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A LOWER BOUND FOR KL
OF QUASI-POLARIZED SURFACES (X, L)
WITH NON-NEGATIVE KODAIRA DIMENSION

YOSHIAKI FUKUMA

ABsTRACT. Let X be a smooth projective surface over the complex number field
and let L be a nef-big divisor on X. Here we consider the following conjecture; If the
Kodairadimension x(X) > 0, then KxL > 2q(X) — 4, where q(X) is theirregularity of
X. In this paper, we prove that this conjecture istrue if (1) the casein which k(X) = 0
or 1, (2) the case in which x(X) = 2 and h%(L) > 2, or (3) the case in which x(X) = 2,
Xisminimal, h%(L) = 1, and L satisfies some conditions.

0. Introduction. Let X be a smooth projective manifold over C with dimX > 2,
and L aCartier divisor on X. Then (X, L) is called apre-polarized manifold. In particular,
if L isample (resp. nef-big), then (X, L) is said to be a polarized (resp. quasi-polarized)
manifold. We definethe sectional genusg(L) of apre-polarized manifold (X, L) isdefined
by the following formula;

glL) =1+ %(Kx +(n—1L)L" T,

where Ky is the canonical divisor of X.
Then thereis the following conjecture.

CONJECTUREOQ. Let (X, L) bea quasi-polarized manifold. Theng(L) > q(X), where
q(X) = dimH(X, Oy).

In this paper, we consider the case in which X is a smooth surface. If dmX = 2
and h%(L) > 0, then this conjecture is true. But in general, it is unknown whether this
conjectureis true or not. In the papers[Fk1] and [Fk4], the author proved that L? < 4 if
Lisample, g(L) = g(X), h%L) > 0and x(X) > 0. By this result, we think that the degree
of (X,L) is bounded from above by using m = g(L) — q(X) if x(X) > 0. By studying
some examples of (X, L), we conjectured the following.

CoNJECTURE 1. If (X, L) isa quasi-polarized surface with < (X) > 0.
Then L2 < 2m+2ifg(L) = q(X) + m.

We remark that mis non-negative integer if h°(L) > 0. This conjecture is equivalent
to the following conjecture.
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1210 YOSHIAKI FUKUMA

CoNJECTURE 1'.  If (X, L) isa quasi-polarized surface with x(X) > 0.
Then KxL > 2q(X) — 4.

This conjecture1’ isthought to be ageneralization of thefact that deg Kc = 2g(C)—2
if Cisasmooth projective curve.
In this paper, we consider the above conjecture. The main results are the following.

MAIN THEOREM 1. Let (X, L) be a quasi-polarized surface with x(X) = 0 or 1.
Then KxL > 2q(X) — 4.
If this equality holds and (X, L) is L-minimal, then (X, L) is one of the following;
(1) k(X) = Ocase. X isan Abelian surfaceand L is any nef and big divisor.
(2) k(X) = 1lcase. X2 Fx CandL = C+ (m+ 1)F, where F and C are smooth
curveswith g(C) > 2and g(F) = 1, and m= g(L) — q(X).

(See Theorem 2.1.)

MAIN THEOREM 2.  Let (X, L) be a quasi-polarized surface with x(X) = 2 and
h%(L) > 2. Then KxL > 2q(X) — 2.

If this equality holdsand (X, L) is L-minimal, then (X, L) isthefollowing; X =< F x C
and L = C + 2F, where F and C are smooth curveswith g(F) = 2and g(C) > 2.

(See Theorem 3.1)

MAIN THEOREM 3.  Let X bea minimal smooth surface of general typeand let D be
a nef-big effective divisor with h°(D) = 1 on X. If D is not the following type (), then
KxD > 2q(X) — 4:

) D = C; +Yj>2r1;Cj; C2 > 0 and the intersection matrix ||(Cj, Ci)||j>2k>2
of ¥oj>21;,C; is negative semidefinite.

(See Section 4.)

MAIN THEOREM 4.  Let X be a minimal smooth projective surface with x(X) = 2
and let D bea nef-big effective divisor on X suchthat D isthetype (). ThenD? < 4m+4

if m= g(D) — q(X).
We remark that the classification of polarized surfaces (X, L) with x(X) > 1 and
KxL < 2isaobtained by [DP]. We work over the complex number field C.

1. Preliminaries.

DerINITION 1.1.  Let (X, L) be aquasi-polarized surface.

(1) Wecall (X1,L1) aminimalization of (X,L) if p: X — X; isaminimal model of
XandL; = ¢.L inthe sense of cycle theory. (We remark that L, is nef and big (resp.
ample) on Xy if soisL.)

(2) We say that (X, L) isL-minimal if LE > O for any (—1)-curve E on X. For any
quasi-polarized surface (X, L), there exists a birational morphism p: (X,L) — (Xo, Lo)
suchthat L = p*Lg and (Xg, Lo) isLo-minimal. Thenwecall (Xg, Lo) an L-minimalization
of (X,L).
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LEMMA 1.2 (DEBARRE). Let X beaminimal surface of general type with q(X) > 1.
Then K2 > 2py(X). (Hence KZ > 2q(X) for any minimal surface of general type.)

PrROOF. See[D]. ]

THEOREM 1.3.  Let (X, L) be an L-minimal quasi-polarized surface with x(X) > 0.
If hO(L) > 2, then (X, L) satisfies one of the following conditions.

) ab) = 29(X) — 1.

(2) For anylinear pencil A C |L|, thefixed part Z(A) of A isnot zeroand BsAy = ¢,
where Ay is movable part of A. Let f: X — C be the fiber space induced by Ay. Then
gL) > g(C) +29(F) > q(X) +g(F), g(C) > 2,LF = 1 and L — aF is numerically
equivalent to an effective divisor for a general fiber F of f, wherea > 2.

PROOF. See Theorem 3.1in [Fk3]. ]

LEMMA 1.4. Letf:X — C be a relatively minimal eliptic fibration with q(X) =
0(C) + 1. If LF = 1 for a nef-big divisor L on X, then X = F x Cand f: X — Cisthe
natural projection, where F isa general fiber of f.

PROOF (SEE [FJ3]). By hypothesis f is a quasi-bundle (see Lemma 1.5 and
Lemmal.6in[S)]). LetX C Chethesingular locusof f andU = C—Z. Wefix an ellip-
tic curve E = f~1(x) for x € U. Then by [Fj3], we have amap ¢: m1(U) — AuUt(E, Lg).
Since the translations of E preserving Lg are of order d = degLg by Abel’s Theorem,
Aut(E, Lg) isfinite group. Let G = Im . Then by [Fj3], there exists a Galois covering
m:D — Csuch that G = Gal(D/C) acts effectively on the polarized pair (E, Lg) and
X2 (D x E)/G, where D is asmooth projective curve. Since q(X) = g(C) + 1, we have
g(E/G) = 1. Hence G acts on E astranslations. Therefore any element of G is of order
d=deglg = 1.SoX =D xE=CxF,andf: X — Cisthenatural projection by
construction. ]

LEMMA 1.5. Let X be a smooth algebraic surface, C a smooth curve, f: X — C

a surjective morphism with connected fibers, and F a general fiber of f. Then q(X) <
g(C) + g(F). Moreover if this equality holds and g(F) > 2, then X ~y,;y F x C.

PROOF. Seee.q.[Be] p. 345 or [X]. ]

LEMMA 1.6.  Let X beaminimal smooth surfaceof general type. ThenKZ > 6q(X)—
13 unless X = C; x C, for some smooth curvesC; and Co.

ProOF. Weassumethat X % C; x C, for smooth curvesC; and C,. By Théoreme6.3
in [D], we have KZ > 2py(X) +2(q(X) — 4) + 1. On the other hand, pg(X) > 2q(X) — 3
by [Be]. Hence KZ > 6q(X) — 13. .

PrROPOSITION 1.7.  Let X bea minimal smooth surface of general type and let C be
an irreducible reduced curve with C? > 0. Then KxC > (3/2)q(X) — 3.

