A LOWER BOUND FOR K_XL OF QUASI-POLARIZED SURFACES (X, L)WITH NON-NEGATIVE KODAIRA DIMENSION

YOSHIAKI FUKUMA

ABSTRACT. Let X be a smooth projective surface over the complex number field and let L be a nef-big divisor on X. Here we consider the following conjecture; If the Kodaira dimension $\kappa(X) \geq 0$, then $K_XL \geq 2q(X) - 4$, where q(X) is the irregularity of X. In this paper, we prove that this conjecture is true if (1) the case in which $\kappa(X) = 0$ or 1, (2) the case in which $\kappa(X) = 2$ and $h^0(L) \geq 2$, or (3) the case in which $\kappa(X) = 2$, X is minimal, X0 is minimal, X1 is minimal, X2 is minimal, X3 is minimal, X4 is minimal.

0. **Introduction.** Let X be a smooth projective manifold over $\mathbb C$ with dim $X \geq 2$, and L a Cartier divisor on X. Then (X, L) is called a *pre-polarized manifold*. In particular, if L is ample (resp. nef-big), then (X, L) is said to be a *polarized* (resp. *quasi-polarized*) manifold. We define the sectional genus g(L) of a pre-polarized manifold (X, L) is defined by the following formula;

$$g(L) = 1 + \frac{1}{2} (K_X + (n-1)L)L^{n-1},$$

where K_X is the canonical divisor of X.

Then there is the following conjecture.

Conjecture 0. Let (X, L) be a quasi-polarized manifold. Then $g(L) \ge q(X)$, where $q(X) = \dim H^1(X, \mathcal{O}_X)$.

In this paper, we consider the case in which X is a smooth surface. If $\dim X = 2$ and $h^0(L) > 0$, then this conjecture is true. But in general, it is unknown whether this conjecture is true or not. In the papers [Fk1] and [Fk4], the author proved that $L^2 \le 4$ if L is ample, g(L) = q(X), $h^0(L) > 0$ and $\kappa(X) \ge 0$. By this result, we think that the degree of (X, L) is bounded from above by using m = g(L) - q(X) if $\kappa(X) \ge 0$. By studying some examples of (X, L), we conjectured the following.

CONJECTURE 1. If (X, L) is a quasi-polarized surface with $\kappa(X) \ge 0$. Then $L^2 \le 2m + 2$ if g(L) = g(X) + m.

We remark that m is non-negative integer if $h^0(L) > 0$. This conjecture is equivalent to the following conjecture.

Received by the editors January 22, 1998.

Research Fellow of the Japan Society for the Promotion of Science.

AMS subject classification: 14C20.

Key words and phrases: Quasi-polarized surface, sectional genus.

© Canadian Mathematical Society 1998.

1209

CONJECTURE 1'. If (X, L) is a quasi-polarized surface with $\kappa(X) \ge 0$. Then $K_X L \ge 2q(X) - 4$.

This conjecture 1' is thought to be a generalization of the fact that $\deg K_C = 2g(C) - 2$ if C is a smooth projective curve.

In this paper, we consider the above conjecture. The main results are the following.

MAIN THEOREM 1. Let (X, L) be a quasi-polarized surface with $\kappa(X) = 0$ or 1. Then $K_X L \ge 2q(X) - 4$.

If this equality holds and (X, L) is L-minimal, then (X, L) is one of the following;

- (1) $\kappa(X) = 0$ case. X is an Abelian surface and L is any nef and big divisor.
- (2) $\kappa(X) = 1$ case. $X \cong F \times C$ and $L \equiv C + (m+1)F$, where F and C are smooth curves with $g(C) \ge 2$ and g(F) = 1, and m = g(L) g(X).

(See Theorem 2.1.)

MAIN THEOREM 2. Let (X, L) be a quasi-polarized surface with $\kappa(X) = 2$ and $h^0(L) \ge 2$. Then $K_X L \ge 2q(X) - 2$.

If this equality holds and (X, L) is L-minimal, then (X, L) is the following; $X \cong F \times C$ and $L \equiv C + 2F$, where F and C are smooth curves with g(F) = 2 and $g(C) \ge 2$.

(See Theorem 3.1)

MAIN THEOREM 3. Let X be a minimal smooth surface of general type and let D be a nef-big effective divisor with $h^0(D) = 1$ on X. If D is not the following type (\star) , then $K_X D \ge 2q(X) - 4$:

(*) $D = C_1 + \sum_{j\geq 2} r_j C_j; C_1^2 > 0 \text{ and the intersection matrix } \|(C_j, C_k)\|_{j\geq 2, k\geq 2}$ of $\sum_{j\geq 2} r_j C_j$ is negative semidefinite.

(See Section 4.)

MAIN THEOREM 4. Let X be a minimal smooth projective surface with $\kappa(X) = 2$ and let D be a nef-big effective divisor on X such that D is the type (\star) . Then $D^2 \leq 4m+4$ if m = g(D) - q(X).

We remark that the classification of polarized surfaces (X, L) with $\kappa(X) \ge 1$ and $K_X L \le 2$ is obtained by [DP]. We work over the complex number field \mathbb{C} .

1. Preliminaries.

DEFINITION 1.1. Let (X, L) be a quasi-polarized surface.

- (1) We call (X_1, L_1) a minimalization of (X, L) if $\varphi: X \to X_1$ is a minimal model of X and $L_1 = \varphi_* L$ in the sense of cycle theory. (We remark that L_1 is nef and big (resp. ample) on X_1 if so is L.)
- (2) We say that (X, L) is L-minimal if LE > 0 for any (-1)-curve E on X. For any quasi-polarized surface (X, L), there exists a birational morphism $\rho: (X, L) \to (X_0, L_0)$ such that $L = \rho^* L_0$ and (X_0, L_0) is L_0 -minimal. Then we call (X_0, L_0) an L-minimalization of (X, L).

LEMMA 1.2 (DEBARRE). Let X be a minimal surface of general type with $q(X) \ge 1$. Then $K_X^2 \ge 2p_g(X)$. (Hence $K_X^2 \ge 2q(X)$ for any minimal surface of general type.)

PROOF. See [D].

THEOREM 1.3. Let (X, L) be an L-minimal quasi-polarized surface with $\kappa(X) \ge 0$. If $h^0(L) \ge 2$, then (X, L) satisfies one of the following conditions.

- (1) $g(L) \ge 2q(X) 1$.
- (2) For any linear pencil $\Lambda \subseteq |L|$, the fixed part $Z(\Lambda)$ of Λ is not zero and Bs $\Lambda_M = \phi$, where Λ_M is movable part of Λ . Let $f: X \to C$ be the fiber space induced by Λ_M . Then $g(L) \geq g(C) + 2g(F) \geq q(X) + g(F)$, $g(C) \geq 2$, LF = 1 and L aF is numerically equivalent to an effective divisor for a general fiber F of f, where $a \geq 2$.

PROOF. See Theorem 3.1 in [Fk3].

LEMMA 1.4. Let $f: X \to C$ be a relatively minimal elliptic fibration with q(X) = g(C) + 1. If LF = 1 for a nef-big divisor L on X, then $X \cong F \times C$ and $f: X \to C$ is the natural projection, where F is a general fiber of f.

PROOF (SEE [FJ3]). By hypothesis f is a quasi-bundle (see Lemma 1.5 and Lemma 1.6 in [S]). Let $\Sigma \subset C$ be the singular locus of f and $U = C - \Sigma$. We fix an elliptic curve $E \cong f^{-1}(x)$ for $x \in U$. Then by [Fj3], we have a map $\varphi \colon \pi_1(U) \to \operatorname{Aut}(E, L_E)$. Since the translations of E preserving L_E are of order $d = \deg L_E$ by Abel's Theorem, $\operatorname{Aut}(E, L_E)$ is finite group. Let $G = \operatorname{Im} \varphi$. Then by [Fj3], there exists a Galois covering $\pi \colon D \to C$ such that $G = \operatorname{Gal}(D/C)$ acts effectively on the polarized pair (E, L_E) and $X \cong (D \times E)/G$, where D is a smooth projective curve. Since q(X) = g(C) + 1, we have g(E/G) = 1. Hence G acts on E as translations. Therefore any element of G is of order $d = \deg L_E = 1$. So $X \cong D \times E \cong C \times F$, and $f \colon X \to C$ is the natural projection by construction.

LEMMA 1.5. Let X be a smooth algebraic surface, C a smooth curve, $f: X \to C$ a surjective morphism with connected fibers, and F a general fiber of f. Then $q(X) \le g(C) + g(F)$. Moreover if this equality holds and $g(F) \ge 2$, then $X \sim_{\text{bir}} F \times C$.

PROOF. See *e.g.* [Be] p. 345 or [X].

LEMMA 1.6. Let X be a minimal smooth surface of general type. Then $K_X^2 \ge 6q(X) - 13$ unless $X \cong C_1 \times C_2$ for some smooth curves C_1 and C_2 .

PROOF. We assume that $X \not\cong C_1 \times C_2$ for smooth curves C_1 and C_2 . By Théorème 6.3 in [D], we have $K_X^2 \ge 2p_g(X) + 2(q(X) - 4) + 1$. On the other hand, $p_g(X) \ge 2q(X) - 3$ by [Be]. Hence $K_X^2 \ge 6q(X) - 13$.

PROPOSITION 1.7. Let X be a minimal smooth surface of general type and let C be an irreducible reduced curve with $C^2 > 0$. Then $K_XC \ge (3/2)q(X) - 3$.

PROOF. If $q(X) \le 2$, then this inequality is true. So we assume $q(X) \ge 3$.

If $X \cong C_1 \times C_2$ for some smooth curves C_1 and C_2 , then $K_XC \geq 2q(X) - 4 > (3/2)q(X) - 3$. So we may assume $X \ncong C_1 \times C_2$. Let $x \in \mathbb{Q}$ with $x \geq 1$. We put $m_x = g(xC) - q(X)$.

CLAIM 1.7.1. If $2m_x + 2 \ge (2/3)(q(X) - 2) + 1$, then $(xC)^2 \le 2m_x + 2$.

PROOF. Assume that $(xC)^2 > 2m_x + 2$. Then $(xC)^2 > (2/3)(q(X) - 2) + 1$. Hence

$$(K_X)^2 (xC)^2 > \left(6(q(X) - 2) - 1\right) \left(\frac{2}{3}(q(X) - 2) + 1\right)$$

$$= 4(q(X) - 2)^2 + 6(q(X) - 2) - \frac{2}{3}(q(X) - 2) - 1$$

$$= 4(q(X) - 2)^2 + \frac{16}{3}(q(X) - 2) - 1$$

by Lemma 1.6.

By Hodge index Theorem, we get $(xCK_X)^2 \ge (xC)^2(K_X)^2 > 4(q(X)-2)^2$ and we have $xCK_X > 2(q(X)-2)$. Therefore

$$g(xC) > 1 + \frac{1}{2} \left(2(q(X) - 2) + 2m_x + 2 \right)$$

= $q(X) + m_x$

and this is a contradiction.

This completes the proof of Claim 1.7.1.

We continue the proof of Proposition 1.7.

We have

$$q(X) + m_x = g(xC) = g(C) + (x - 1)g(C) + \frac{x - 1}{2}(xC^2 - 2)$$
$$\ge q(X) + (x - 1)q(X) + \frac{x - 1}{2}(xC^2 - 2)$$

since $g(C) \ge q(X)$.

