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Abstract. A class of algebras that describe invariant pseudo-Riemannian connec-
tions on SO(3) is shown to comprise Jacobi elliptic algebras arising from the Jacobi
elliptic functions.

1. Introduction. We define the Jacobi elliptic algebra J(k) of modulus k e R, (the
field of real numbers), as the 3-dimensional real commutative algebra with multiplication
xy given by

efij = h2ijkjkek (i,j, k = 1,2,3), (1)

with •yi = - y 2
= ~ l and yi = -k2, where {eue2,e3} is a basis of J(k) and eijk is the

Levi-Civita symbol with e123 = 1. The term of J(k) originated from the Jacobi elliptic
functions of modulus k which may be defined as the solutions of the autonomous system
of quadratic differential equations

^ - ^ = 0, ^7 + ̂  = 0, ^f-k^x^O (2)
at at at

3

with the initial values Xj(0) = 0 and x2(0) = *3(0) = 1. See [1, 7]. If x(t) = S x,(r)e, e J(k)
ax 3

and x'(t) = — = E */(f)e,- then, since J(k) is commutative, using the product in J(k) we
at i=i

can rewrite (2) in the form

f + *(02 = 0 (3)

with the initial value x(0) = e2 + e3. Equations of the form (3) have appeared in several
contexts dealing with quadratic dynamical or mechanical systems. (See, for example, [3, 5,
8] and the references therein.)

The Jacobi elliptic algebras J(k) also comprise those algebras which determine all
left-invariant pseudo-Riemannian connections on the Lie group 50(3) corresponding to
distinct moments of inertia. The primary concern of this note is to determine all
left-invariant pseudo-Riemannian connections on 5(9(3) by classifying its corresponding
algebras, and we show that those algebras with distinct moments of inertia are isomorphic
to Jacobi elliptic algebras of certain moduli.

2. Preliminaries. Let G be a real Lie group (of dimension n) with Lie algebra g. As
is well known, (for example, see [4,5]), there is a one-to-one correspondence between the
set of all left G-invariant connections V on C and the set of all algebras (g, *) defined on

t Partially supported by KOSEF Grant 95-K1-0101-01-01.
$ Supported in part by BSRI-94-1427, Ministry of Education, Korea.

Glasgow Math. J. 39 (1997) 115-120.

https://doi.org/10.1017/S0017089500031980 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031980


116 HYO CHUL MYUNG AND DONG SOO LEE

g, under the relation (Viy)e = x *y for x,y e g, where x denotes the unique left-invariant
vector field on G determined by x. Thus, the affine space si(G) of all such connections on
G is isomorphic to HomR(g<8>g, g). If V e s$(G) and (g, *) is the algebra associated with
V, then x *y decomposes as

x*y = ?[x,y]+x°y (4)

for a bilinear multiplication x°y on g, and V is torsion free if and only if (g, °) is
commutative. In this case, x°y = \(x *y +y *x), x*y - y*x = [x,y] for x,yeg, and
(g, *) is said to be compatible with the Lie algebra g. Thus, the torsion free connections in
si(G) are determined by HomR(S(g<S>g), g) (of dimension \n2{n + 1)), where S(g<8>g) is
the R-space of symmetric elements in g <8> g.

Assume that g possesses a pseudometric /JL, SO that /u, induces a pseudo-Riemannian
structure on G and there is a unique torsion free connection V e J#(G), called a
pseudo-Riemannian connection on G, such that the algebra (g, *) of V satisfies the
invariant condition

ti(x*y,z) + fi(y,x*z) = O (5)

for JC, y,z eg. See [4,5]. Suppose next that there is an invariant Riemannian metric ( , )
on G; that is

([x,y),z) + (y,[x,z]) = 0 (6)

for x,y,z e g. Notice that if G is compact and semisimple, then the Killing form on g
induces such a metric.

If fi is a pseudometric on g, then since /i is nondegenerate and symmetric, there is a
unique symmetric operator / e GL(g) relative to ( , ) , called an inertia operator on g, such
that

VL(x,y) = (Ix,y) (7)

for all x,y eg. Conversely, for any inertia operator / on g, the bilinear form p defined by
(7) is a pseudometric on g since fi.(x,y) = (Ix,y) = (x,Iy) = (Iy,x) = fi(y,x) for x,y e g.
In fact, the inertia operators determine all pseudometrics on g satisfying (5) and hence all
left-invariant pseudo-Riemannian connections on G; (for a proof of this, see [4]). Here,
we give a simpler and more direct proof of this for a finite-dimensional Lie algebra g over
an arbitrary field F of characteristic # 2.