ProoF. If q(X) < 2, then thisinequality istrue. So we assume q(X) > 3.

If X & C; x C, for some smooth curves C; and C,, then KxC > 2q(X) — 4 >
(3/2)q(X) — 3. So we may assume X ¥ C; x C,. Let x € Q with x > 1. We put
m = g(xC) — q(X).

https://doi.org/10.4153/CJM-1998-059-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-059-x

1212 YOSHIAKI FUKUMA

CLAIM 1.7.1. If 2m+2 > (2/3)(q(X) — 2) + 1, then (xC)? < 2m, + 2.

PROOF.  Assumethat (xC)? > 2my + 2. Then (xC)? > (2/3)(q(X) — 2) + 1.

Hence
(K20 > (8(a00 — 2) — 1) (5(a09 — 2) +1)
— 4(q(x) - ) +6(q0%) —2) ~ 2(a09) ~2) ~ 1
= 4(q() — 2)° + ?(q(X) ~2) -
by Lemma 1.6.

By Hodge index Theorem, we get (xCKx)? > (xC)?(Kx)? > 4(q(X) — 2)2 and we
have xCKx > 2(q(X) — 2). Therefore

g(xC) > 1+ = ( (a(x) — )+2m(+2)
= q(X) +my

and this is a contradiction.
This completes the proof of Claim 1.7.1.

We continue the proof of Proposition 1.7.
We have

A(X) + m, = g(xC) = g(©) + (x — 1a(C) + 2= 1 - 2)

> 00 + (x — 109 + =2 (xc? - 2)

since g(C) > q(X).
Hence m¢ > (x — 1)q(X) + ((x — 1)/2)(xC? — 2). Here we put x = (4/3). Then
my > (1/3)a(X) — (1/9) > (1/3)a(X) — (7/6). Therefore by Claim 1.7.1, we have

4 2
= <
( 3c) < 2m+2.
In particular, (4/3)CKx > 2q(X) — 4. Therefore KxC > (3/2)q(X) — 3. This completes
the proof of Proposition 1.7. ]

LEMMA 1.8. Let X be a minimal smooth surface of general type. Then there are
only finitely many irreducible curves C on X up to numerical equivalence such that KxC
is bounded.

Moreover there are only finitely many irreducible curves C on X such that KxC is
bounded and C? < 0.

PROOF.  See Proposition 3in [Bo].
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DEerFINITION 1.9 (SEE e.9. [BABE], [BEFS], AND [BES]). Let X beaprojectivevariety
over C and let Z be a0-dimensional subschemeof X. A O-dimensional subschemeZ; of X
iscalled asubcycleof Zif Iz C Iz, where Iz (resp. 12,) isthe ideal sheaf which defines
Z (resp. Z1). Let L be a Cartier divisor on X. Let W be a subspace of H(L) and k a non-
negative integer. Then W is called k-very ample if the restriction map W — HO(L ® O)
is surjective for any 0-dimensional subscheme Z with length < k + 1. If W = HO(L),
then L is said to be k-very ample. (We remark that L is O-very ample if and only if L is
spanned and L is 1-very ampleif and only if L isvery ample.)

2. Thecasein which k(X) = 0or 1. In this section, we will prove conjecture 1’
for the casein which k(X) = Oor 1.

THEOREM 2.1. Let (X,L) be a quasi-polarized surface with k(X) = 0 or 1. Then
KxL > 2q(X) — 4.
If this equality holds and (X, L) is L-minimal, then (X, L) is one of the following;
(1) k(X) = Ocase. X isan Abelian surfaceand L is any nef and big divisor.
(2) k(X) = 1lcase. X2 Fx CandL = C+ (m+ 1)F, where F and C are smooth
curveswith g(C) > 2and g(F) = 1, and m= g(L) — q(X).

PrROOF. (1) Thecaseinwhichx(X) = 0. Thenq(X) < 2 by the classification theory
of surfaces. Hence KxL > 0 > 2q(X) — 4.

If KL = 2q(X) — 4, then q(X) = 2 and KxyL = 0. Since (X, L) is L-minimal, we
get that X is minimal, in particular, X is an Abelian surface. Conversely, let (X,L) be
any quasi-polarized surface which is L-minimal, and let X be an Abelian surface. Then
KxL = 0=2q(X) — 4.

(2) Thecaseinwhich k(X) = 1. Letf:X — C bean elliptic fibration, u: X — X’
the relatively minimal model of X, and let f’: X’ — C bethe relatively minimal elliptic
fibration suchthat f = f' o . Let L’ = p,L. Then L’ is nef and big, and KyL > KyL'.

By the canonical bundle formulafor elliptic fibrations, we have

Kx = (29(C) — 2+ x(Ox) )F' + > _(m — 1),

where F’ is ageneral fiber of f’ and mF; is amultiple fiber of f/ for any i.
Hence
KwL’ = (29(C) — 2+ x(Ox)) = 29(C) — 2
=2(g(C)+1) — 4
> 2q(X) — 4.

Therefore KyL > Ky L' > 2q(X) — 4.

Assumethat KxL = 2q(X) — 4.

Since k(X) = 1, we get KxL > 0. Hence q(X) > 3 and g(C) > 2. By the above
argument, we obtain KxL = Ky L’ = 2q(X) — 4. Since (X, L) is L-minimal, we obtain
that X isminimal. Because KyL = 2¢(X) — 4 and 2g(C) — 2+ x(Ox/) > 0, we obtain the
following.
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(2-1) f hasno multiple fibers.

(2:2) x(Ox) = 0.

(2-3) q(X) = 9(C) + 1.

(2-4) LF =1.
By (2-3), (2-4), and Lemma 1.4, we obtain X = F x C and f: X — C is the natural
projection. Because of 1(X) = 1, we have g(C) > 2. Thenf* o f,(O(L)) — O(L — 2)
is surjective, where Z is a section of f. Let L|r, ~ p, where Fy = f~1(t) and t € C.
Let (y,t) beapoint of F x Cand (y(p),t) the point p; € F x C. Then the morphism
h:FxC— FxC;h(y,t) = (y—y(p), t) isanisomorphism. HenceL = h*({0} x C)+f*D.
ThereforeL = C+f*D viah, where D € Pic(C). But L2 = 2m+ 2 for m = g(L) — q(X).
HencelL = C+ (m+ 1)F. This completesthe proof of Theorem 2.1. n

3. Thecasein which x(X) = 2and h°(L) > 2.

THEOREM 3.1.  Let(X, L) beaquasi-polarizedsurfacewith x(X) = 2andh®(L) > 2.
Then KxL > 2q(X) — 2.

If this equality holdsand (X, L) is L-minimal, then (X, L) isthefollowing; X =< F x C
and L = C + 2F, where F and C are smooth curveswith g(F) = 2and g(C) > 2.

PROOF. (A) Thecasein which X is minimal. Then we use Theorem 1.3.

(A-1) Thecaseinwhichg(L) > 2q(X) — 1. Theng(X) + m= g(L) > 2q(X) — 1. So
we obtainm > q(X) — 1.

(A-1-1) Thecasewhere q(X) > 1. Then by Lemma 1.2, we obtain K% > 2pg(X) >
2q(X). If L2 > 2m, then

(KxL)? > KZL? > (2q(X)) (2m)
> 49(X)(a() — 1).

Hence KxL > 2(q(X) — 1). But thisis impossible because

900 +m=g(L) > 1+ (2009 — 2+ 2m)
=q(X)+m

Therefore L? < 2m— 1, that is, KxL > 2q(X) — 1.

(A-1-2) Thecasewhereq(X) = 0. ThenKxL > 0 > 2q(X) — 2.