Hence $m_x \ge (x-1)q(X) + ((x-1)/2)(xC^2-2)$. Here we put x = (4/3). Then $m_x \ge (1/3)q(X) - (1/9) > (1/3)q(X) - (7/6)$. Therefore by Claim 1.7.1, we have

$$\left(\frac{4}{3}C\right)^2 \le 2m_x + 2.$$

In particular, $(4/3)CK_X \ge 2q(X) - 4$. Therefore $K_XC \ge (3/2)q(X) - 3$. This completes the proof of Proposition 1.7.

LEMMA 1.8. Let X be a minimal smooth surface of general type. Then there are only finitely many irreducible curves C on X up to numerical equivalence such that K_XC is bounded.

Moreover there are only finitely many irreducible curves C on X such that K_XC is bounded and $C^2 < 0$.

PROOF. See Proposition 3 in [Bo].

2. The case in which $\kappa(X) = 0$ or 1. In this section, we will prove conjecture 1' for the case in which $\kappa(X) = 0$ or 1.

THEOREM 2.1. Let (X, L) be a quasi-polarized surface with $\kappa(X) = 0$ or 1. Then $K_X L \ge 2q(X) - 4$.

If this equality holds and (X, L) is L-minimal, then (X, L) is one of the following;

- (1) $\kappa(X) = 0$ case. X is an Abelian surface and L is any nef and big divisor.
- (2) $\kappa(X) = 1$ case. $X \cong F \times C$ and $L \equiv C + (m+1)F$, where F and C are smooth curves with $g(C) \ge 2$ and g(F) = 1, and m = g(L) g(X).

PROOF. (1) The case in which $\kappa(X) = 0$. Then $q(X) \le 2$ by the classification theory of surfaces. Hence $K_X L \ge 0 \ge 2q(X) - 4$.

If $K_XL = 2q(X) - 4$, then q(X) = 2 and $K_XL = 0$. Since (X, L) is L-minimal, we get that X is minimal, in particular, X is an Abelian surface. Conversely, let (X, L) be any quasi-polarized surface which is L-minimal, and let X be an Abelian surface. Then $K_XL = 0 = 2q(X) - 4$.

(2) The case in which $\kappa(X) = 1$. Let $f: X \to C$ be an elliptic fibration, $\mu: X \to X'$ the relatively minimal model of X, and let $f': X' \to C$ be the relatively minimal elliptic fibration such that $f = f' \circ \mu$. Let $L' = \mu_* L$. Then L' is nef and big, and $K_X L \ge K_{X'} L'$.

By the canonical bundle formula for elliptic fibrations, we have

$$K_{X'} \equiv (2g(C) - 2 + \chi(O_{X'}))F' + \sum_{i} (m_i - 1)F_i,$$

where F' is a general fiber of f' and m_iF_i is a multiple fiber of f' for any i.

Hence

$$K_{X'}L' \ge (2g(C) - 2 + \chi(\mathcal{O}_{X'})) \ge 2g(C) - 2$$

= $2(g(C) + 1) - 4$
 $\ge 2q(X) - 4$.

Therefore $K_XL \ge K_{X'}L' \ge 2q(X) - 4$.

Assume that $K_XL = 2q(X) - 4$.

Since $\kappa(X) = 1$, we get $K_X L > 0$. Hence $q(X) \ge 3$ and $g(C) \ge 2$. By the above argument, we obtain $K_X L = K_{X'} L' = 2q(X) - 4$. Since (X, L) is L-minimal, we obtain that X is minimal. Because $K_X L = 2q(X) - 4$ and $2g(C) - 2 + \chi(\mathcal{O}_{X'}) > 0$, we obtain the following.

- (2-1) f has no multiple fibers.
- (2-2) $\chi(O_X) = 0$.
- (2-3) q(X) = g(C) + 1.
- (2-4) *LF* = 1.

By (2-3), (2-4), and Lemma 1.4, we obtain $X \cong F \times C$ and $f: X \to C$ is the natural projection. Because of $\kappa(X) = 1$, we have $g(C) \geq 2$. Then $f^* \circ f_*(O(L)) \to O(L - Z)$ is surjective, where Z is a section of f. Let $L|_{F_t} \sim p_t$, where $F_t = f^{-1}(t)$ and $t \in C$. Let (y,t) be a point of $F \times C$ and $(y(p_t),t)$ the point $p_t \in F \times C$. Then the morphism $h: F \times C \to F \times C$; $h(y,t) = (y-y(p_t),t)$ is an isomorphism. Hence $L = h^*(\{0\} \times C) + f^*D$. Therefore $L = C + f^*D$ via h, where $D \in \text{Pic}(C)$. But $L^2 = 2m + 2$ for m = g(L) - q(X). Hence $L \equiv C + (m+1)F$. This completes the proof of Theorem 2.1.

3. The case in which $\kappa(X) = 2$ and $h^0(L) \ge 2$.

THEOREM 3.1. Let (X, L) be a quasi-polarized surface with $\kappa(X) = 2$ and $h^0(L) \ge 2$. Then $K_X L \ge 2q(X) - 2$.

If this equality holds and (X, L) is L-minimal, then (X, L) is the following; $X \cong F \times C$ and $L \equiv C + 2F$, where F and C are smooth curves with g(F) = 2 and $g(C) \ge 2$.

PROOF. (A) The case in which *X* is minimal. Then we use Theorem 1.3.

(A-1) The case in which $g(L) \ge 2q(X) - 1$. Then $q(X) + m = g(L) \ge 2q(X) - 1$. So we obtain $m \ge q(X) - 1$.

(A-1-1) The case where $q(X) \ge 1$. Then by Lemma 1.2, we obtain $K_X^2 \ge 2p_g(X) \ge 2q(X)$. If $L^2 \ge 2m$, then

$$(K_X L)^2 \ge K_X^2 L^2 \ge (2q(X))(2m)$$

$$\ge 4q(X)(q(X) - 1).$$

Hence $K_X L > 2(q(X) - 1)$. But this is impossible because

$$q(X) + m = g(L) > 1 + \frac{1}{2} (2q(X) - 2 + 2m)$$

= $q(X) + m$.

Therefore $L^2 \le 2m-1$, that is, $K_X L \ge 2q(X)-1$.

(A-1-2) The case where q(X) = 0. Then $K_X L > 0 > 2q(X) - 2$.

(A-2) The case in which g(L) < 2q(X) - 1. Then by Theorem 1.3, there is a fiber space $f: X \to C$ such that C is a smooth curve with $g(C) \ge 2$, LF = 1, and L - aF is numerically equivalent to an effective divisor, where F is a general fiber of f and $a \ge 2$. So there exists a section C' of f such that C' is an irreducible component of L, and we obtain that $L - aF \equiv C' + D'$, where D' is an effective divisor such that f(D') are points.

Since f is relatively minimal, the relative canonical divisor $K_{X/C} = K_X - f^*K_C$ is nef by Arakelov's Theorem. So we have $K_{X/C}L \ge 2K_{X/C}F$. Hence

$$\begin{split} g(L) &= g(C) + \frac{1}{2}(K_{X/C}L) + \frac{1}{2}L^2 \\ &\geq g(C) + K_{X/C}F + \frac{1}{2}L^2 \\ &= g(C) + 2g(F) - 2 + \frac{1}{2}L^2 \\ &= g(C) + g(F) + g(F) - 2 + \frac{1}{2}L^2 \\ &\geq q(X) + \frac{1}{2}L^2 \end{split}$$

because $g(F) \ge 2$ and $g(C) + g(F) \ge g(X)$.

Since q(X) + m = g(L), we obtain $L^2 \le 2m$. Namely $K_X L \ge 2q(X) - 2$.

Next we assume $K_XL = 2q(X) - 2$.

Then g(L) < 2q(X) - 1 by the above argument. Moreover the following are satisfied by the above argument of (A-2);

- (a) $K_{X/C}C' = 0, K_{X/C}D' = 0.$
- (b) a = 2.
- (c) g(F) = 2.
- (d) q(X) = g(C) + g(F).

Since X is minimal, we obtain $X \cong F \times C$ by (d) and Lemma 1.5. Moreover $f: X \to C$ is the natural projection. Since D' is contained in fibers of f and $K_{X/C}D' = 0$, we obtain D' = 0. Since $K_{X/C} \equiv (2g(F) - 2)C$ and $K_{X/C}C' = 0$, we have CC' = 0. Hence C' is a fiber of $F \times C \to F$. Therefore $L \equiv C + 2F$ by (b).

(B) The case in which *X* is not minimal.

Let $X = X_0 \to X_1 \to \cdots \to X_{n-1} \to X_n$ be the minimalization of X, where $\mu_i : X_i \to X_{i+1}$ is the blowing down of (-1)-curve E_i . Let $L_i = (\mu_{i-1})_*(L_{i-1})$, $L_0 = L$, and $L_{i-1} = (\mu_{i-1})^*L_i - m_{i-1}E_{i-1}$, where $m_{i-1} \ge 0$. We remark that $h^0(L_i) = h^0((\mu_{i-1})^*L_i) \ge h^0(L_{i-1})$. Then $L^2 = (L_n)^2 - \sum_{i=0}^{n-1} m_i^2$ and $K_X L = K_{X_n} L_n + \sum_{i=0}^{n-1} m_i$. By the case (A), we have $K_{X_n} L_n \ge 2q(X) - 2$. Hence $K_X L \ge 2q(X) - 2 + \sum_{i=0}^{n-1} m_i \ge 2q(X) - 2$.

Next we consider (X, L) such that $K_XL = 2q(X) - 2$ and (X, L) is L-minimal, Then $\sum_{i=0}^{n-1} m_i = 0$ since $K_XL = 2q(X) - 2$ and so we have $m_i = 0$ for any i. But then X is minimal because (X, L) is L-minimal. This is a contradiction. This completes the proof of Theorem 3.1.

4. The case in which $\kappa(X) = 2$ and $h^0(L) = 1$. In this section, we consider the case in which $\kappa(X) = 2$ and $h^0(L) = 1$. We put m = g(L) - q(X).

LEMMA 4.1. If
$$g(L) \ge 2q(X)$$
, then $K_X L \ge 2q(X) - 1$.

PROOF. Then $q(X) + m = g(L) \ge 2q(X)$. Hence $m \ge q(X)$. Assume that $L^2 \ge 2m$. So we obtain $L^2 \ge 2q(X)$. Let $\mu: X \to X'$ be the minimalization of X and $L' = \mu_* L$.

Then $K_XL \ge K_{X'}L'$ and $(L')^2 \ge L^2 \ge 2q(X)$. Since $K_{X'}^2 \ge 2q(X)$ by Lemma 1.2, we have $(K_{X'}L')^2 \ge (K_{X'})^2(L')^2 \ge \left(2q(X)\right)^2$ by Hodge index Theorem. So we obtain $K_{X'}L' \ge 2q(X)$. But this is impossible because

$$q(X) + m = g(L) \ge 1 + q(X) + m$$
.

Hence $L^2 < 2m$, that is, $K_X L \ge 2q(X) - 1$. This completes the proof of Lemma 4.1.