LEMMA 1. Let gbe a finite-dimensional Lie algebra over a field F of characteristic ¥^ 2,
and let (g, *) be an algebra over F compatible with g. Then, for any symmetric
nondegenerate form fi on g, the identity (5) is equivalent to the identity

],x)), (8)

forallx,y,z Eg.

Proof. Assume that (5) holds. It follows from (4) that

i = n(z»x,y) + n(x,z°y) -ti(z *x,y)-n(z *y,x)

= n(z°x,y) + fi(x,z°y).
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Cyclic permutations of *->y-»z in this yield

], z) + fi([z, x],y)) = /x(x°y, z) + n,(y,x°z),

Since ° is a commutative product and fi is symmetric, subtracting the first relation from
the addition of the last two implies (8).

Conversely, if (8) holds for all x,y,z e g, then fi(x°y,y) = \ix([y,x],y) for x,y e g,
which is equivalent to fi(x *y,y) = 0 for x,y e g, by (4). Relation (5) now follows from a
linearization of this. •

If, in addition, g has a symmetric nondegenerate invariant form ( , ) , then an algebra
(g, *) compatible with g satisfying (5) is uniquely determined by /u and hence by an inertia
operator.

THEOREM 2. Let g be a finite-dimensional Lie algebra over a field F of characteristic
¥> 2 with a symmetric nondegenerate invariant form (,). Then, for any symmetric
nondegenerate bilinear form /A on g, there is a unique algebra (g, *) compatible with g
satisfying (5), and x*y is given by

x*y = h[x,y} + y-\[x,Iy]-[Ix,y)) (9)

for x,y sg, where 1 is the inertia operator given by fi and (7). Conversely, for any
symmetric I e GL(g) relative to ( , ) , the algebra (g, *) given by (9) satisfies (5) with ^
defined by (7).

Proof. Assume that (g, *) satisfies (5), and let / be the unique symmetric operator in
GL(g) determined by (7). For (9), it suffices to verify that the product x°y is given by

Xoy = y-\[X,Iy)-[Ix,y]). (10)

By Lemma 1 and (7), we have

V(x'y), z) = i«[z,*], fy) + (/*, [z,y]))

using the invariance of ( , ) , which implies (10), since ( , ) is nondegenerate.
For the converse, if x,y,z s g and (g, *) is given by (9) then, since / is symmetric

relative to ( ,) , we have

= 0,

using the invariance of ( , ) in g. This gives (5), as desired. •

We return to a Lie group G with an invariant Riemannian metric ( , ) , and let
be the set of all inertia operators. Then, ^(G) is a closed submanifold of the Lie group
GL(g) of dimension £n(n + l). If / e ${G), then denote by (g, *,/) and (g,°, I) the
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algebras given by (9) and (10), respectively. The foregoing remarks and Theorem 2 show
that all left-invariant pseudo-Riemannian connections on G are given by the class of
algebras {(g,*,/) | / e J>(G)} or {(g,°,I) 11 e J>(G)}. For each I e 3>{G), there is an
orthonormal basis xx,...,xn (principal axes) of g consisting of the eigenvectors of / with
real eigenvalues / , , . . . , / „ (the moments of inertia). Thus, by (7), (9) and (10), (g,*,/)
and (g, o, /) are given by

*,**, = | (1+ (/,-/,)/-')[*,, *,],

*,=;t, = K/,-/,)/- '[*.,*,], (11)
n(Xi,Xj) = SJJIJ, for /,/ = 1 , . . . , n.

In the remainder of this paper, we focus on the rotation group 50(3). Using (11) it is
possible to determine the structure of (g, *, /) or (g, °, /) , for all / e

3. Jacobi elliptic algebras. Let G = 5O(3) and g = so(3) = R3. If (x,y) = -i*(*>y)
for the Killing form K on g, then ( , ) gives an invariant Riemannian metric on G. If
/ e $>(G) has eigenvalues Iu I2, h, then let

h-h h-h h-h ,.,*
fl=fl = a (12)h

LEMMA 3. For each I e ${G), there is a basis {^i,^^} °f g suc^ l^at (gi *>0 ana>

(g, °, /) are given by

(13)

(i,j, k = 1,2,3),

for some a ¥=Q in R, where au a2, a3 are given by (12) with eigenvalues Iu I2, h of I.

Proof. Let {xu x2, xz) be an orthonormal basis of g consisting of the eigenvectors of /.
From the invariance of ( , ) , we have ([xi,Xj],xi) = ([xhXj],Xj) = O for i,j = 1,2,3, which
imply [xhXj] = eiJkakxk for /',/, k = 1,2,3 and for some nonzero a l 5 a2, a 3 e R. If /, / , k are
distinct, then from ([xi,Xj],xk) + (xj,[xi,xk]) = 0 for i,j,k = 1,2,3, it follows that a^ =
a2 = a 3 = a ? 4 0 . Letting y, = a"1*, (i = 1,2,3), we obtain the desired relations (13) from
(11). •

We now prove our principal result in this section, which determines (g, °,/) and
hence (g, *, /) for all / e J>(G).