(A-2) The case in which g(L) < 2q(X) — 1. Then by Theorem 1.3, there is a fiber
spacef: X — C such that C is asmooth curve with g(C) > 2,LF = 1,andL — aF is
numerically equivalent to an effective divisor, where F isageneral fiber of f anda > 2.
So there exists a section C’ of f such that C’ is an irreducible component of L, and we
obtainthat L — aF = C' + D/, where D’ is an effective divisor such that f(D’) are points.
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Sincef isrelatively minimal, the relative canonical divisor Kx/c = Kx — f*Kc is nef
by Arakelov’s Theorem. So we have Ky cL > 2Ky cF. Hence

o(L) = 9(0) + S (Ky/cl) + 512
> 9(0) + KjcF + 512
= g(C) +2g(F) — 2+ %LZ
= 9(0)+ (F) + g(F) — 2+ 51
> 409+ 212

because g(F) > 2 and g(C) + g(F) > q(X).

Since g(X) + m = g(L), we obtain L? < 2m. Namely KxL > 2q(X) — 2.

Next we assume KxL = 2q(X) — 2.

Then g(L) < 2q(X) — 1 by the above argument. Moreover the following are satisfied
by the above argument of (A-2);

(@ Kx/cC' =0,Ky,cD’'=0.

(b) a=2.

© 9(F) =2

(d) a(X) = 9(C) +g(F).

Since X is minimal, we obtain X = F x C by (d) and Lemma 1.5. Moreover f: X — C
is the natural projection. Since D’ is contained in fibers of f and KX/CD’ = 0, we obtain
D’ = 0. SinceKy,c = (Zg(F) — Z)C and Ky ,cC' = 0, we have CC’ = 0. Hence C' isa
fiber of F x C— F. ThereforeL = C + 2F by (b).

(B) Thecasein which X isnot minimal.

Let X = Xg — X; — -+ — Xn1 — X be the minimalization of X, where
wi: Xi — Xi+1 isthe blowing down of (—1)-curve E;. LetL; = (ui—1)«(Li—1), Lo = L, and
Li-a = (ui—1)"Li —m_1Ei 1, wherem_; > 0. Weremark that h°(L;) = h°((ui—1)*Li) >
hO(Li—1). Then L? = (Ln)? — -2 m? and KyL = Kx,Ln + X123 m. By the case (A), we
have Kx, Ln > 2q(X) — 2. Hence KxL > 2q(X) — 2+ >=d m > 2q(X) — 2.

Next we consider (X, L) such that KyL = 2q(X) — 2 and (X, L) is L-minimal, Then
S m = 0since KxL = 2q(X) — 2 and so we have my = O for any i. But then X is
minimal because (X, L) is L-minimal. Thisis a contradiction. This completes the proof
of Theorem 3.1. ]

4. The casein which k(X) = 2 and h°(L) = 1. In this section, we consider the
casein which x(X) = 2 and h%(L) = 1. We put m = g(L) — q(X).
LemmA 4.1, If g(L) > 2q(X), then KxL > 2q(X) — 1.

PrROOF. Then g(X) + m = g(L) > 2q(X). Hencem > q(X). Assumethat L®> > 2m.
So we obtain L2 > 2q(X). Let u: X — X' be the minimalization of X and L’ = p.L.
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Then KxL > Ky L’ and (L')? > L2 > 2q(X). Since K2, > 2q(X) by Lemma 1.2, we have
(KxwL)2 > (Kx)3(L')2 > (Zq(X))2 by Hodge index Theorem. So we obtain Ky L' >
2q(X). But thisisimpossible because

q(X) +m=g(L) = 1+q(X) +m
Hence L2 < 2m, that is, KxL > 2q(X) — 1. This completesthe proof of Lemma4.1. =

LEMMA 4.2,  If for any minimal quasi-polarized surfaces (X, L) with x(X) = 2 and
h(L) > 1 we can provethat KyL > 2q(X) — 4, then this inequality holds for any quasi-
polarized surface (Y, A) with x(Y) = 2 and h°(A) > 1.

PROCF. Itiseasy. ]

By Lemma 4.2, it is sufficient to prove Conjecture 1 (or Conjecture 1’) under the
following assumption (4-1);

(4-1) Xisminimal.

Here we consider Conjecture 1 (or Conjecture 1') for the following divisors.

DerINITION 4.3. Let X be a smooth projective surface and let D be an effective
divisor on X. Then D is called a CNNS-divisor if the following conditions hold:

(1) D isconnected.

(2) theintersection matrix ||(C;, Gj)||ij of D = i riCi is not negative semidefinite.

REMARK 4.4. If L isan effective nef and big divisor, then L isa CNNS-divisor.

Let D be a CNNS-divisor on aminimal smooth projective surface X with x(X) = 2,
and D = ¥ r;G; its prime decomposition.

We divide three cases:

(o) Tiesli > 2;
(B) Yiesti = 1,
(V) Tiesti =0,

where S= {i | C? > 0}.
First we consider the case ().

THEOREM 4.5. Let D be a CNNS-divisor on a minimal smooth surface X with
k(X) = 2, and let D = 3 r;C; beits prime decomposition. If 3"jcsr; > 2, then KxD >
2q(X) — 1.

PROOF. Let A = YjesriCi and B = D — A. Then A is nef and big. We remark
that KxD > KxA since X is minimal with x(X) = 2. So it is sufficient to prove that
g(A) > 2q(X) by Lemma4.1. By assumption here, there are curves C; and C, (possibly
C1 = Cp) suchthat C2 > 0and C3 > Oand A—C; —C; iseffective. Let A;, = A—C;—Ca.
Then 1

g9(A) = g(CL +Cp) + E(KX + A+ Cy+Co)Ap.

SinceKx +Aisnef and A is 1-connected, we have (Kx + A)Aj2 > 0and (C; +Cp)A2 > 0.
Hence g(A) > g(C; + Cy). On the other hand, g(C; + C,) = g(Cy) + 9(Cy) + C1C, — 1.
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Because C? > 0 and C3 > 0, we obtain C;C, > 0. Henceg(Cy +C,) > g(C1) +9(Cy) >
2q(X). Therefore by Lemma 4.1, we obtain Kx(C; + C;) > 2q(X) — 1. So we have
KxD > Kx(C; + Cy) > 2q(X) — 1. This completes the proof of Theorem 4.5. ]

Next we consider the case (7).

THEOREM 4.6.  Let D bea CNNS-divisor on a minimal smooth projective surface X
with k(X) = 2 and let D = ¥ r;C; beits prime decomposition. If jcsri = 0 and there
existsa curve C; such that C? = 0, then KxD > 2q(X) — 4.

PROOF. Assumethat CZ = 0. We may assumethat q(X) > 1. Since D isa CNNS-
divisor, D has at least two irreducible components. Let C, be another irreducible com-
ponent of D such that C; N C, # ¢. Then

1
g(D) = g(CL +Cy) + E(KX + D+ C1 + C,)Dyp,

whereDy; =D — (Cl + C2)

Weput| = g(Cy + C) — q(X) and m = g(D) — q(X). Since KxD1» > 0, we have
2m— 2l > (D + Cy + Cy)Dyap. Let Xg = X, C10 = C1, Coo = Cy, and pi: Xj — X1
blowing up at a point of Cyj_1 M Cyi_1, where Cy; (resp. Cy;) is the strict transform of
Cyi—1 (resp. Cyi—1), and let E; be an exceptiona divisor such that pi(E;) is a point. We
put p = p1 o --- o uy, where n is the natural number such that C; -1 N Cop-1 # &
and Cyn N Con = ¢. Let Cpj = piCyio1 — biE, Gy = pfCoi-1 — diE, and g =
bi +di. Weremark that by > 1andd > 1. Let Xj = X, Ciy = Cypn, Cyp = Cop,

50 = En, and p/: X/ — X{_; blowing up at apoint x € (Sing(C}; ;) U SIng(Cy; ,)) \
((Criy MEpi_1) U (Ch;_y N Ep;4)), where Cy; (resp. Cy;, Ep) is the strict trans-
form of Cj;_; (resp. Cy; 4, Ep;_1), and let E/ be an exceptional divisor on X/ such
that 1/(E/) is a point. Let C;; + Ch; = (uf)*(Cy;_y + Ch; ;) — &E/. We assume that
(Si ng(Cy) U Sing(c/z,t)) \ ((Cll,t NEp) U(Cy N Eé)t)) = 9.