LEMMA 4.2. If for any minimal quasi-polarized surfaces (X, L) with $\kappa(X) = 2$ and $h^0(L) \ge 1$ we can prove that $K_X L \ge 2q(X) - 4$, then this inequality holds for any quasi-polarized surface (Y, A) with $\kappa(Y) = 2$ and $h^0(A) \ge 1$.

PROOF. It is easy.

By Lemma 4.2, it is sufficient to prove Conjecture 1 (or Conjecture 1') under the following assumption (4-1);

(4-1) X is minimal.

Here we consider Conjecture 1 (or Conjecture 1') for the following divisors.

DEFINITION 4.3. Let X be a smooth projective surface and let D be an effective divisor on X. Then D is called a *CNNS-divisor* if the following conditions hold:

- (1) D is connected.
- (2) the intersection matrix $\|(C_i, C_i)\|_{i,i}$ of $D = \sum_i r_i C_i$ is not negative semidefinite.

REMARK 4.4. If L is an effective nef and big divisor, then L is a CNNS-divisor.

Let *D* be a CNNS-divisor on a minimal smooth projective surface *X* with $\kappa(X) = 2$, and $D = \sum_i r_i C_i$ its prime decomposition.

We divide three cases:

- (α) $\sum_{i\in S} r_i \geq 2$;
- $(\beta) \sum_{i \in S} r_i = 1;$
- $(\gamma) \sum_{i \in S} r_i = 0,$

where $S = \{i \mid C_i^2 > 0\}.$

First we consider the case (α).

THEOREM 4.5. Let D be a CNNS-divisor on a minimal smooth surface X with $\kappa(X) = 2$, and let $D = \sum_i r_i C_i$ be its prime decomposition. If $\sum_{i \in S} r_i \ge 2$, then $K_X D \ge 2q(X) - 1$.

PROOF. Let $A = \sum_{i \in S} r_i C_i$ and B = D - A. Then A is nef and big. We remark that $K_X D \ge K_X A$ since X is minimal with $\kappa(X) = 2$. So it is sufficient to prove that $g(A) \ge 2q(X)$ by Lemma 4.1. By assumption here, there are curves C_1 and C_2 (possibly $C_1 = C_2$) such that $C_1^2 > 0$ and $C_2^2 > 0$ and $C_1^2 - C_2^2$ is effective. Let $C_1^2 = A - C_1 - C_2^2$. Then

$$g(A) = g(C_1 + C_2) + \frac{1}{2}(K_X + A + C_1 + C_2)A_{12}.$$

Since $K_X + A$ is nef and A is 1-connected, we have $(K_X + A)A_{12} \ge 0$ and $(C_1 + C_2)A_{12} \ge 0$. Hence $g(A) \ge g(C_1 + C_2)$. On the other hand, $g(C_1 + C_2) = g(C_1) + g(C_2) + C_1C_2 - 1$. Because $C_1^2 > 0$ and $C_2^2 > 0$, we obtain $C_1C_2 > 0$. Hence $g(C_1 + C_2) \ge g(C_1) + g(C_2) \ge 2q(X)$. Therefore by Lemma 4.1, we obtain $K_X(C_1 + C_2) \ge 2q(X) - 1$. So we have $K_XD \ge K_X(C_1 + C_2) \ge 2q(X) - 1$. This completes the proof of Theorem 4.5.

Next we consider the case (γ) .

THEOREM 4.6. Let D be a CNNS-divisor on a minimal smooth projective surface X with $\kappa(X) = 2$ and let $D = \sum_i r_i C_i$ be its prime decomposition. If $\sum_{i \in S} r_i = 0$ and there exists a curve C_i such that $C_i^2 = 0$, then $K_X D \ge 2q(X) - 4$.

PROOF. Assume that $C_1^2 = 0$. We may assume that $q(X) \ge 1$. Since D is a CNNS-divisor, D has at least two irreducible components. Let C_2 be another irreducible component of D such that $C_1 \cap C_2 \ne \phi$. Then

$$g(D) = g(C_1 + C_2) + \frac{1}{2}(K_X + D + C_1 + C_2)D_{12},$$

where $D_{12} = D - (C_1 + C_2)$.

We put $l = g(C_1 + C_2) - q(X)$ and m = g(D) - q(X). Since $K_X D_{12} \ge 0$, we have $2m - 2l \ge (D + C_1 + C_2)D_{12}$. Let $X_0 = X$, $C_{1,0} = C_1$, $C_{2,0} = C_2$, and $\mu_i : X_i \to X_{i-1}$ blowing up at a point of $C_{1,i-1} \cap C_{2,i-1}$, where $C_{1,i}$ (resp. $C_{2,i}$) is the strict transform of $C_{1,i-1}$ (resp. $C_{2,i-1}$), and let E_i be an exceptional divisor such that $\mu_i(E_i)$ is a point. We put $\mu = \mu_1 \circ \cdots \circ \mu_n$, where n is the natural number such that $C_{1,n-1} \cap C_{2,n-1} \ne \phi$ and $C_{1,n} \cap C_{2,n} = \phi$. Let $C_{1,i} = \mu_i^* C_{1,i-1} - b_i E_i$, $C_{2,i} = \mu_i^* C_{2,i-1} - d_i E_i$, and $a_i = b_i + d_i$. We remark that $b_i \ge 1$ and $d_i \ge 1$. Let $X'_0 = X_n$, $C'_{1,0} = C_{1,n}$, $C'_{2,0} = C_{2,n}$, $E'_{0,0} = E_n$, and $\mu'_i : X'_i \to X'_{i-1}$ blowing up at a point $x \in \left(\operatorname{Sing}(C'_{1,i-1}) \cup \operatorname{Sing}(C'_{2,i-1}) \right) \setminus \left((C'_{1,i-1} \cap E'_{0,i-1}) \cup (C'_{2,i-1} \cap E'_{0,i-1}) \right)$, where $C'_{1,i}$ (resp. $C'_{2,i}$, $E'_{0,i}$) is the strict transform of $C'_{1,i-1}$ (resp. $C'_{2,i-1}$, $E'_{0,i-1}$), and let E'_i be an exceptional divisor on X'_i such that $\mu'_i(E'_i)$ is a point. Let $C'_{1,i} + C'_{2,i} = (\mu'_i)^* (C'_{1,i-1} + C'_{2,i-1}) - a'_i E'_i$. We assume that $\left(\operatorname{Sing}(C'_{1,i}) \cup \operatorname{Sing}(C'_{2,i})\right) \setminus \left((C'_{1,i} \cap E'_{0,i}) \cup (C'_{2,i} \cap E'_{0,i})\right) = \phi$.

CLAIM 4.7.
$$g(C'_{1,t} + C'_{2,t} + E'_{0,t}) \ge q(X'_t)$$
.

PROOF. Let $\alpha(C'_{1,t}+C'_{2,t}+E'_{0,t})=\dim \operatorname{Ker} \left(H^1(O_{X'_t})\to H^1(O_{C'_{1,t}+C'_{2,t}+E'_{0,t}})\right)$. By Lemma 3.1 in [Fk4], it is sufficient to prove $\alpha(C'_{1,t}+C'_{2,t}+E'_{0,t})=0$ since $C'_{1,t}+C'_{2,t}+E'_{0,t}$ is 1-connected. Assume that $\alpha(C'_{1,t}+C'_{2,t}+E'_{0,t})\neq 0$. Since $q(X)\geq 1$, there is a morphism $f\colon X'_t\to G$ such that f(X) is not a point and $f(C'_{1,t}+C'_{2,t}+E'_{0,t})$ is a point, where G is an Abelian variety. On the other hand, a $(\mu_1\circ\cdots\circ\mu_n\circ\mu'_1\cdots\circ\mu'_t)$ -exceptional divisor is contracted by f because G is an Abelian variety. Therefore $(\mu')^*(C_1+C_2)$ is contracted by f. But $(e_1C_1+C_2)^2>0$ for sufficient large e_1 . This is impossible. Hence $\alpha(C'_{1,t}+C'_{2,t}+E'_{0,t})=0$. This completes the proof of Claim 4.7.

Hence

$$g(C_{1,n} + C_{2,n} + E_n) = g(C'_{1,t} + C'_{2,t} + E'_{0,t}) + \sum_{i=1}^{t} \frac{1}{2} a'_i (a'_i - 1)$$

$$\geq q(X'_t) + \sum_{i=1}^{t} \frac{1}{2} a'_i (a'_i - 1)$$

$$= q(X) + \sum_{i=1}^{t} \frac{1}{2} a'_i (a'_i - 1).$$

On the other hand,

$$g(C_1 + C_2) = g(C_{1,n} + C_{2,n} + E_n) + \sum_{i=1}^{n-1} \frac{1}{2} a_i (a_i - 1) + \frac{1}{2} (a_n - 1)(a_n - 2).$$

Therefore

$$g(C_1 + C_2) \ge q(X) + \sum_{i=1}^{n-1} \frac{1}{2} a_i (a_i - 1) + \frac{1}{2} (a_n - 1) (a_n - 2) + \sum_{k=1}^{n-1} \frac{1}{2} a'_k (a'_k - 1).$$

Since $l = g(C_1 + C_2) - q(X)$, we obtain

$$2l \ge \sum_{i=1}^{n-1} a_i(a_i - 1) + (a_n - 1)(a_n - 2) + \sum_{k=1}^{t} a'_k(a'_k - 1).$$

Let $C_1C_2 = x$. Then $x = \sum_{i=1}^n b_i d_i$ and $(C_1 + C_2)^2 \le 2x$ by hypothesis.

CLAIM 4.8.

$$2x - \sum_{i=1}^{n-1} a_i(a_i - 1) - (a_n - 1)(a_n - 2) \le 2.$$

PROOF.

$$2x - \sum_{i=1}^{n-1} a_i(a_i - 1) - (a_n - 1)(a_n - 2)$$

$$= 2\sum_{i=1}^{n} b_i d_i - \sum_{i=1}^{n-1} (b_i + d_i)(b_i + d_i - 1) - (b_n + d_n - 1)(b_n + d_n - 2).$$

For each $i \neq n$,

$$2b_i d_i - (b_i + d_i)(b_i + d_i - 1) = -b_i^2 - d_i^2 + b_i + d_i$$

= $b_i (1 - b_i) + d_i (1 - d_i) \le 0$,

and for i = n,

$$2b_n d_n - (b_n + d_n - 1)(b_n + d_n - 2) = -b_n^2 - d_n^2 + 3b_n + 3d_n - 2$$
$$= b_n (3 - b_n) + d_n (3 - d_n) - 2 < 2.$$

Therefore we obtain Claim 4.8.

By Claim 4.8, we obtain

$$D^{2} = (C_{1} + C_{2})^{2} + (D + C_{1} + C_{2})D_{12}$$

$$\leq 2x + 2m - 2l$$

$$\leq 2x + 2m - \sum_{i=1}^{n-1} a_{i}(a_{i} - 1) - (a_{n} - 1)(a_{n} - 2) - \sum_{k=1}^{t} a'_{k}(a'_{k} - 1)$$

$$\leq 2m + 2 - \sum_{k=1}^{t} a'_{k}(a'_{k} - 1)$$

$$\leq 2m + 2.$$

Therefore $K_XD \ge 2q(X) - 4$. This completes the proof of Theorem 4.6.