THEOREM 4. Let I e ${G) and let Iu I2, 73 be the eigenvalues of I.
(i) If Ix = I2 = 73, then (g, °, /) is a zero algebra; that is g°g = 0.
(ii) / / two of /,, I2, I3 are equal, say I^ = I2¥=I3, then (g,°,/) is given by the

multiplication

y? = 0 0 = 1,2,3), yioy2 = )'2o>'i = 0,

\ y2°yz = y3°y2 = \

where a = a^^ —a2 is given by (12) and {yi,y2,y3} is a basis of g.
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(iii) // /,, 72, 73 are distinct, then ax, a2, a3 given by (12) have different signs and
(g, °, 7) is isomorphic to the Jacobi elliptic algebra J(k) of a certain modulus k.

Proof, (i) Since a, = a3 = 0 by (12), from Lemma 3 we have g°g = 0.
(ii) If 7, = 72 ^ 73, then a = a, = -a2 ¥* 0, a3 = 0 by (12) and hence, by Lemma 3, the

basis {y\,y2,y^} in (13) gives the desired multiplication for (g,°,7).
(iii) We establish an explicit isomorphism between (g, °, 7) and J(k), according to the

signature of (aua2,a3). We first show that the ak have different signs. If the 7* have the
3

same sign, then since 2 aklk = 0, the ak must have different signs. For the remaining

cases, we observe that if a is a transposition on {1,2, 3}, then it is easily seen that

for (/;*) = (231), (312), (123). For example, if a = (12), then

'(7(3) ~ '(7(2) A ~ ' ] _
" — — O2 — —0(7(1)

'(7(i) A

— A

'(7(2) '(7(1) M A _
~~"^ - 7 - ~ 0 3 - -fl<7(3).

Therefore, it suffices to treat the two cases: 7] < 72 < 0 < 73 and 7] < 0 < 72 < 73. But,
these yield the signatures ( - , + , + ) and ( - , - , + ) for (aua2,a3). In view of (15), the
remaining signatures ( + , + , - ) , ( + , - , - ) , ( - , + , - ) , ( + , - , + ) are obtained by applying
transpositions on {1,2,3} to the two cases above or to the cases: 0<7,<72<73 and
I\ < h < h < 0.

Let {y\,y2,y3} be the basis of g given by (13). If {aua2,a3) has signature ( T , ±, T ) ,
then let k = Vo,fl3 and put

/2 = >2, /3 = V-(fl,a2) ^3-

Then, the linear map A :./(&)-• (g,°,') with A(ei) = ±/i and A(e,)=/ (/ = 2,3) gives an
algebra isomorphism, where " ± " denotes the sign of a2. In fact, for A(e]) = —fu

f\ °fi = - V -

fi°h = V-(fl1o2)-
1_y2°_y3 =

using (13) and a2 < 0. Thus, A is an isomorphism.
For the signatures (T, =F, ±), we take modulus k = Va^a~2 and let

/i = V-a,o3Vi . /2 = 3*3, /s = ^-(oifl3) V2-

It easily follows that the map: /(&)-*(g,°,7): e]-»±/1, e,-»/ (/ = 2,3) induces an
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isomorphism, where " ± " varies with the sign of a3. Similarly, for (±, T, =F), we let
k = Vfl2fl3 and

/, = V-a[Ja2y2, f2 = yu h = V-(fl,o2) Vs-

Then, {±f\J2,fy has the same multiplication as the basis {eu e2, e3} for J(k). (See (1).) D

We notice that (g, °, /) for I2 = 73 # ^ or 7, = 73 ̂  /2 in Theorem 4(ii) is isomorphic to
the algebra (g,°,/) given by (14). If I2 = l-i¥

ili, then b=a2 = -a3 , fli =0 and the map
(g,°,/i = /2)-*(g,°J2 = /3): y\-*yz, yi-^yi, y^ab^y^ g'ves a n isomorphism. Equation
(3) for the algebra (g, °, /) given by (13) with /, > I2 > 73 > 0 or 7, < I2 < /3 < 0 gives Euler's
equations for the motion of a free rotating rigid body [2,6]. In both cases, the signature of
(a,, a2, a?) is ( - , +, - ) and hence (g, °, 7) is isomorphic to J{k) of modulus k = Vfl,fl3.
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