CLAIM 4.7.  ¢(Cl, +Ch, +Epp) > q(X)).

PrOOF. Let a(Ci; + G, + Ep,) = dimKer(Hl(Ox{) — Hl(oC:’l,t+C/2‘t+El’).t)). By
Lemma3.1in[Fk4], it issufficient to prove «(Cy +C5, +E,) = 0since Cy +C;  +Ep,
is 1-connected. Assume that a(Cy, + G5, + Epy) # 0. Since q(X) > 1, there is a mor-
phism f: X{ — G such that f(X) is not a point and f(Cy, + C;, + Ep,) is apoint, where
G is an Abelian variety. On the other hand, a (g o - -+ © i o pf - - - o uf)-exceptional
divisor is contracted by f because G is an Abelian variety. Therefore (1//)*(Cy + Cy) is
contracted by f. But (e;C; + C»)? > 0 for sufficient large e;. Thisisimpossible. Hence

a(Cy, + Cy + Ey,) = 0. This completes the proof of Claim 4.7.
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Hence L
9(Cin+Con+En) = g(c/l,t + Clz,t + Eé)t) + Z; Eal/(al/ -1
1,
=1
=q(x) + _Z 5@-’(@-’ —1).
i=1
On the other hand,

g(Cl+C2)—g(Cln+C2n+En)+Z a(a.—l)+ (an D(an — 2).

Therefore

(C:+C) = 409+ 5a(a ~ 1+ (e — Dlan— 2+ Y e~ D)

k=1

Sincel = g(C; + C,) — g(X), we obtain
2235 a0~ 1)+ (@~ Ve -2+ 3 alal - 1

Let C1C, = x. Thenx = X, bidi and (Cy + C;)? < 2x by hypothesis.
CLAIM 4.8. .
e
x—> a@—1)—(am—an—2 <2
i=1

PROOF.

A—E@m—n—@—n@—a

—ZZbd—Zm+mm+d—n—m+m 1)(bn + 0o —

i=1

For eachi(#£ n),
2bidi — (b +d)(b; +d — 1) = —biz - diz +h +d;
=b(l—-b)+d@—-d) <0,
andfori =n,

2bndn - (bn + dn - 1)(bn + dn - 2) = _bﬁ - drz] + 3br| + 3dn -

= bn(3—bn) + dn(3— dn) — 2 < 2.

Therefore we obtain Claim 4.8.
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By Claim 4.8, we obtain

D? = (Cy+Cp)? + (D +Cy + Co)Dy2
< 2x+2m-— 2|

< 2X+2m—§ai(ai —1)—(an— 1)(an—2)—éa’k(a’k— 1)

< 2m+2—kia’k(a{<—l)
<2m+2. B
Therefore KxD > 2q(X) — 4. This completes the proof of Theorem 4.6. L]
Next we consider the case in which the equality in Theorem 4.6 holds.

THEOREM 4.9. Let D be a CNNS-divisor on a minimal smooth surface X with
r(X) = 2,and let D = ¥ r;C; beits prime decomposition. Assume that Yjesri = 0,
there exists a curve C; such that C?> = 0, and KxD = 2q(X) — 4. Then there are two
irreducible curves C; and C, such that D = C; + C, with C2 = C3 = 0.

Moreover if C; or C; is not smooth, then g(D) — g(X) = 1 or 3, and #(C; N Cyp) = 1.

(1) Ifg(D) — a(X) = 1, then C; is smooth but C; is not smooth only at x € C; N C;
and mult,(C)) = 2fori # j and {i,j} = {1, 2}, wheremult,(C;) is the multiplicity of C;
at x.

(2) If g(D) — g(X) = 3, then C; and C; are not smooth only at x € C; N C;, and
multy(Ci) = 2for i = 1,2.

ProOOF. LetD = Cq + Cy + Dy, Where Cf = 0 and C, is an irreducible curve such
that C,C, > 0. By the proof of Theorem 4.6, we have KD, = 0. If D1p # 0, then
KxC = 0for any irreducible curve C of D1, because K is nef.

CLAIM 4.10. C? = 0Ofor any irreducible curve C of D.

PROOF. By hypothesis, there is an irreducible curve B of D such that B> = 0. Let
B’ be any irreducible curve of D such that B # B’ and BB’ > 0. By the proof of Theo-
rem 4.6 and the assumption that KxD = 2q(X) — 4, we have (B')? = 0. By repeating this
argument, this completes the proof because D is connected.

By this Claim, C? = 0 for any irreducible curve C of D1,. So C = 0 by Hodge index
Theorem. But this is acontradiction.

Therefore Dy, = 0and sowe haveD = C; +C, with C2 = C3 = 0. Next we consider
the singularity of C; and C,.

We remark that C; (resp. C;) issmooth on C; \ {C;NC,} (resp. C2 \ {C1NC;}) since
KxD = 2q(X) — 4 and >} _; a;(a; — 1) = 0 (here we use the notation in Theorem 4.6).

We assumethat §Cy N C, > 2. Then the number n of blowingup = pgo--- o is
greater than 1. Since KxD = 2q(X) — 4, we obtain b; = d; = 1. By interchanging the
point of thefirst blowing up, we obtain that C; and C, are smooth on C; N Co.
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We assume $C; N C, = 1. If the number n of blowing up p is greater than 1, then
b; = d; = 1 by the proof of Theorem 4.6. So C; and C, are smooth at x € C; N Cs.
Hence we assumethat the number of blowing up isone. Then C;C, = by d;. By the proof
of Theorem 4.6, b;(3 — by) + di(3 — d;) = 4. Hence (b1, d;) = (1,1),(1,2),(2,1), or
2,2).

If (by,d1) = (1,1), then C; and C, are smooth at x.

If (b1, d1) = (1,2) or (2,1), then C; is smooth at x and C; is not smooth at x for i # j
and {i,j} = {1,2}, and mult,(C;) = 2, where mult,(C;) is the multiplicity of C; at x. In
this case, C;C, = 2and g(D) — q(X) = 1.

If (by,d1) = (2,2), then C; and C; are not smooth at X, and mult,(C;) = 2fori = 1,2.
Inthiscase, C;C, = 4and g(D) — q(X) = 3. Thiscompletesthe proof of Theorem 4.9.=

Next we consider the following case (x):

Let D be a CNNS-divisor on a minimal surface of genera type, and let
D = ¥ riC; beits prime decomposition. Then we assume C? < 0 for any i.

(%)

THEOREM 4.11.  Let (X,D) be (x). Then KyD > 2q(X) — 3.

Before we prove this theorem, we state some definitions and notations which is used
in the proof of Theorem 4.11.

DEFINITION 4.12. Let D be an effective divisor on X. Then the dual graph G(D) of
D is defined as follows.

(1) Theverticesof G(D) correspondsto irreducible components of D.

(2) For any two vertices vi and v, of G(D), the number of edgesjoining vi and v,
equal #{By N By}, where B; is the component of D correspondingto v; for i = 1, 2.

REMARK 4.12.1. Let G(D) be the dual graph of an effective divisor D. We reject
one edge e of G(D) and G = G(D) — {e}. Let v; and v, be vertices of G(D) which are
terminal points of the edgee. Let C; and C, betheirreducible curve of D corresponding
vy and v, respectively. Then G is the dual graph of the effective divisor which is the
strict transform of D by the blowing up at apoint x correspondingto eif i(Cy, Cy; X) = 1,
wherei(C;, Cj; X) is the intersection number of C; and C; at x.