Next we consider the case in which the equality in Theorem 4.6 holds.

THEOREM 4.9. Let D be a CNNS-divisor on a minimal smooth surface X with $\kappa(X)=2$, and let $D=\sum_i r_i C_i$ be its prime decomposition. Assume that $\sum_{i\in S} r_i=0$, there exists a curve C_i such that $C_i^2=0$, and $K_XD=2q(X)-4$. Then there are two irreducible curves C_1 and C_2 such that $D=C_1+C_2$ with $C_1^2=C_2^2=0$.

Moreover if C_1 or C_2 is not smooth, then g(D) - q(X) = 1 or 3, and $\sharp (C_1 \cap C_2) = 1$.

- (1) If g(D) q(X) = 1, then C_i is smooth but C_j is not smooth only at $x \in C_1 \cap C_2$ and $\text{mult}_x(C_j) = 2$ for $i \neq j$ and $\{i, j\} = \{1, 2\}$, where $\text{mult}_x(C_j)$ is the multiplicity of C_j at x.
- (2) If g(D) q(X) = 3, then C_1 and C_2 are not smooth only at $x \in C_1 \cap C_2$ and $\text{mult}_x(C_i) = 2$ for i = 1, 2.

PROOF. Let $D = C_1 + C_2 + D_{12}$, where $C_1^2 = 0$ and C_2 is an irreducible curve such that $C_1C_2 > 0$. By the proof of Theorem 4.6, we have $K_XD_{12} = 0$. If $D_{12} \neq 0$, then $K_XC = 0$ for any irreducible curve C of D_{12} because K_X is nef.

CLAIM 4.10. $C^2 = 0$ for any irreducible curve C of D.

PROOF. By hypothesis, there is an irreducible curve B of D such that $B^2 = 0$. Let B' be any irreducible curve of D such that $B \neq B'$ and BB' > 0. By the proof of Theorem 4.6 and the assumption that $K_XD = 2q(X) - 4$, we have $(B')^2 = 0$. By repeating this argument, this completes the proof because D is connected.

By this Claim, $C^2 = 0$ for any irreducible curve C of D_{12} . So $C \equiv 0$ by Hodge index Theorem. But this is a contradiction.

Therefore $D_{12} = 0$ and so we have $D = C_1 + C_2$ with $C_1^2 = C_2^2 = 0$. Next we consider the singularity of C_1 and C_2 .

We remark that C_1 (resp. C_2) is smooth on $C_1 \setminus \{C_1 \cap C_2\}$ (resp. $C_2 \setminus \{C_1 \cap C_2\}$) since $K_X D = 2q(X) - 4$ and $\sum_{k=1}^t a_k'(a_k' - 1) = 0$ (here we use the notation in Theorem 4.6).

We assume that $\sharp C_1 \cap C_2 \ge 2$. Then the number n of blowing up $\mu = \mu_1 \circ \cdots \circ \mu_n$ is greater than 1. Since $K_XD = 2q(X) - 4$, we obtain $b_1 = d_1 = 1$. By interchanging the point of the first blowing up, we obtain that C_1 and C_2 are smooth on $C_1 \cap C_2$.

We assume $\sharp C_1 \cap C_2 = 1$. If the number n of blowing up μ is greater than 1, then $b_1 = d_1 = 1$ by the proof of Theorem 4.6. So C_1 and C_2 are smooth at $x \in C_1 \cap C_2$. Hence we assume that the number of blowing up is one. Then $C_1C_2 = b_1d_1$. By the proof of Theorem 4.6, $b_1(3 - b_1) + d_1(3 - d_1) = 4$. Hence $(b_1, d_1) = (1, 1), (1, 2), (2, 1)$, or (2, 2).

If $(b_1, d_1) = (1, 1)$, then C_1 and C_2 are smooth at x.

If $(b_1, d_1) = (1, 2)$ or (2, 1), then C_i is smooth at x and C_j is not smooth at x for $i \neq j$ and $\{i, j\} = \{1, 2\}$, and $\text{mult}_x(C_j) = 2$, where $\text{mult}_x(C_j)$ is the multiplicity of C_j at x. In this case, $C_1C_2 = 2$ and g(D) - g(X) = 1.

If $(b_1, d_1) = (2, 2)$, then C_1 and C_2 are not smooth at x, and $\text{mult}_x(C_i) = 2$ for i = 1, 2. In this case, $C_1C_2 = 4$ and g(D) - q(X) = 3. This completes the proof of Theorem 4.9.

Next we consider the following case (*):

(*) Let D be a CNNS-divisor on a minimal surface of general type, and let $D = \sum_i r_i C_i$ be its prime decomposition. Then we assume $C_i^2 < 0$ for any i.

THEOREM 4.11. Let (X,D) be (*). Then $K_XD \ge 2q(X) - 3$.

Before we prove this theorem, we state some definitions and notations which is used in the proof of Theorem 4.11.

DEFINITION 4.12. Let D be an effective divisor on X. Then the dual graph G(D) of D is defined as follows.

- (1) The vertices of G(D) corresponds to irreducible components of D.
- (2) For any two vertices v_1 and v_2 of G(D), the number of edges joining v_1 and v_2 equal $\sharp \{B_1 \cap B_2\}$, where B_i is the component of D corresponding to v_i for i = 1, 2.

REMARK 4.12.1. Let G(D) be the dual graph of an effective divisor D. We reject one edge e of G(D) and $G = G(D) - \{e\}$. Let v_1 and v_2 be vertices of G(D) which are terminal points of the edge e. Let C_1 and C_2 be the irreducible curve of D corresponding v_1 and v_2 respectively. Then G is the dual graph of the effective divisor which is the strict transform of D by the blowing up at a point x corresponding to e if $i(C_1, C_2; x) = 1$, where $i(C_i, C_i; x)$ is the intersection number of C_i and C_i at x.

NOTATION 4.13. Let (X, D) be (*). We take a birational morphism $\mu': X' \to X$ such that $C_i' \cap C_j' \cap C_k' = \phi$ for any distinct C_i' , C_j' , and C_k' , and if $C_i' \cap C_j' \neq \phi$, then $i(C_i', C_j'; x) = 1$ for $x \in C_i' \cap C_j'$, where $D' = (\mu')^*(D) = \sum_i r_i' C_i'$. Let $\mu_i: X_i \to X_{i-1}$ be one point blowing up such that $\mu' = \mu_1 \circ \cdots \circ \mu_t$, $X_0 = X$ and $X_t = X'$. Let $D_i = \mu_i^* D_{i-1}$ and $D_0 = D$. Let b_i be an integer such that $(\mu_i)^* (D_{i-1})_{\text{red}} - b_i E_i = (D_i)_{\text{red}}$, where E_i is a μ_i -exceptional curve.

REMARK 4.14. (a) No two $(\mu_1 \circ \cdots \circ \mu_i)$ -exceptional curves on X_i which are not (-1) curve intersect at a point on (-1)-curve on X_i contracted by some μ_i $(j \le i)$.

(b) The point x which is a center of blowing up $\mu_i: X_i \to X_{i-1}$ is contained in one of the following types;

- (1) the strict transform of the irreducible components of D;
- (2) the intersection of the strict transform of the irreducible components of D and one (-1)-curve on X_i contracted by some μ_i $(j \le i)$;
- (3) the intersection of the strict transform of the irreducible components of D and one $(\mu_1 \circ \cdots \circ \mu_i)$ -exceptional curve on X_i which is not (-1)-curve and one (-1)-curve on X_i contracted by some μ_i $(j \le i)$.

We assume that (X, D) satisfies (*) and we use Notation 4.13 unless specifically stated otherwise.

DEFINITION 4.15. (1) Let $\pi: \tilde{X} \to X$ be a birational morphism, and let \tilde{X} and X be smooth surfaces. Let $\pi = \pi_1 \circ \cdots \circ \pi_n$, $X_0 = X$, and $X_n = \tilde{X}$, where $\pi_i: X_i \to X_{i-1}$ is one point blowing up. Let E_i be the exceptional divisor of π_i . Let D be an effective divisor on X and we put $D_0 = D$. Let $D_i = \pi^*(D_{i-1})$. Then the multiplicity of E_i in D_i is called the E_i -multiplicity of D.

(2) We use Notation 4.13. Let $x_i = \mu_i(E_i)$. If x_i is the type (3) in Remark 4.14(b), then the $(\mu_1 \circ \cdots \circ \mu_i)$ -exceptional curve which is not (-1)-curve is said to be an *e-curve*, and x_i is said to be an *e-point*.

We remark that there is at most one *e*-curve throughout x_i .

REMARK 4.16. We consider Notation 4.13. Let E an e-curve on X_i and let x_i be the e-point associated with E. Then we must be blowing up at x_i by considering Notation 4.13. Let \tilde{E} be a strict transform of E by blowing up $\mu_{i+1}: X_{i+1} \to X_i$ at x_i . Then $(\tilde{E})^2 = E^2 - 1 \le -3$ and $K_{X_{i+1}}\tilde{E} = K_{X_i}E + 1 \ge 1$.

DEFINITION 4.17. Let $\delta: \tilde{X} \to X$ be any birational morphism, \tilde{E} a union of δ -exceptional curve, and let D be an effective divisor on X. We put $B = \delta(\tilde{E}) = \{y_1, \dots, y_s\}$. Then we can describe δ as $\delta = \delta_s \circ \cdots \circ \delta_1$, where δ_i is the map whose image of a union of δ_i -exceptional curves is y_i . For each $y_k \in B$, we define a new graph $G = G(y_k, D)$ which is called the *river* of the birational map δ_k and D.

(STEP 1). Let $E_{0,0}$ be a (-1)-curve obtained by blowing up at y_k . Let $v_{0,0}$ be a vertex of the graph G which corresponds to $E_{0,0}$. We define the weight u(0,0;G) of $v_{0,0}$ as follows:

$$u(0,0;G) = \text{the } E_{0,0}\text{-multiplicity of } D.$$

(STEP 2). Let $E_{1,1}, \ldots, E_{1,t}$ be (-1)-curves obtained by blowing up at distinct points $\{x_{1,1}, \ldots, x_{1,t}\}$ on $E_{0,0}$. Let $v_{1,1}, \ldots, v_{1,t}$ be vertices of the graph G which correspond to $E_{1,1}, \ldots, E_{1,t}$ respectively. We join $v_{1,j}$ and $v_{0,0}$ by directed line which goes from $v_{1,j}$ to $v_{0,0}$. For $j=1,\ldots,t$, we define the weight u(1,j;G) of $v_{1,j}$ as follows:

$$u(1,j;G) = e_{1,j} - u(0,0;G),$$

where $e_{1,j}$ = the $E_{1,j}$ -multiplicity of D.

