:S. Thus we 
have X:35 = ï:5D almost always. 

LEMMA 5. Ifk[i*]qc is factorial, then &(r)[£]q is factorial. Conversely, if k(r)[^e 
is factorial and k is infinite, then k[£\p is factorial. 

Proof. Assume that k[£]qc is factorial. Since fe(r)[£]q = &[r][£]qnA-[T]m = 
(^[^]qc[r])qnA;[T][^, we see that k(r)[£]q is factorial. 

For the converse we use the fact that an integral domain R is factorial if 
and only if for every two elements a and b in R, (a): (b) is a principal ideal in 
R [3, p. 370, Lemma 1], Let a(£) and 6(£) be any two elements which are 
non-zero and non-unit in fe[£]p. We proceed to prove that 

(<*(«) •*[«]*:(&«)) -*M* 

is principal. Indeed, since fe(r)[£]p« is factorial, 

(<*(«) •i(r)[{]p.:(i(£)) -k(r)m,e = (c(r, £)) . * ( r ) [ ^ . 

for some c(r, £) G fe[r, £]. Let Ï be the prime ideal of V in k[%i, . . . , x„] and 
let $ be the prime ideal in k[xi, . . . , xn] containing X such that ty/X = p. 
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Assume that a(£), b(£) G &[£]• We have, by [9, p. 148, (21)], that 

(a(xi, . . . , xn), X) • k(r)[xi, . . . , xn]çe:(6(^i, . . . , xn), X) • fe(r)[xi, . . . , xn]ye 

= (c(r, Xi, . . . , xn), X) • &(r)[xi, . . . , xn]%e. 

By Proposition 2, there exists a £ & such that 

(a(xb . . . , xn), £ ) • k[xi, . . . , *n]$: (6(xi, . . . , xn), X) • fe[xi, . . . , xn]<$ 

= (c(a, Xi, . . . , x j , 31) • k[xi, . . . , x j$ . 

Passing to the quotient, we have, by [9, p. 148, (15)], 

(0(g)) • *[{]>:(&(*)) ' *[«]> = (*(«, ?)) ' k[Ç]>. 

THEOREM 4. Le/ F be an irreducible y-dimensional variety defined over k with 
7 ^ 2 . Let P be a point on the generic hyper plane section V C\ H of V and H 
over k(uo, • . . , un). If V is factorial at P over k, then V C\ H is factorial at P 
over k(uo, . . . , un). 

Proof. Using Lemma 5 and the inclusion relation, 

k(ui, . . . , un)[£]p C k(ui, . . . , un, ûo)[Ç]s C k(uu . . . , « „ , ùo)[£hQ, 

where 5 = k(ui, . . . , un)[Ç\ — p that appeared in the proof of Theorem 2, 
we see that k(u\, . . . , un)[£]p is factorial. Since 

k(Ui, . . . , Un, ÛQ)[£]S = (k(Ui, . . . , Un)[£]s)k[ui,...,Un,ûo]-lO} 

= (k(Ui, . . . , Un)[£]p)k[ul un,ûo]-{0}j 

and (k(ui, . . . , un)[£]p)k[U1,...tUntûo]-io} is factorial, we see that 

k(ui, . . . , un, ûo)[£\s 

is factorial. On the other hand, we observe that 5 C k{ui, . . . , un, Wo)[£] — po 
since p = po H fe(wi, . . . , un, ÙQ)[£]. Therefore 

k(Ui, . . . , Un, Ûo)[£ho = (k(uU • • • , Un, Ûo)[£]s)k(ui,...,un,w)[ï]-*o 

is factorial. 
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