NOTATION 4.13. Let (X, D) be (x). We take a birational morphism p’: X’ — X such
that CiNCNC; = ¢ for any distinct G/, Cj, and G}, andif CiNC| # ¢, theni(C{,Cj;X) = 1
forx € CiNC], whereD’ = (u')*(D) = 3 r{C{. Let pi: Xi — Xi—1 be one point blowing
upsuchthat 4/ = pgo--- o, Xo=Xand X = X'. Let Dj = pDj—1 and Dy = D. Let
bi be an integer such that (i) ((Di-1)red) — BiEi = (Di)rea, Where E; is a yii-exceptional
curve.

REMARK 4.14. (@) Notwo (u1 o --- o uj)-exceptional curves on X; which are not
(—1) curveintersect at a point on (—1)-curve on X; contracted by some ; (j < ).

(b) The point x whichis a center of blowing up ui: X; — Xi_1 is contained in one of
the following types,
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(1) the strict transform of the irreducible components of D;

(2) theintersection of the strict transform of the irreducible componentsof D
and one (—1)-curve on X; contracted by some ; (j < i);

(3) theintersection of the strict transform of the irreducible componentsof D
and one (uy o - - - o pj)-exceptional curve on X; which is not (—1)-curve
and one (—1)-curve on X; contracted by some ; (j < ).

We assumethat (X, D) satisfies(x) and we use Notation 4.13 unless specifically stated
otherwise.

DEFINITION 4.15. (1) Let m: X — X be a birational morphism, and let X and X be
smooth surfaces. Let 7 = mmy 0 -+ - 0 m, Xo = X, and X, = X, where m: X — Xi_1 isone
point blowing up. Let E; be the exceptional divisor of 7;. Let D be an effective divisor
on X and we put Dg = D. Let D; = 7*(Dj_1). Then the multiplicity of E; in D; iscalled
the Ej-multiplicity of D.

(2) WeuseNotation 4.13. Letx; = pi(Ei). If X isthetype(3) in Remark 4.14(b), then
the (uy 0 - - - o uj)-exceptional curvewhichisnot (—1)-curveissaidto bean e-curve, and
X; is said to be an e-point.

We remark that there is at most one e-curve throughout ;.

REMARK 4.16. We consider Notation 4.13. Let E an e-curveon X; and let x; bethe e-
point associated with E. Then we must be blowing up at x; by considering Notation 4.13.
Let E beastrict transform of E by blowing up pi+1: Xi+1 — X at x;. Then(E)? = E?—1 <
—3andKx, E=KyxE+1> 1.

DEFINITION 4.17.  Let§: X — X be any birational morphism, E a union of §-excep-
tional curve, and let D be an effective divisor on X. We put B = 6(E) = {y1,...,Ys}.
Thenwe can described asé = éso- - - 001, whered; isthe map whoseimage of aunion of
bi-exceptional curvesisy;. For each yx € B, we defineanew graph G = G(yk, D) which
is called theriver of the birational map 6y and D.

(STEP1). LetEgpbea(—1)-curve obtained by blowing up at yy. Let vo o be avertex
of the graph G which corresponds to Egg. We define the weight u(0, 0; G) of v as
follows:

u(0, 0; G) = the Ego-mulltiplicity of D.

(Step2). LetEy,...,Es be(—1)-curvesobtained by blowing up at distinct points
{X4,1,---, X1t} on Egp. Let vy 1,..., V1 be vertices of the graph G which correspond to
Ei1,..., E1 respectively. We join vy and v by directed line which goes from v to
Voo. Forj =1,...,t, we definethe weight u(1, j; G) of v1; asfollows:

u(Lj; G) = e1j — u(0,0; G),
where e = the Eyj-multiplicity of D.

(STEP 3). Ingenerd, let Ei1,.. ., E bedigoint (—1)-curves obtained by blowing
up at distinct points {Xi 1, ..., X } on Uy Ei—1k- L€t Vi1, ..., Viy bevertices of the graph
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G which correspondto E; 5, . .., Ei; respectively. We join v;; and vi_1 x by directed line
which goesfrom vi to vi_y if E;j is contracted in Ei_1 . Let & = the E;j-multiplicity
of Dforj = 1,...,t. Then we definethe weight u(i, j; G) of v;; asfollows:

u@.jjG) =ej— > up.q0),
Vg €P(i,j;G)
where P(i, j; G) denotesthe path between vo0 and vij, and SP(i, j; G) = P(i,j; G) — {vi; }
By the above steps, we obtain the graph G for each yy.

NOTATION 4.18.

deg(vi,j) -1, if Vi 7é Vo,0,
deg(Voo)-

LEMMA 4.19. Let u:Y — X be a birational morphism between smooth surfaces
X and Y, and let D be an effective divisor on X. Let D’ = p*D, and E a union of all

p-exceptional curves.
Let B = u(E) and M(D’) = sumof the multiplicity of (—1)-curvesonY in D’. Then

MO)=%| ¥ { X u(p.ac)|eiicw))

yeB v €G(y) vaqu(i,j SG(y)

+3( % u(iice)f,

yeB “vij€G(Y)

w(i,j; G) =

where G(y) = G(y, D) and

. ~w(iis6y) -1 ifw(i,j;Gy) > 1,
(1.1 G0)) = {o it w(i,j; ) = 0.

PrROOF. We may assumethat B = {y}. Let G = G(y,D). Let A = {vjj € G |
deg(vi;) = 1,vij # Voo} and p = £A — deg(vo)-

If A= ¢, then M(D’) = u(0,0; G).

SoweassumeA # ¢. We prove thislemmaby induction onthe value of p. Weremark
that by construction the following fact holds;

Fact. For any vs; € A, the multiplicity of the (—1)-curve corresponding to vs; is
equal to Zv.‘,eP(st;G) U(i:j; G)-

(1) Thecaseinwhich p = 0.
Thendegv = 2forany v ¢ Aand v # vgo. Hence

M(D') = 3= u(i,j; G) + u(0, 0; G)(deg(voo) — 1)

Vi €G

= Ui+ X (X upaG)iiG).

Vi‘jEG Vi,jEG vplqu(i,j;G)
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(2) Thecaseinwhich p =k > 0.

We assume that this lemmais true for p < k — 1. We take a vertex vs; € A such
that there is no edge whose termina points are voo and vst. Let G¥Y = G — {vst}. Let
w~:Y — X~ be blowing down of (—1)-curves correspondingto vss and pp = o u™.
Let DV = (u*)*(D). Then we remark that GV istheriver of x* and D.

Then by induction hypothesis

M) = & w6+ 3 { S up.g GG
VivjEGv Vi eGY prqGP(i,j;Gv)
Next we consider M(D’). Let vs_1) be avertex such that thereis an edge between vg_;
and Vsit.
(2-1) Thecaseinwhichw(s—1,1;G) = 1.
ThenM(D’) = M(DV) + u(s, t; G). Hence

MD)= ¥ uiiG)ruste+ T { Y up.g6))eic)

vij€GY Vij€GY “VpgeP(i,j;GY)
= Y uiio+ ¥ { > upgo)}io),
vij€G Vij €G “VpqeP(i;G)

because (s — 1,1; G) = 6(s,t;G) = 0 and we have u(i,j; G) = u(i,j; G"), W(i,j; G) =
w(i,j; GY), and 6(i, j; G) = 6(i,j; G¥) for vij # Vst .
(2-2) Thecaseinwhichw(s— 1,1;G) > 2.

Then
M(D) =MD"+ > up.qgG)+ustG).
VpgEP(SH;,G)
Hence
M) = 3 uiiG)+ustG+ S (S up.aiG)|i6iiGY)

vij€GY Vij€GY "vpqeP(i,j;GY)

+ > upgG)

Vo EP(st,G)

Y uiie+ Y Y upa;G))ii6),

vij€G Vij €G “VpqeP(i;G)

because 0(s,t;G) = 0 and 6(s — 1,1;G) = (s — 1,1;G") + 1 and because we have
u@i,j;G) = u(,j; GY), w(i,j;G) = w(i,j;G"), and 0(i,j; G) = 0(i,j; G") for (i,j) #
(s,1), (s— 1,1). This completes the proof of Lemma4.19. ]

LEMMA 4.20. Let D be a CNNS-divisor on X and we use Notation 4.13. Then
t
(Dfeg)” <20 —2—3 hi(bi — 1) + > ((C))* +2),
i=1 ]
wherel = g(Dred) — d(X).