(STEP 3). In general, let $E_{i,1}, \ldots, E_{i,t_i}$ be disjoint (-1)-curves obtained by blowing up at distinct points $\{x_{i,1}, \ldots, x_{i,t_i}\}$ on $\bigcup_k E_{i-1,k}$. Let $v_{i,1}, \ldots, v_{i,t_i}$ be vertices of the graph

G which correspond to $E_{i,1}, \ldots, E_{i,t_i}$ respectively. We join $v_{i,j}$ and $v_{i-1,k}$ by directed line which goes from $v_{i,j}$ to $v_{i-1,k}$ if $E_{i,j}$ is contracted in $E_{i-1,k}$. Let $e_{i,j}$ = the $E_{i,j}$ -multiplicity of D for $j = 1, \ldots, t_i$. Then we define the weight u(i,j;G) of $v_{i,j}$ as follows:

$$u(i,j;G) = e_{i,j} - \sum_{v_{p,q} \in SP(i,j;G)} u(p,q;G),$$

where P(i, j; G) denotes the path between $v_{0,0}$ and $v_{i,j}$, and $SP(i, j; G) = P(i, j; G) - \{v_{i,j}\}$. By the above steps, we obtain the graph G for each y_k .

NOTATION 4.18.

$$w(i,j;G) = \begin{cases} \deg(v_{i,j}) - 1, & \text{if } v_{i,j} \neq v_{0,0}, \\ \deg(v_{0,0}). \end{cases}$$

LEMMA 4.19. Let $\mu: Y \to X$ be a birational morphism between smooth surfaces X and Y, and let D be an effective divisor on X. Let $D' = \mu^*D$, and E a union of all μ -exceptional curves.

Let $B = \mu(E)$ and M(D') = sum of the multiplicity of <math>(-1)-curves on Y in D'. Then

$$\begin{split} M(D') &= \sum_{y \in B} \left[\sum_{v_{i,j} \in G(y)} \left\{ \sum_{v_{p,q} \in P\left(i,j;G(y)\right)} u\left(p,q;G(y)\right) \right\} \theta\left(i,j;G(y)\right) \right] \\ &+ \sum_{y \in B} \left\{ \sum_{v_{i,i} \in G(y)} u\left(i,j;G(y)\right) \right\}, \end{split}$$

where G(y) = G(y, D) and

$$\theta(i,j;G(y)) = \begin{cases} w(i,j;G(y)) - 1 & \text{if } w(i,j;G(y)) \ge 1, \\ 0 & \text{if } w(i,j;G(y)) = 0. \end{cases}$$

PROOF. We may assume that $B = \{y\}$. Let G = G(y, D). Let $A = \{v_{i,j} \in G \mid \deg(v_{i,j}) = 1, v_{i,j} \neq v_{0,0}\}$ and $\rho = \sharp A - \deg(v_{0,0})$.

If
$$A = \phi$$
, then $M(D') = u(0, 0; G)$.

So we assume $A \neq \phi$. We prove this lemma by induction on the value of ρ . We remark that by construction the following fact holds;

FACT. For any $v_{s,t} \in A$, the multiplicity of the (-1)-curve corresponding to $v_{s,t}$ is equal to $\sum_{v_{i,j} \in P(s,t;G)} u(i,j;G)$.

(1) The case in which $\rho = 0$.

Then deg v = 2 for any $v \notin A$ and $v \neq v_{0,0}$. Hence

$$\begin{split} M(D') &= \sum_{v_{i,j} \in G} u(i,j;G) + u(0,0;G) \Big(\deg(v_{0,0}) - 1 \Big) \\ &= \sum_{v_{i,j} \in G} u(i,j;G) + \sum_{v_{i,j} \in G} \Big\{ \sum_{v_{p,q} \in P(i,j;G)} u(p,q;G) \Big\} \theta(i,j;G). \end{split}$$

(2) The case in which $\rho = k > 0$.

We assume that this lemma is true for $\rho \leq k-1$. We take a vertex $v_{s,t} \in A$ such that there is no edge whose terminal points are $v_{0,0}$ and $v_{s,t}$. Let $G^{\vee} = G - \{v_{s,t}\}$. Let $\mu^-: Y \to X^-$ be blowing down of (-1)-curves corresponding to $v_{s,t}$ and $\mu = \mu^+ \circ \mu^-$. Let $D^{\vee} = (\mu^+)^*(D)$. Then we remark that G^{\vee} is the river of μ^+ and D.

Then by induction hypothesis

$$M(D^{\vee}) = \sum_{v_{i,j} \in G^{\vee}} u(i,j;G^{\vee}) + \sum_{v_{i,j} \in G^{\vee}} \left\{ \sum_{v_{p,q} \in P(i,j;G^{\vee})} u(p,q;G^{\vee}) \right\} \theta(i,j;G^{\vee}).$$

Next we consider M(D'). Let $v_{s-1,l}$ be a vertex such that there is an edge between $v_{s-1,l}$ and $v_{s,t}$.

(2-1) The case in which w(s - 1, l; G) = 1.

Then $M(D') = M(D^{\vee}) + u(s, t; G)$. Hence

$$\begin{split} M(D') &= \sum_{v_{i,j} \in G^{\vee}} u(i,j;G^{\vee}) + u(s,t;G) + \sum_{v_{i,j} \in G^{\vee}} \left\{ \sum_{v_{p,q} \in P(i,j;G^{\vee})} u(p,q;G^{\vee}) \right\} \theta(i,j;G^{\vee}) \\ &= \sum_{v_{i,j} \in G} u(i,j;G) + \sum_{v_{i,j} \in G} \left\{ \sum_{v_{p,q} \in P(i,j;G)} u(p,q;G) \right\} \theta(i,j;G), \end{split}$$

because $\theta(s-1,l;G) = \theta(s,t;G) = 0$ and we have $u(i,j;G) = u(i,j;G^{\vee})$, $w(i,j;G) = w(i,j;G^{\vee})$, and $\theta(i,j;G) = \theta(i,j;G^{\vee})$ for $v_{i,j} \neq v_{s,t}$.

(2-2) The case in which $w(s-1, l; G) \ge 2$.

Then

$$M(D') = M(D^{\vee}) + \sum_{v_{p,q} \in SP(s,t;G)} u(p,q;G) + u(s,t;G).$$

Hence

$$\begin{split} M(D') &= \sum_{v_{i,j} \in G^{\vee}} u(i,j;G^{\vee}) + u(s,t;G) + \sum_{v_{i,j} \in G^{\vee}} \left\{ \sum_{v_{p,q} \in P(i,j;G^{\vee})} u(p,q;G^{\vee}) \right\} \theta(i,j;G^{\vee}) \\ &+ \sum_{v_{p,q} \in SP(s,t;G)} u(p,q;G) \\ &= \sum_{v_{i,j} \in G} u(i,j;G) + \sum_{v_{i,j} \in G} \left\{ \sum_{v_{p,q} \in P(i,j;G)} u(p,q;G) \right\} \theta(i,j;G), \end{split}$$

because $\theta(s,t;G) = 0$ and $\theta(s-1,l;G) = \theta(s-1,l;G^{\vee}) + 1$ and because we have $u(i,j;G) = u(i,j;G^{\vee})$, $w(i,j;G) = w(i,j;G^{\vee})$, and $\theta(i,j;G) = \theta(i,j;G^{\vee})$ for $(i,j) \neq (s,t), (s-1,l)$. This completes the proof of Lemma 4.19.

LEMMA 4.20. Let D be a CNNS-divisor on X and we use Notation 4.13. Then

$$(D'_{\text{red}})^2 \le 2l - 2 - \sum_{i=1}^t b_i(b_i - 1) + \sum_i ((C'_j)^2 + 2),$$

where $l = g(D_{red}) - q(X)$.

PROOF. First we prove the following Claim.

CLAIM 4.21.

$$e(D') - o(D') + 1 + \sum_{i=1}^{t} \frac{1}{2} b_i (b_i - 1) \le l.$$

PROOF. We have $g(D'_{\text{red}}) = g(D_{\text{red}}) - \sum_{i=1}^{t} \frac{1}{2} b_i(b_i - 1)$ by definition. There exists m = e(D') - o(D') + 1 edges e_1, \ldots, e_m of $G(D_{\text{red}})$ such that $G - \{e_1, \ldots, e_m\}$ is a tree. Therefore by Remark 4.12.1, there exists a connected effective divisor A on X'' which is obtained by finite number of blowing ups of X' such that $g(D'_{\text{red}}) = g(A) + e(D') - o(D') + 1$. Let $\mu'': X'' \to X'$ be its birational morphism and A the strict transform of D'_{red} by μ'' . Let $\alpha(A) = \dim \operatorname{Ker}(H^1(\mathcal{O}_{X''}) \to H^1(\mathcal{O}_A))$. Then we calculate $\alpha(A)$.

If $\alpha(A) \neq 0$, then there exist an Abelian variety T, a surjective morphism $f'': X'' \to T$ such that f''(X'') is not a point and f''(A) is a point. Then any μ'' -exceptional curve is contracted by f'' because T is an Abelian variety. Hence $f''((\mu'')^*D'_{\text{red}})$ is a point. But $(\mu'')^*D'_{\text{red}}$ is not negative semidefinite. Therefore $\alpha(A) = 0$. Since A is reduced and connected, A is 1-connected. Hence $g(A) = h^1(O_A)$. So we obtain $g(A) = h^1(O_A) \geq q(X'') = q(X)$.

By the above argument,

$$g(D_{\text{red}}) = g(D'_{\text{red}}) + \sum_{i=1}^{t} \frac{1}{2} b_i (b_i - 1)$$

$$= g(A) + e(D') - o(D') + 1 + \sum_{i=1}^{t} \frac{1}{2} b_i (b_i - 1)$$

$$\geq q(X) + e(D') - o(D') + 1 + \sum_{i=1}^{t} \frac{1}{2} b_i (b_i - 1).$$

Therefore

$$e(D') - o(D') + 1 + \sum_{i=1}^{t} \frac{1}{2} b_i (b_i - 1) \le l.$$

This completes the proof of Claim 4.21.

We continue the proof of Lemma 4.20. By construction, we obtain

$$(D'_{\text{red}})^2 = \sum_j (C'_j)^2 + 2e(D')$$

= $\sum_j (C'_j)^2 + 2(o(D') + e(D') - o(D'))$
= $\sum_j ((C'_j)^2 + 2) + 2(e(D') - o(D')).$

By Claim 4.21, we have

$$(D'_{red})^2 \le 2l - 2 - \sum_{i=1}^t b_i(b_i - 1) + \sum_i ((C'_j)^2 + 2).$$

This completes the proof of Lemma 4.20.

THEOREM 4.22. Let X be a minimal smooth projective surface with $\kappa(X) \geq 0$ and D a CNNS-divisor on X. Let $D = \sum_j r_j D_j$ be its prime decomposition and m = g(D) - q(X), where $m \in \mathbb{Z}$.

Then $D^2 \leq 2m - 2 + N(D)$, where

$$N(D) = \sum_{\beta \in \mathbb{Z}} \beta \cdot \sharp \{ \text{irreducible curves } C_j \text{ of } D \text{ such that } C_j^2 = -2 + \beta \}.$$

PROOF. We use Notation 4.13 and the notions which is defined above. We may assume that $B = \{y\}$. Let G = G(y,D), u(i,j) = u(i,j;G), $\theta(i,j) = \theta(i,j;G)$, w(i,j) = w(i,j;G), P(i,j) = P(i,j;G), and SP(i,j) = SP(i,j;G). Let $D' = (\mu')^*D$ and $D'_{nr} = D' - D'_{red}$. Let $D'_{nr} = D'_{ne} + D'_{e} + D'_{-1}$, where D'_{ne} is the effective divisor which consists of not μ' -exceptional curves, D'_{e} is the effective divisor which consists of curves which are μ' -exceptional curves but not (-1)-curves, and D'_{-1} is the effective divisor which consists of (-1)-curves.

Then

$$K_{X'}D'_{e} = \sum_{v_{i,i} \in G} \left\{ \left(\sum_{v_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j) + \sum_{v_{i,i} \in G} \varepsilon(i,j) \left(m(i,j) - 1 \right),$$

where m(i,j) is the multiplicity of e-curve through $x_{i,j}$ in the total transform of D, $x_{i,j}$ is the blowing up point and its (-1)-curve corresponds to $v_{i,j}$, $\varepsilon(i,j) = 1$ if there exists the e-curve through $x_{i,j}$ and $\varepsilon(i,j) = 0$ if there does not exist the e-curve through $x_{i,j}$.

On the other hand,

$$-\sum_{\alpha}(E_{\alpha}^{2}+2)=\sum_{v_{i,i}\in G-W}\left(w(i,j)-1\right)+\sum_{v_{i,i}\in G}\varepsilon(i,j),$$

where E_{α} is a μ' -exceptional curve on X' and not (-1)-curve, and $W=\{v_{i,j}\in G\mid w(i,j)=0\}$.

Hence

(4.22.1)
$$K_{X'}D'_{e} - \sum_{\alpha} (E^{2}_{\alpha} + 2) = \sum_{\nu_{i,j} \in G} \left\{ \left(\sum_{\nu_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j) + \sum_{\nu_{i,j} \in G - W} \left(w(i,j) - 1 \right).$$

Let

 $\beta_{nr} = \text{sum of multiplicity of } \mu' - \text{exceptional } (-1) - \text{curves in } D'_{nr}.$

Then

$$(4.22.2) -\beta_{nr} = K_{X'}D'_{-1}.$$

Let $C_{i,j}$ be a strict transform of $C_{i,j-1}$ by μ_j and $C_{i,0} = C_i$. Let $C_{i,j} = \mu_j^*(C_{i,j-1}) - e(i)_j E_j$, where E_j is the (-1)-curve of μ_j . We remark that $e(i)_j \ge 1$ for any i, j.

Then

$$K_{X'}((r_i-1)C_{i,t}) \ge \sum_{j=1}^t (r_i-1)e(i)_j$$

because *X* is minimal.

Hence

$$K_{X'}(D'_{ne}) \ge \sum_{i} \left\{ \sum_{j=1}^{t} (r_i - 1)e(i)_j \right\}.$$

On the other hand

$$\sum_{i} (C_{i,t}^{2} + 2) = N(D) - \sum_{i} \sum_{j=1}^{t} e(i)_{j}^{2}$$

because $C_{i,t}^2 = C_i^2 - \sum_{i=1}^t e(i)_i^2$.

Hence

(4.22.3)
$$K_{X'}(D'_{ne}) - \sum_{i} (C_{i,t}^2 + 2) \ge \sum_{i} \sum_{j=1}^{t} (r_i e(i)_j) - N(D)$$

since $\sum_{j=1}^{t} e(i)_{j}^{2} \geq \sum_{j=1}^{t} e(i)_{j}$.

By (4.22.1), (4.22.2), and (4.22.3), we obtain

$$K_{X'}D'_{nr} - \sum_{i} (C_{i,t}^{2} + 2) - \sum_{\alpha} (E_{\alpha}^{2} + 2)$$

$$\geq -\beta_{nr} + \sum_{v_{i,j} \in G} \left\{ \left(\sum_{v_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j)$$

$$+ \sum_{v_{i,j} \in G} \varepsilon(i,j) m(i,j) + \sum_{v_{i,j} \in G - W} \left(w(i,j) - 1 \right) + \sum_{i} \sum_{j=1}^{t} \left(r_{i} e(i)_{j} \right) - N(D).$$

On the other hand, we have

$$\begin{split} q(X) + m &= g(D) = g(D') \\ &= g(D'_{\text{red}}) + \frac{1}{2} (K_{X'} + D' + D'_{\text{red}}) D'_{nr} \\ &= g(D_{\text{red}}) - \frac{1}{2} \sum_{i=1}^{t} b_i (b_i - 1) + \frac{1}{2} (K_{X'} + D' + D'_{\text{red}}) D'_{nr} \\ &= q(X) + l - \frac{1}{2} \sum_{i=1}^{t} b_i (b_i - 1) + \frac{1}{2} (K_{X'} + D' + D'_{\text{red}}) D'_{nr}, \end{split}$$

where $l = g(D_{\text{red}}) - q(X)$.

Hence by (4.22.4), we obtain

$$2m - 2l = (K_{X'} + D' + D'_{red})D'_{nr} - \sum_{i=1}^{t} b_{i}(b_{i} - 1)$$

$$\geq \sum_{i} (C_{i,t}^{2} + 2) + \sum_{\alpha} (E_{\alpha}^{2} + 2) - \beta_{nr}$$

$$+ \sum_{\nu_{i,j} \in G} \left\{ \left(\sum_{\nu_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j)$$

$$+ \sum_{\nu_{i,j} \in G} \varepsilon(i,j)m(i,j) + \sum_{\nu_{i,j} \in G - W} \left(w(i,j) - 1 \right)$$

$$+ \sum_{i} \sum_{j=1}^{t} \left(r_{i}e(i)_{j} \right) - N(D) + (D' + D'_{red})D'_{nr} - \sum_{i=1}^{t} b_{i}(b_{i} - 1),$$

and so we have

$$\begin{split} (D' + D'_{\text{red}})D'_{nr} &\leq -\sum_{i} (C_{i,t}^{2} + 2) - \sum_{\alpha} (E_{\alpha}^{2} + 2) + \beta_{nr} \\ &- \sum_{v_{i,j} \in G} \left\{ \left(\sum_{v_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j) \\ &- \sum_{v_{i,j} \in G} \varepsilon(i,j) m(i,j) - \sum_{v_{i,j} \in G - W} \left(w(i,j) - 1 \right) \\ &- \sum_{i} \sum_{j=1}^{t} \left(r_{i} e(i)_{j} \right) + N(D) + \sum_{i=1}^{t} b_{i}(b_{i} - 1) + 2m - 2l. \end{split}$$

Therefore by Lemma 4.20, we obtain

$$(D')^{2} = (D'_{red})^{2} + (D' + D'_{red})D'_{nr}$$

$$\leq (2m - 2l) + (2l - 2) + \sum_{i=1}^{t} b_{i}(b_{i} - 1) - \sum_{i=1}^{t} b_{i}(b_{i} - 1)$$

$$+ \sum_{i} \left((C'_{i})^{2} + 2 \right) - \sum_{i} (C_{i,t}^{2} + 2) - \sum_{\alpha} (E_{\alpha}^{2} + 2) + \beta_{nr}$$

$$- \sum_{v_{i,j} \in G} \left\{ \left(\sum_{v_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j)$$

$$- \sum_{v_{i,j} \in G} \varepsilon(i,j)m(i,j) - \sum_{v_{i,j} \in G - W} \left(w(i,j) - 1 \right)$$

$$- \sum_{i} \sum_{j=1}^{t} \left(r_{i}e(i)_{j} \right) + N(D)$$

$$= (2m - 2) + M(D')$$

$$- \sum_{v_{i,j} \in G} \left\{ \left(\sum_{v_{p,q} \in P(i,j)} u(p,q) \right) - 1 \right\} \theta(i,j)$$

$$- \sum_{v_{i,j} \in G} \varepsilon(i,j)m(i,j) - \sum_{v_{i,j} \in G - W} \left(w(i,j) - 1 \right)$$

$$- \sum_{i} \sum_{j=1}^{t} \left(r_{i}e(i)_{j} \right) + N(D),$$

where M(D') is the sum of the multiplicity of (-1)-curves in D'. On the other hand by Lemma 4.19, we have

$$\begin{split} M(D') - \sum_{v_{i,j} \in G} & \Big\{ \Big(\sum_{v_{p,q} \in P(i,j)} u(p,q) \Big) - 1 \Big\} \theta(i,j) \\ &= M(D') - \sum_{v_{i,j} \in G} \Big\{ \sum_{v_{p,q} \in P(i,j)} u(p,q) \Big\} \theta(i,j) + \sum_{v_{i,j} \in G - W} \Big(w(i,j) - 1 \Big) \\ &= \sum_{v_{p,q} \in G} u(p,q) + \sum_{v_{i,j} \in G - W} \Big(w(i,j) - 1 \Big). \end{split}$$

Therefore

$$\begin{split} (D')^2 & \leq 2m - 2 + \sum_{v_{p,q} \in G} u(p,q) + \sum_{v_{i,j} \in G - W} \left(w(i,j) - 1 \right) \\ & - \sum_{v_{i,j} \in G} \varepsilon(i,j) m(i,j) - \sum_{v_{i,j} \in G - W} \left(w(i,j) - 1 \right) \\ & - \sum_{i} \sum_{j=1}^{t} \left(r_i e(i)_j \right) + N(D) \\ & = 2m - 2 + N(D) \end{split}$$

because we have

$$\sum_{v_{i,j} \in G} \varepsilon(i,j) m(i,j) + \sum_{i} \sum_{j=1}^{t} \left(r_i e(i)_j \right) = \sum_{v_{p,q} \in G} u(p,q)$$

by considering the definition of u(p, q). This completes the proof of Theorem 4.22.

Theorem 4.11 is obtained by Theorem 4.22.

PROOF OF THEOREM 4.11. It is sufficient to prove $D^2 \le 2m + 1$ if g(D) - q(X) = m. We consider the following decomposition (**) of D:

(**) $D = D_1 + D_2$, and D_1 and D_2 have no common component, where D_1 and D_2 are non zero effective connected divisors.

CLAIM 4.23. If
$$\left((D_1)_{red}\right)^2 \leq 0$$
 and $\left((D_2)_{red}\right)^2 \leq 0$, then $N(D) \leq 4$. If $\left((D_1)_{red}\right)^2 < 0$ or $\left((D_2)_{red}\right)^2 < 0$, then $N(D) \leq 3$.

PROOF. Let $(D_i)_{\text{red}} = \sum_j B_{i,j}$. Then $\sum_j (B_{i,j})^2 = N(D_i) - 2o(D_i)$ and $\sum_{j \neq k} B_{i,j} B_{i,k} \ge e(D_i)$. Hence $((D_i)_{\text{red}})^2 \ge 2e(D_i) - 2o(D_i) + N(D_i)$ for i = 1, 2. By hypothesis, we have $0 \ge 2e(D_i) - 2o(D_i) + N(D_i)$ for i = 1, 2. Since the dual graph $G(D_i)$ of D_i is connected, we have $e(D_i) - o(D_i) + 1 \ge 0$. Hence $2e(D_i) - 2o(D_i) \ge -2$ and so we have $N(D_i) \le 2$.

On the other hand, $N(D) = N(D_1) + N(D_2)$ since $D = D_1 + D_2$. Therefore $N(D) \le 4$.

The last part of Claim 4.23 can be proved by the above argument. This completes the proof of Claim 4.23.

Let S(D) be a set of an effective connected reduced divisor \tilde{D} contained in D such that \tilde{D} has a minimum component which satisfies the property that the intersection matrix of \tilde{D} is not negative semidefinite.