PrOOF.  First we prove the following Claim.
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CLAIM 4.21. 1
e(D') —o(D)+1+ > Ebi(bi -D<l
i=1

PrOOF. We have g(D/yy) = 9(Dred) — X1, %bi (bj — 1) by definition. There exists
m= eD’) — o(D’) + 1 edgesey, .. ., €n 0f G(Drey) Suchthat G — {ey,...,en} isatree.
Therefore by Remark 4.12.1, there exists a connected effective divisor A on X” whichis
obtained by finite number of blowing upsof X’ suchthat g(D}) = 9(A)+e(D’)—o(D’)+1.
Let u”: X" — X' beits birational morphism and A the strict transform of D} by p”. Let
a(A) = dimKer(HY(Ox-) — HY(Oa)). Then we calculate o(A).

If a(A) # 0, then there exist an Abelian variety T, asurjective morphismf”: X” — T
such that f”(X”) is not a point and f”(A) is a point. Then any ;”-exceptional curveis
contracted by f because T is an Abelian variety. Hence f”((1")*Djy) is a point. But
(u")*Djo is not negative semidefinite. Therefore «(A) = 0. Since A is reduced and
connected, A is 1-connected. Hence g(A) = h*(0,). So we obtain g(A) = h'(0s) >

ax”) = a(Xx).
By the above argument,

t
0(Dre) = 6(D/e) + 3 300~ 1)
= gA)+ (D)~ o(D) + 1+ (b~ 1
i=1
> 09+ D) — o) + 1+3 (b — 1.
i=1

Therefore .
eD) —o(D)+1+ > Ebi(bi - <l
i=1

This completes the proof of Claim 4.21.

We continue the proof of Lemma 4.20. By construction, we obtain
(Dreg)? = S2(C))? + 26(D')

= JZ(cj’)2 +2(o(D') +&(D) — o(D'))
J

=>((C)? +2) +2(e(D) — o(D)).
i

By Claim 4.21, we have
(Dl <2 —2— ztjlbi(bi -1 +>((C) +2).
i= i

This completes the proof of Lemma4.20. ]
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THEOREM 4.22.  Let X bea minimal smooth projective surfacewith <(X) > 0and D
aCNNS-divisor on X. Let D = ¥ riD; beits prime decompositionand m = g(D) —q(X),
wherem e 7.

Then D? < 2m— 2+ N(D), where

N(D) = > 3 - #{irreducible curves C; of D such that Cj2 = —2+(}.
pez

PrROOF. We use Notation 4.13 and the notions which is defined above. We may as-
sume that B = {y}. Let G = G(y, D), u(i,j) = u(,j; G), 6(i,j) = 6(,j; G), w(i,j) =
w(i,j; G), P(i,j) = P(i,j;G), and SP(i,j) = SP(i,j;G). Let D’ = (u/)'D and Dy, =
D’ — D}y Let Dy, = Dj + D, + D’ , where D/, is the effective divisor which consists
of not ’-exceptional curves, D, is the effective divisor which consists of curves which
are u/-exceptional curves but not (—1)-curves, and D’ ; is the effective divisor which
consists of (—1)-curves.

Then

KeDe= 3 {( 3 up.@) - 1}06.i)+ 3 0.D(m.) - 1),
Vij€G " “Wpq€P(i)j) Vi €G
where m(i, j) is the multiplicity of e-curve through x;; in the total transform of D, x;; is
the blowing up point and its (—1)-curve correspondsto v; j, (i, j) = 1if there existsthe
e-curvethrough x;j and (i, j) = O if there does not exist the e-curve through x; ;.

On the other hand,
—YE+2)= > (W) —1)+ 3 (i),
o Vi €G—W vij€G
where E,, is a p/-exceptional curve on X’ and not (—1)-curve, and W = {vi; € G |
w(,j) = O}.
Hence

D= L€ +2)= 3 {( 5 up.a) - 1}6i)

(4.22.1) VijEG " NpaeP(i))
+ 3 eiimip+ Y (wij) - 1).
vij€G Vij €G-W
Let
B = sum of multiplicity of p'-exceptiona (—1)-curvesin Dy,.
Then
(4.22.2) B = KD ;.
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Let Ci,j be a strict transform of Ci,j,;[ by 0 andCip = C;. Let Ci,j = ,LLJ-*(Ci,j,j_) — e(i)j g,
where Ej isthe (—1)-curve of y;. We remark that e(i); > 1 for any i, j.
Then

(1= D) = 301~ Dt
2

because X isminimal.
Hence

K (Dje) > 33201 — Dy .
i tj=1
On the other hand
t
S(CH+2)=ND) -2 ae(i)j2
i i j=

because C?, = C? — f_; e(i)?.
Hence

(4.22.3) Kx/(Dpe) = >2(C +2) >3 _ztjl(rie(i)j) — N(D)
i i j=

since Y°J_; e(i)? > I, e(i);.
By (4.22.1), (4.22.2), and (4.22.3), we obtain
(4.22.4)
KxDpy — 2(CFi +2) = Y (ES +2)
i o

> e+ 2 {( ) ,)u(p,q)) — 1}6(i.)
Vij€ Vpa€P(1)
+ > e, im@i, )+ > (W(i,j)—1)+ _ _t

vij€G Vij €G-W i

(rie(i)j) — N(D).

1

On the other hand, we have

q(X) + m= g(D) = g(D')
1
= g(Djeg) + E(KX’ + D' + Dyeg)Dpy

1t 1
= J(Dred) — > Qbi (bi—1+ E(KX’ + D' + Dyeq)Dyy
i=

1 1
=400 +1— 5 3-bi(B — 1)+ 5K + D' + Diu)Diy,
i=

where| = g(Dredq) — q(X).
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Hence by (4.22.4), we obtain
t
2m— 2l = (Kx + D’ + D;oq)D;, — > bi(bi — 1)
i=1
>3(Ch+2) + 2 (EL+2) — Bur
I o
+ Y (% upa)- 1660
Vi G Vp,q€ P(i ,j)
+ 3 elpmip) + > (w(,j)—1)
Vi,jEG Vi‘jEG—W
t t
+ 3> (rie(i);) — N(D) + (D + Dreg)Dpy — - bi(bi — 1),
i j=1 i=1
and so we have
(D' + Dfe)Dfy < —D(CP+2) — S (EA +2) + By
i o
-2 {( 2 up@) -1}
Vi G Vp_qGP(i,j)

= > elimi.p)— > (wi.j)—1)

Vi €G Vi j€G—W
— Zi(rie(i)j) +N(D) + i bi(bi — 1) +2m— 2.
=1 i=1

Therefore by Lemma 4.20, we obtain
(D')? = (Drea)® + (D' + Dey)Dpy
<(@2m-2)+(2 -2 +i bi(bi — 1) — i bi(bi — 1)
i=1 i=1
+3((C)°+2) = 3(Ch+2) = 2L + D) +
- > {2 upa)-1}eD

Vij€G " “pqeP(i)j)

= 3 elLpmip) — > (wi.)-1)

Vi G Vi eG-W
t
-2 Z;(rie(i)j) +N(D)
1=

= (2m—2) + M(D')
- > {( % upa) -1}

Vij€G " MVpg€P(i,])
= > elpmi,p - X (wi,)-1)
vij€G vij€G—W
t
=32 >>(rie(i)) + N(D),

i j=1
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where M(D') is the sum of the multiplicity of (—1)-curvesin D'.
On the other hand by Lemma4.19, we have

M) - = {( % upa) —1)ea.0)

Vij€G " “pq€P(i)

MO) - ¥ { S upaleid+ X (Wi -1)

Vij€G “VpqeP(i)) Vi EG—W
= Y upa+ > (wij)—1).
Vpq€G Vij€G-W
Therefore
(D) <2m—2+ Y up.g+ > (Wij)—1)
Vpg€G Vi €EG-W
— Y epmi) — X (wi.j)—1)
vij€G Vi €EG-W
— 5 5:(reliy) +NO)
i j=
=2m— 2+ N(D)
because we have

S D) + 3 3 (rel)) = ¥ u(p,a)

Vi €G i j=1 Vpqg€G
by considering the definition of u(p, g). This completesthe proof of Theorem4.22. =
Theorem 4.11 is obtained by Theorem 4.22.