Then $S(D) \neq \phi$ by hypothesis. Let $\bar{D} = \sum_{i \in J} C_i \in S(D)$ and let r_i be the multiplicity of C_i in D. Let $D_{\alpha} = \sum_{i \in J} r_i C_i$ and $D_{\beta} = D - D_{\alpha}$. We remark that possibly $D_{\beta} = 0$. Then D_{α} has at least two components since $C_i^2 < 0$ for any i. Let $D_{\alpha} = D_{\alpha,1} + D_{\alpha,2}$ be the decomposition as (**).

CLAIM 4.24. We can take this decomposition which satisfies $(D_{\alpha,1})^2 < 0$.

PROOF. We consider the dual graph $G(D_{\alpha})$ of D_{α} . Then $G(D_{\alpha})$ is connected. In Graph Theory, there is the following standard Theorem;

THEOREM 4.25. Let G be a connected graph which is not one point. Then there are at least two points which are not cutpoints. (Here a vertex v of a graph is called a cutpoint if removal of v increases the number of components.)

PROOF. See Theorem 3.4 in [H].

We continue the proof of Claim 4.24. By Theorem 4.25, it is sufficient to take $(D_{\alpha,1})_{red}$ as an irreducible curve corresponding to a vertex of $G(D_{\alpha})$ which is not a cutpoint. This completes the proof of Claim 4.24.

We continue the proof of Theorem 4.11.

We have $((D_{\alpha,1})_{\text{red}})^2 < 0$ and $((D_{\alpha,2})_{\text{red}})^2 \leq 0$ by the choice of D_{α} . Therefore $N(D_{\alpha}) \leq 3$ by Claim 4.23.

On the other hand, we have

$$q(X) + m = g(D) = g(D_{\alpha}) + \frac{1}{2}(K_X + D + D_{\alpha})D_{\beta}.$$

Let $g(D_{\alpha}) = q(X) + m_{\alpha}$. Then by Theorem 4.22, $D_{\alpha}^2 \le 2m_{\alpha} - 2 + N(D_{\alpha}) \le 2m_{\alpha} + 1$ since D_{α} is a CNNS-divisor.

On the other hand, $(K_X+D+D_\alpha)D_\beta=2(m-m_\alpha)$ and $K_XD_\beta\geq 0$. Hence $(D+D_\alpha)D_\beta\leq 2(m-m_\alpha)$. Therefore

$$D^{2} = D_{\alpha}^{2} + (D + D_{\alpha})D_{\beta}$$

$$\leq 2m_{\alpha} + 1 + 2m - 2m_{\alpha}$$

$$= 2m + 1.$$

This completes the proof of Theorem 4.11.

REMARK 4.26. Let $D = \sum_i r_i C_i$ be an effective divisor on a minimal smooth surface of general type with $C_i^2 < 0$ for any i. If the intersection matrix $\|(C_i \cdot C_j)\|$ is not negative semidefinite, then $K_X D \ge 2q(X) - 3$.

Indeed, let D_1, \ldots, D_t be the connected component of D. Then for some D_k , the intersection matrix of the components of D is not negative semidefinite. By Theorem 4.11, we have $K_XD_k \ge 2q(X) - 3$. Since K_X is nef, we obtain $K_XD \ge 2q(X) - 3$.

COROLLARY 4.27. Let X be a minimal smooth surface of general type and let D be a nef-big effective divisor with $h^0(D) = 1$ on X. If D is not the following type (\star) , then $K_X D \ge 2q(X) - 4$;

(*) $D = C_1 + \sum_{j\geq 2} r_j C_j$; $C_1^2 > 0$ and the intersection matrix $\|(C_j, C_k)\|_{j\geq 2, k\geq 2}$ of $\sum_{j\geq 2} r_j C_j$ is negative semidefinite.

PROOF. By Theorem 4.5, Theorem 4.6, Theorem 4.11, and Remark 4.26, we obtain Corollary 4.27.

5. The case in which $\kappa(X) = 2$ and L is an irreducible reduced curve.

NOTATION 5.1. Let X be a smooth projective surface over the complex number field $\mathbb C$ and let C be a curve on X with $C^2 > 0$. Let N(k;C) be the set of a 0-dimensional subscheme $\tilde Z$ with length $\tilde Z = k+1$ and $\operatorname{Supp} \tilde Z \subset C$ such that the restriction map $\Gamma\left(O(K_X+C)\right) \to \Gamma\left(O(K_X+C)\otimes O_{\tilde Z}\right)$ is not surjective. Let $S(\tilde Z;C)$ be the set of a subcycle Z of $\tilde Z \in N(k;C)$ with length $Z \leq \operatorname{length} \tilde Z$ such that $\Gamma\left(O(K_X+C)\right) \to \Gamma\left(O(K_X+C)\otimes O_Z\right)$ is not surjective but for any subcycle Z' of Z with length $Z' < \operatorname{length} Z$, $\Gamma\left(O(K_X+C)\right) \to \Gamma\left(O(K_X+C)\otimes O_Z\right)$ is surjective.

First we prove the following Theorem.

THEOREM 5.2. Let X be a minimal smooth projective surface with $\kappa(X) = 2$, and let C be an irreducible reduced curve on X with $C^2 > 0$. We put g(C) = q(X) + m. We assume that $K_X + C$ is not k-very ample for some integer $k \ge (1/2)(m-1)$, and also assume that

$$\sharp \bigcup_{\tilde{Z} \in N(k:C)} \Bigl(\bigcup_{Z \in S(\tilde{Z};C)} \operatorname{Supp} Z\Bigr) = \infty.$$

Then $C^2 \le 4(k+1)$.

PROOF. We remark that C is nef and big. Assume that $C^2 > 4(k+1)$. Then we remark that $C^2 \ge 2m + 3$ by hypothesis.

If $q(X) \le 2$, then $K_XC \ge 0 \ge 2q(X) - 4$ and so we have $C^2 \le 2m + 2$ and this is a contradiction. Hence we have $q(X) \ge 3$.

Then by Corollary 2.3 in [BeS], for any $Z \in \bigcup_{\tilde{Z} \in N(k;C)} S(\tilde{Z};C)$ there exists an effective divisor D_Z on X such that Supp(Z) $\subset D_Z$ and $C - 2D_Z$ is a \mathbb{Q} -effective divisor. Let $A = \{D_Z \mid Z \in \bigcup_{\tilde{Z} \in N(k;C)} S(\tilde{Z};C) \text{ and } D_Z \text{ as above}\}.$

CLAIM 5.3. Let D be an effective divisor on X and let $D = \sum_i r_i C_i$ be its prime decomposition. If there exists an irreducible component C_i with $C_i^2 > 0$, and C - 2D is \mathbb{Q} -effective, then $C^2 \leq 2m$ if g(C) = q(X) + m.

PROOF. By Proposition 1.7, we have

$$K_X D \ge K_X C_i$$

$$\ge \frac{3}{2} q(X) - 3$$

$$= q(X) + \frac{1}{2} q(X) - 3.$$

Since $q(X) \ge 3$, we obtain that $K_XD \ge q(X) - (3/2)$. Hence $K_XD \ge q(X) - 1$ because K_XD is an integer. Because K_X is nef and C - 2D is \mathbb{Q} -effective, we obtain

$$g(C) = 1 + \frac{1}{2}(K_X + C)C$$

$$\geq 1 + \frac{1}{2}(K_X)(2D) + \frac{1}{2}C^2$$

$$= 1 + K_XD + \frac{1}{2}C^2$$

$$\geq q(X) + \frac{1}{2}C^2.$$

Therefore $C^2 < 2m$. This completes the proof of Claim 5.3.

We continue the proof of Theorem 5.2.

By Claim 5.3, any $D_Z \in A$ satisfies $C_i^2 \le 0$ for any irreducible component C_i of D_Z . So $C \not\subset D_Z$ for any $D_Z \in A$ since $C^2 > 0$. Hence by hypothesis, we obtain

$$\dim \bigcup_{D_Z \in A} \left(\bigcup_{C_{Z,i} \in V(D_Z)} \operatorname{Supp} C_{Z,i} \right) = 2,$$

where $V(D_Z)$ = the set of irreducible components of D_Z .

Let

$$\bigcup_{D_Z \in A} V(D_Z) = B_1 \cup B_2,$$

where B_1 is the set of irreducible curves C_1 with $C_1^2 < 0$ and B_2 is the set of irreducible curves C_2 with $C_2^2 = 0$.

(1) The case in which $\sharp B_1 = \infty$.

If $C_1 \in B_1$ with $K_X C_1 \ge q(X) - 1$, then $K_X D_Z \ge q(X) - 1$ and so we have $C^2 \le 2m$ by the same argument as Claim 5.3. So we have $K_X C_1 \le q(X) - 2$ for any $C_1 \in B_1$. Then the number of such a curve C_1 is at most finite by Lemma 1.8. But this is a contradiction by hypothesis.

(2) The case in which $\sharp B_2 = \infty$.

If $C_2 \in B_2$ with $K_X C_2 \ge q(X) - 1$, then we have $C^2 \le 2m$ by the same argument as above. So we have $K_X C_2 \le q(X) - 2$ for any $C_2 \in B_2$. Then there is a subset $B_3 \subset B_2$ such that $\sharp B_3 = \infty$ and $C_s \equiv C_t$ for any distinct C_s , $C_t \in B_3$ by Lemma 1.8. We take a $C_k \in B_3$. Let $\alpha(C_k) = \dim \operatorname{Ker}(H^1(O_X) \to H^1(O_{C_k}))$.

(2-1) The case in which $\alpha(C_k) \neq 0$.

Then by Lemma 1.3 in [Fk4], there exist an Abelian variety G and a morphism $f: X \to G$ such that f(X) is not a point and $f(C_k)$ is a point. Since $C_k^2 = 0$, we obtain f(X) is a curve. By taking Stein factorization, if necessary, there is a smooth curve B, a surjective morphism $h: X \to B$ with connected fibers, and a finite morphism $\delta: B \to f(X)$ such that $f = \delta \circ h$. On the other hand, for any $C_n \in B_3$ and $C_n \neq C_k$, we have $C_n C_k = C_k^2 = 0$. Hence any element C_n of B_3 is contained in a fiber of h and $C_n^2 = 0$. Therefore for a general fiber F_h of h, we may assume $F_h \in B_3$. On the other hand, we have $C - 2D_Z \leq C - 2F_h$. So we obtain that $C - 2F_h$ is a \mathbb{Q} -effective divisor.

Hence we have

$$g(C) = g(B) + \frac{1}{2}(K_{X/B} + C)C + (CF_h - 1)(g(B) - 1)$$

$$\geq g(B) + \frac{1}{2}(K_{X/B})(2F_h) + \frac{1}{2}C^2$$

$$= g(B) + 2g(F_h) - 2 + \frac{1}{2}C^2$$

$$= g(B) + g(F_h) + \frac{1}{2}C^2 + g(F_h) - 2$$

$$\geq q(X) + \frac{1}{2}C^2$$

because $K_{X/B}$ is nef, $g(B) \ge 1$ and $g(F_h) \ge 2$. Hence $C^2 \le 2m$. But this is a contradiction because we assume that $C^2 \ge 2m + 3$. (2-2) The case in which $\alpha(C_k) = 0$.