PROOF OF THEOREM 4.11. It issufficient to prove D? < 2m+1if g(D) — gq(X) = m.
We consider the following decomposition (xx) of D:

D = D; + D, and D; and D, have no common component, where D; and
D, are non zero effective connected divisors.

(+)

CLAIM 4.23.  If ((Da)red)” < Oand ((D2)ea)” < O, then N(D) < 4.

If ((Du)ret)” < O0F ((D2)ret)” < O, then N(D) < 3.

PROOF. Let (Dj)ed = 3 Bij. Then 55(Bj;)? = N(D;) — 20(D;) and ¥« BijBix >
e(D;). Hence ((Di),ed)2 > 2e(D;) — 20(D;) + N(D;) for i = 1, 2. By hypothesis, we have
0 > 2¢(D;) — 20(D;) + N(Dy) for i = 1, 2. Sincethe dual graph G(D;) of D; is connected,
we have e(D;) —o(D;) +1 > 0. Hence 2e(D;) — 20(D;) > —2 and sowe have N(D;) < 2.

On the other hand, N(D) = N(D1) + N(D2) since D = D4 + D,. Therefore N(D) < 4.

Thelast part of Claim 4.23 can be proved by the above argument. This completesthe
proof of Claim 4.23.

Let (D) be aset of an effective connected reduced divisor D containedin D such that
D has a minimum component which satisfies the property that the intersection matrix of
D is not negative semidefinite.
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Then S(D) # ¢ by hypothesis. Let D=YiGC e S(D) and let r; be the multiplicity
of G inD. Let D, = Yj;1iCi and Dg = D — D,. We remark that possibly Dg = 0.
Then D,, has at least two components since Ci2 < Oforanyi.LetD, = Dy + Dy be
the decomposition as (xx).

CLAIM 4.24. e can take this decomposition which satisfies (D, 1)? < O.

PrROOF. We consider the dual graph G(D,) of D,. Then G(D,) is connected. In
Graph Theory, there is the following standard Theorem;

THEOREM 4.25. Let G be a connected graph which is not one point. Then there
are at least two points which are not cutpoints. (Here a vertex v of a graph is called a
cutpoint if removal of v increasesthe number of components.)

PROOF. See Theorem 3.4in [H].

We continuethe proof of Claim 4.24. By Theorem4.25, it is sufficient to take (D 1)red
as anirreducible curve corresponding to a vertex of G(D,) which is not a cutpoint. This
completesthe proof of Claim 4.24.

We continue the proof of Theorem 4.11.

We have ((Doéyl)red)2 < 0and ((Doéyz)red)2 < 0 by the choice of D,. Therefore
N(D,) < 3 by Claim 4.23.

On the other hand, we have

909 +m= g(D) = g(D.) + 5(Kx + D+ D.)D;.

Letg(D,) = q(X)+m,. Then by Theorem4.22, D2 < 2m, —2+N(D,,) < 2m, +1since
D, isaCNNS-divisor.
Ontheother hand, (Kx+D+D,)Ds = 2(m—m,) andKxDg > 0. Hence(D+D,)Ds <
2(m—my,). Therefore
D? = D? + (D + D,)Dg
<2m,+1+2m-—2m,
=2m+ 1.

This completes the proof of Theorem 4.11. ]

REMARK 4.26. LetD = ¥ r;C; be an effective divisor on aminimal smooth surface
of general typewith C? < Ofor any i. If the intersection matrix ||(Ci - Gj)|| is not negative
semidefinite, then KyD > 2q(X) — 3.

Indeed, let Dy, .. ., D; be the connected component of D. Then for some Dy, the inter-
section matrix of the components of D is not negative semidefinite. By Theorem 4.11,
we have KxDy > 2q(X) — 3. SinceKx is nef, we obtain KxD > 2q(X) — 3.
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COROLLARY 4.27. Let X beaminimal smooth surface of general type and let D be
a nef-big effective divisor with h%D) = 1 on X. If D is not the following type (*), then
KxD > 2q(X) — 4;

(x) D = Cy+5j>r1iCj; C; > 0 and the intersection matrix ||(Cj, Cy)||j>2k>2 Of
Yi»2 ;G is negative semidefinite.

PROOF. By Theorem 4.5, Theorem 4.6, Theorem 4.11, and Remark 4.26, we obtain
Corollary 4.27. ]

5. Thecasein which k(X) = 2and L isan irreduciblereduced curve.

NOTATION 5.1.  Let X be asmooth projective surface over the complex number field
C and let C be a curve on X with C?> > 0. Let N(k; C) be the set of a O-dimensional
subscheme Z with lengthZ = k + 1 and SuppZ C C such that the restriction map
(O(Kx+C)) — ' (O(Kx+C)®0; ) isnot surjective. Let SZ; C) betheset of asubcycle
Zof Z € N(k; C) withlength Z < lengthZ suchthat I (O(Kx+C)) — ' (O(Kx+C)@0z)
is not surjective but for any subcycleZ’ of ZwithlengthZ’ < lengthZ, I (O(Kx +C)) —
M(O(Kx +C) ® Oz) is surjective.

First we prove the following Theorem.

THEOREM 5.2. Let X be a minimal smooth projective surface with x(X) = 2, and
let C be an irreducible reduced curve on X with C? > 0. We put g(C) = q(X) + m. \e

assume that Kx + C is not k-very ample for some integer k > (1/2)(m — 1), and also
assume that

: U (U swpz)=o0.

ZeN(k:C) "ZeS(Z;0)

Then C? < 4(k + 1).

ProOOF. Weremark that Cisnef and big. Assumethat C2 > 4(k+1). Thenwe remark
that C*> > 2m+ 3 by hypothesis.

If q(X) < 2, then KxC > 0 > 2q(X) — 4 and so we have C? < 2m+ 2 and thisis a
contradiction. Hence we have q(X) > 3. N

Thenby Corollary 2.3in[BeS], for any Z € Uzey.c) SZ; C) there exists an effective
divisor Dz on X such that ~Supp(Z) C Dz and C — 2D; is a Q-effective divisor. Let
A= {Dz | Z € Uzen.c) XZ; C) and Dz as above}.

CLAIM 5.3. Let D be an effective divisor on X and let D = ¥ r;C; be its prime
decomposition. If there exists an irreducible component C; with C> > 0, and C — 2D is
Q-effective, then C? < 2mif g(C) = q(X) + m.

PrROOF. By Proposition 1.7, we have
KxD > KxC;

3
> EQ(X) -3

= a09+ 5600 - 3.
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Since q(X) > 3, we obtain that KxD > q(X) — (3/2). Hence KxD > q(X) — 1 because
KxD is an integer. Because Kx is nef and C — 2D is Q-effective, we obtain

0(C) = 1+ 5(Kx + O)C
1 1
> 1+ Z(Kx)(2D) + =C?
= 1+ 5(Kq)(@D) + 5C
:1+KXD+%C2
1 2
2q(X)+§C.

Therefore C? < 2m. This completes the proof of Claim 5.3.

We continue the proof of Theorem 5.2,
By Clam5.3,any Dz € Agatisfiasci2 < Ofor any irreducible component C; of Dz.
So C ¢ D; for any Dz € Asince C? > 0. Hence by hypothesis, we obtain

dim | ( U SUppCz,i) =2,
DzeA Cz;eV(Dz)
where V(D7) = the set of irreducible components of Dy.
Let
U V(Dz) = B1UBy,
DzeA

where B, isthe set of irreducible curves C; with Cf < 0and By isthe set of irreducible
curves C, with C3 = 0.