Then $q(X) \le h^1(\mathcal{O}_{C_k}) = g(C_k)$. On the other hand, since K_X is nef, $C_k^2 = 0$, $C - 2C_k \ge$ $C - 2D_Z$, and $C - 2D_Z$ is Q-effective, we obtain

$$g(C) = 1 + \frac{1}{2}(K_X + C)C$$

$$\geq 1 + \frac{1}{2}(K_X)(2C_k) + \frac{1}{2}C^2$$

$$= 1 + K_XC_k + \frac{1}{2}C^2$$

$$= 1 + 2g(C_k) - 2 + \frac{1}{2}C^2$$

$$\geq 2g(X) - 1 + \frac{1}{2}C^2.$$

Hence

$$C^2 \le 2m + 2(1 - q(X))$$

$$\le 2m - 4$$

since $q(X) \ge 3$.

But this is a contradiction by hypothesis. Therefore $C^2 \le 4(k+1)$. This completes the proof of Theorem 5.2.

COROLLARY 5.4. Let X be a minimal smooth projective surface with $\kappa(X) = 2$ and let C be an irreducible reduced curve with $C^2 > 0$. Then $C^2 \le 4m+4$ if m = g(C)-q(X).

PROOF. We use Notation 5.1. By Theorem 5.2, it is sufficient to prove that $K_X + C$ is not m-very ample and

$$\sharp \bigcup_{\tilde{Z} \in N(m;C)} \left(\bigcup_{Z \in S(\tilde{Z};C)} \operatorname{Supp} Z \right) = \infty.$$

Let $W = \text{Im}(H^0(K_X + C) \to H^0(\omega_C))$, where ω_C is a dualizing sheaf of C. We remark that ω_C is a Cartier divisor. Let α be the map $H^0(K_X+C) \to W$. Then dim $W=h^0(K_X+C)$

 $h^0(K_X) = m$ by Riemann-Roch Theorem and Kawamata-Viehweg Vanishing Theorem. Let P_1, \ldots, P_{m+1} be any m+1 distinct points on $C \setminus \operatorname{Sing} C$, where $\operatorname{Sing} C$ denotes the singular locus of C. Let Z be a 0-dimensional subscheme such that

(1)
$$I_Z O_{X,y} = O_{X,y}$$
 if $y \notin \{P_1, \dots, P_{m+1}\};$

(2)
$$I_Z O_{X,y} = (x_i, y_i) \text{ if } y = P_i,$$

where I_Z is the ideal sheaf of Z and (x_i, y_i) is a local coordinate of X at P_i such that C is defined by (x_i) at P_i . Let β be the restriction map $W \to H^0\big((K_X+C)\otimes O_Z\big)$. If K_X+C is m-very ample at Z, then the restriction $\gamma\colon H^0(K_X+C)\to H^0\big((K_X+C)\otimes O_Z\big)$ is surjective. But we have $\dim W=m$ and $\dim H^0\big((K_X+C)\otimes O_Z\big)=m+1$. This is a contradiction since $\gamma=\beta\circ\alpha$. Hence K_X+C is not m-very ample for any 0-dimensional subscheme with length m+1 which consists of distinct m+1 points of $C\setminus \mathrm{Sing}(C)$. This implies

$$\sharp \bigcup_{\tilde{Z} \in N(m;C)} \left(\bigcup_{Z \in S(\tilde{Z};C)} \operatorname{Supp} Z \right) = \infty.$$

This completes the proof of Corollary 5.4.

By Corollary 4.27, in order to solve Conjecture 1 (or Conjecture 1'), it is sufficient to consider the case in which D is the following type (\star):

(*)
$$D = C_1 + \sum_{j \geq 2} r_j C_j$$
; $C_1^2 > 0$ and the intersection matrix $||C_j, C_k||_{j \geq 2, k \geq 2}$ of $\sum_{j \geq 2} r_j C_j$ is negative semidefinite.

COROLLARY 5.5. Let X be a minimal smooth projective surface with $\kappa(X) = 2$ and let D be a nef-big effective divisor on X such that D is the type (\star) . Then $D^2 \leq 4m + 4$ if m = g(D) - q(X).

PROOF. First we obtain

$$g(C_1) = q(X) + m - \frac{1}{2}(K_X + D + C_1) \left(\sum_{i>2} r_i C_i\right).$$

By Corollary 5.4, we have

$$C_1^2 \le 4m + 4 - 2(K_X + D + C_1) \left(\sum_{j \ge 2} r_j C_j \right)$$

$$\le 4m + 4 - 2(D + C_1) \left(\sum_{j \ge 2} r_j C_j \right).$$

Hence

$$D^{2} = C_{1}^{2} + (D + C_{1}) \left(\sum_{j \geq 2} r_{j} C_{j} \right)$$

$$\leq 4m + 4 - (D + C_{1}) \left(\sum_{j \geq 2} r_{j} C_{j} \right).$$

On the other hand $D + C_1$ is nef. Hence $(D + C_1)(\sum_{j \ge 2} r_j C_j) \ge 0$ and so we obtain $D^2 \le 4m + 4$. This completes the proof of Corollary 5.5.

6. **Higher dimensional case and conjecture.** In this section we consider the case in which $n = \dim X \ge 3$ and $\kappa(X) \ge 0$.

THEOREM 6.1. Let (X, L) be a quasi-polarized manifold with dim $X = n \ge 3$ and $\kappa(X) = 0$ or 1. Then $K_X L^{n-1} \ge 2(q(X) - n)$.

PROOF. (1) The case in which $\kappa(X) = 0$.

Then $q(X) \le n$ by [Ka1]. Hence $K_X L^{n-1} \ge 0 \ge 2(q(X) - n)$.

(2) The case in which $\kappa(X) = 1$.

By Iitaka Theory ([Ii]), there exist a smooth projective variety X_1 , a birational morphism $\mu_1: X_1 \to X$, a smooth curve C, and a fiber space $f_1: X_1 \to C$ such that $\kappa(F_1) = 0$, where F_1 is a general fiber of f_1 . Let $L_1 = \mu_1^* L$.

(2-1) The case in which $g(C) \ge 1$.

By Lemma 1.3.1 and Remark 1.3.2 in [Fk2] and the semipositivity of $(f_1)_*(mK_{X_1/C})$ for $m \in \mathbb{N}$ ([Fj1], [Ka2]), we have $K_{X_1/C}L_1^{n-1} \ge 0$. Therefore

$$K_X L^{n-1} = K_{X_1} L_1^{n-1}$$

= $K_{X_1/C} L_1^{n-1} + (2g(C) - 2) L_1^{n-1} F_1$
 $\geq 2g(C) - 2.$

On the other hand, $q(X) \le g(C) + (n-1)$ since $q(F_1) \le n-1$ by [Ka1]. Hence

$$K_X L^{n-1} \ge 2(g(C) - 1)$$

$$\ge 2(q(X) - n).$$

(2-2) The case in which g(C) = 0.

Then $q(X) \le n - 1$ since $q(F_1) \le n - 1$. Therefore $K_X L^{n-1} \ge 0 > 2(q(X) - n)$. This completes the proof of Theorem 6.1.

By considering the above theorem, we propose the following conjecture which is a generalization of Conjecture 1'.

Conjecture 6.2. Let (X, L) be a quasi-polarized manifold with $n = \dim X \ge 3$ and $\kappa(X) \ge 0$. Then $K_X L^{n-1} \ge 2(q(X) - n)$.

By Theorem 6.1, this conjecture is true if $\kappa(X) = 0$ or 1. We will study Conjecture 6.2 in a future paper.

ACKNOWLEDGMENT. The author would like to express his hearty gratitude to Professor Takao Fujita for giving some useful advice and comments.

REFERENCES

- [BaBe] E. Ballico and M. C. Beltrametti, On the k-spannedness of the adjoint line bundle. Manuscripta Math. 76(1992), 407–420.
- **[BaS]** E. Ballico and A. J. Sommese, *Projective surfaces with k-very ample line bundle of degree* $\leq 4k + 4$. Nagoya Math. J. **136**(1994), 57–79.
- [Be] A. Beauville, L'inégalité $p_g \ge 2q-4$ pour les surfaces de type général. Bull. Soc. Math. France 110(1982), 343–346
- [BeFS] M. C. Beltrametti, P. Fania and A. J. Sommese, *On Reider's method and higher order embeddings*. Duke Math. J. 58(1989), 425–439.
- [BeS] M. C. Beltrametti and A. J. Sommese, *Zero cycles and k-th order embeddings of smooth projective surfaces*. In: Problems in the Theory of Surfaces and their Classification, Cortona, Italy, 1988, (eds. F. Catanese and C. Ciliberto), Sympos. Math. **32**, 1992, 33–48.
- [Bo] E. Bombieri, Canonical models of surfaces of general type. Inst. Hautes. Études. Sci. Publ. Math. 42 (1973), 171–219.
- [D] O. Debarre, *Inégalités numériques pour les surfaces de type général*. Bull. Soc. Math. France **110**(1982), 319–346; Addendum Bull. Soc. Math. France **111**(1983), 301–302.
- [DP] M. A. De Cataldo and M. Palleschi, *Polarized surfaces of positive Kodaira dimension with canonical bundle of small degree*. Forum Math. 4(1992), 217–229.
- [Fj1] T. Fujita, On Kähler fiber spaces over curves. J. Math. Soc. Japan 30(1978), 779–794.
- [Fj2] ______, Classification Theories of Polarized Varieties. London Math. Soc. Lecture Note Series 155 (1990).
- [Fj3] ______, On certain polarized elliptic surfaces. Geometry of Complex projective varieties, Seminars and Conferences 9, Mediterranean Press, 1993, 153–163.
- [Fk1] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces. Geom. Dedicata 64 (1997), 229–251.
- [Fk2] _____, A lower bound for sectional genus of quasi-polarized manifolds. J. Math. Soc. Japan 49(1997), 339–362.
- [Fk3] ______, On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension. Math. Nachr. 180(1996), 75–84.
- [Fk4] _____, On polarized surfaces (X, L) with $h^0(L) > 0$, $\kappa(X) = 2$, and g(L) = q(X). Trans. Amer. Math. Soc. 348(1996), 4185–4197.
- [H] F. Harary, Graph theory. Addison-Wesley, 1969.
- [Ii] S. Iitaka, On D-dimension of algebraic varieties. J. Math. Soc. Japan 23(1971), 356–373.
- [Ka1] Y. Kawamata, Characterization of Abelian varieties. Compositio Math. 43(1981), 253–276.
- [Ka2] _____, Kodaira dimension of algebraic fiber spaces over curves. Invent. Math. 66(1982), 57–71.
- [Ra] C. P. Ramanujam, Remarks on the Kodaira vanishing theorem. J. Indian Math. Soc. 36(1972), 41–51.
- [S] F. Serrano, The Picard group of a quasi-bundle. Manuscripta Math. 73(1991), 63-82.
- [X] G. Xiao, Fibered algebraic surfaces with low slope. Math. Ann. 276(1987), 449–466.

Current address:

Department of Mathematics Faculty of Science Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo 152-8551

Japan

e-mail: fukuma@math.titech.ac.jp

Department of Mathematics College of Education Naruto University of Education Takashima, Naruto-cho Naruto-shi 772-8502 Japan

e-mail: fukuma@naruto-u.ac.jp