(1) Thecaseinwhich §B; = oo.

If C; € By with KxCy > q(X) — 1, then KxDz > q(X) — 1 and so we have C? < 2m
by the sameargument as Claim 5.3. Sowe haveKxC; < q(X)—2for any C; € B;. Then
the number of such acurve C; is at most finite by Lemma 1.8. But thisis acontradiction
by hypothesis.

(2) Thecaseinwhich B, = oo.

If C; € B, with KxC, > q(X) — 1, then we have C?> < 2m by the same argument as
above. So we have KxC, < q(X) — 2 for any C, € B,. Then thereisasubset B C B,
such that B3 = oo and Cs = C; for any distinct Cs, C; € Bz by Lemma 1.8. We take a
Ck € Bs. Let «(Cy) = dimKer(H'(Ox) — H*(Og,)).

(2-1) Thecaseinwhich «(Cy) # 0.

Thenby Lemma1.3in[Fk4], thereexist an Abelian variety G and amorphismf: X —
G such that f(X) is not a point and f(Cy) is a point. Since CZ = 0, we obtain f(X) is a
curve. By taking Stein factorization, if necessary, there is a smooth curve B, a surjective
morphism h: X — B with connected fibers, and a finite morphism 6: B — f(X) such that
f = 6 o h. On the other hand, for any C, € B3 and C, # Cy, we have C,Cy = Cﬁ =0.
Hence any element C,, of Bg is contained in a fiber of h and C2 = 0. Therefore for a
general fiber F, of h, we may assume F;, € B3. On the other hand, we have C — 2D; <
C — 2F;. Sowe obtain that C — 2F;, is a Q-effective divisor.
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Hence we have
0(C) = gB) + 5(Kya + CIC + (CFy — 1)(a(B) — 1)
> 9(B) + (K e)2F) + 5C°
= g(B) +2g(Fp) — 2 + %cz
= 9(B) + o(Fn) + 5C7 + o(Fy) — 2
> 400 + 5C°

because Ky g is nef, g(B) > 1 and g(Fn) > 2.
Hence C2 < 2m. But thisis a contradiction because we assume that C2 > 2m+ 3.
(2-2) Thecasein which o(Cy) = 0.
Theng(X) < h'(Oc,) = g(Cx). Ontheother hand, sinceKx isnef, C2 = 0, C—2C, >
C — 2Dz, and C — 2Dy is Q-effective, we obtain

0(C) = 1+ 5(Kx +O)C
1 1
> 1+ Z(Kx)(2C,) + =C?
> 2( x)(2Ck) 5
= 1+KxCy + %CZ
= 142900 2+ 5C
> 2q(X) — 1+ %CZ.

Hence
C? <2m+2(1—q(X))
<2m-4
sinceq(X) > 3.
But thisis a contradiction by hypothesis. Therefore C? < 4(k+1). This completesthe
proof of Theorem 5.2. ]

COROLLARY 5.4. Let X beaminimal smooth projective surfacewith x(X) = 2 and
let C beanirreduciblereduced curvewith C? > 0. Then C? < 4m+4if m = g(C)—q(X).

PrOOF. We use Notation 5.1. By Theorem 5.2, it is sufficient to prove that Kx + C
is not m-very ample and

¢t U (U SUppZ)zoo-

ZeN(mC) ‘ZeSZ,C)

Let W = Im(H°(Kx +C) — H%uwc)), wherewc isadualizing sheaf of C. Weremark that
wc isaCartier divisor. Let o be the map HO(Ky + C) — W. ThendimW = h%(Kyx + C) —
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h°(Kx) = m by Riemann-Roch Theorem and K awamata-Viehweg Vanishing Theorem.
Let Py, ...,Pma beany m+ 1 distinct points on C \ Sing C, where Sing C denotes the
singular locus of C. Let Z be a 0-dimensiona subscheme such that

(1) IZOX,y = Ox,y if Yy ¢ {Pl, . Pm+1};

2 1z20xy = (%, y) ify =P,
where |7 istheideal sheaf of Z and (x;, y;) isalocal coordinate of X at P; such that C is
defined by (x) at P. Let 3 be the restriction map W — HO((Kx + C) @ Oz). If Kx + Cis
m-very ampleat Z, thenthe restriction v: H(Kx +C) — HO((Kx +C) @ 0z) issurjective.
But we have dimW = mand dimH%((Kx +C) @ 0z) = m+ 1. Thisis a contradiction
sincey = 3 o . Hence Ky + C is not mvery ample for any O-dimensional subscheme
with length m + 1 which consists of distinct m+ 1 points of C \ Sing(C). Thisimplies

: U ( U Suppz) = 0.
ZeN(m,C) ZeSZ,C)
This completes the proof of Corollary 5.4. ]

By Corollary 4.27, in order to solve Conjecture 1 (or Conjecture 1'), it is sufficient to
consider the casein which D isthe following type (x):

D = C; + Y52 1iCj; C3 > 0 and the intersection matrix ||Cj, Cy||j>2x>2 Of
Yi»21;C is negative semidefinite.

(*)

COROLLARY 5.5. Let X beaminimal smooth projective surfacewith x(X) = 2 and
let D be a nef-big effective divisor on X such that D isthetype (x). Then D? < 4m+ 4 if

m = g(D) — q(X).
Proor. First we obtain

1
9(C1) = 4(¥) +m— S(Kx +D +C1) (L 1G5 ).
j>2
By Corollary 5.4, we have

C? <4m+4—2(Kx+D+C)(XL1iG)
.

< 4m+4—2(D +cl)(§r,»c,-).
1=

Hence
D2=C2+(D+ cl)(z rjc,-)
j>2
<4m+4—(D+ cl)(z rjc,-).
i>2
On the other hand D + C; is nef. Hence (D + C1)(3j>2riCj) > 0 and so we obtain
D? < 4m+ 4. This completes the proof of Corollary 5.5. ]
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6. Higher dimensional case and conjecture. In this section we consider the case
inwhichn=dimX > 3and x(X) > 0.

THEOREM 6.1.  Let (X, L) be a quasi-polarized manifold with dimX = n > 3 and
k(X) = 0or 1. Then KxL"* > 2(q(X) — n).

PROCOF. (1) Thecaseinwhichk(X) = 0.

Then q(X) < nby [Kal]. HenceKxL"™* > 0 > 2(q(X) — n).

(2) Thecaseinwhich xk(X) = 1.

By litaka Theory ([li]), there exist a smooth projective variety X;, a birational mor-
phism u1: X; — X, asmooth curve C, and afiber spacef;: X; — C suchthat x(F1) = 0,
where F1 isageneral fiber of f;. Let Ly = pjL.

(2-1) Thecaseinwhichg(C) > 1.

By Lemma 1.3.1 and Remark 1.3.2in [Fk2] and the semipositivity of (f1).(mKx_ ,c)
form e N ([Fj1], [Ka2]), we haveKy, ;cL]~* > 0. Therefore

KxL"™ = Ky, L7t
= Ky /eli™ +(20(0) — 2L 'R
>29(C) — 2.

On the other hand, q(X) < g(C) + (n — 1) sinceq(F1) < n— 1 by [Kal]. Hence
KxL"™* > 2(g(C) — 1)
> 2(q(X) — n).

(2-2) Thecaseinwhichg(C) = 0.
Then q(X) < n— 1sinceq(F1) < n— 1. Therefore KxL"* > 0 > 2(q(X) — n).
This completes the proof of Theorem 6.1. ]

By considering the above theorem, we propose the following conjecture which is a
generalization of Conjecture 1’.

CONJECTURE 6.2.  Let (X, L) be a quasi-polarized manifold with n = dimX > 3
and £(X) > 0. Then KxL""* > 2(q(X) — n).

By Theorem 6.1, this conjectureistrueif x(X) = 0or 1. Wewill study Conjecture 6.2
in afuture paper.
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